首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
1. The 96-hr lc50 values for juvenile hard clams, Meretrix lusoria, were 328, 392 and 194 μg/l Hg in 10, 20 and 30 ppt salinities at 25 ± 1°C, respectively; for adult hard clams 341 and 140 μg/l Hg in 20 and 30 ppt salinities, respectively.2. Acclimatizing the adult clams to low salinity of 10 ppt lessened the toxicity of mercury. However, juvenile animals appeared to be more sensitive to mercury poisoning after 96 hr exposure in 10 ppt salinity.3. All embryos exposed to 40 μg/l Hg and above died within 30 hr. In the control, 44% of hatched embryos had developed into D-stage larvae, while those exposed to 20 μg/l Hg were still in the trochophore stage. Most of the retarded larvae developed into abnormal forms within 30 hr at 28°C in 15 ppt salinity.4. In order to maintain water quality and protect natural resources, the recommended safe level of mercury is 0.046 (0.039–0.053) μg/l Hg, based on the estimated 30-hr EC50 for the clam embryos, with an application factor of 0.01.  相似文献   

2.
Carbonic anhydrase (CA) induction in the gills of the euryhaline blue crab, Callinectes sapidus, was measured in response to lowered environmental salinity. Simultaneous measurements of ornithine decarboxylase (ODC) activity were made in gills and nonbranchial tissues to determine whether ODC activity and the resultant synthesis of polyamines played a role in the initiation and regulation of CA induction. CA induction in the seventh gill pair (G7) was proportional to the decrease in ambient salinity, but activity in the third gill pair (G3) remained unchanged. Induction began by 24 hr after low salinity transfer, much earlier than previously reported, and peaked after 4 days. The magnitude of salinity change affected the magnitude of CA induction only, not the time course. A general cell volume regulatory response, as measured by the appearance of total ninhydrin-positive substances (TNPS) in the hemolymph, was initiated within 4 hr of low salinity transfer and was complete by 24 hr post-transfer. General cell swelling may be the initial signal in the pathway of CA induction. ODC activity in the gills of acclimated animals was not influenced by salinity. For crabs transferred from 35 to 25 ppt, ODC activity did not change significantly over the time course of acclimation. There was an early but transient increase in ODC activity in all tissues for crabs acclimated to 28 ppt and transferred to 15 ppt. Induction of ODC activity does not appear to be a precursor for CA induction; therefore, it does not appear that polyamines are substantially involved in the up-regulation of transport enzyme activity in low salinity. ODC, and resultant polyamine synthesis, may, however, have a role in cell volume regulation.  相似文献   

3.
Two euryhaline species of decapod crustaceans, Carcinus maenas and Callinectes sapidus, were subjected to a series of acute low-salinity challenges, and changes in carbonic anhydrase (CA) activity in the gills were monitored in order to characterize the nature of salinity-sensitive CA induction. CA activity is uniformly low in all gills of both species at high salinity, but at a critical salinity of 27 ppt, CA induction occurs in the posterior, ion-transporting gills, with CA activity approximately doubling. This salinity occurs right at, or slightly above, the point at which these species make the transition from osmoconformity to osmoregulation. The regulatory mechanism that controls the levels of CA expression after the initial induction has occurred is also very sensitive. Changes in CA activity occur in response to changes in salinity as small as 20 milliosmoles. CA induction only occurs after a critical minimum amount of time of exposure to low salinity (48-72 hr in C. maenas and 12 hr in C. sapidus), but once induction is begun, it continues regardless of subsequent salinity changes. The timing is most likely due to the time it takes for changes in gene expression and resultant increases in CA mRNA to occur in response to low-salinity exposure, and the delay in CA induction could be an adaptation to avoid making metabolically expensive responses to potentially short-term environmental changes.  相似文献   

4.
In euryhaline crabs, ion-transporting cells are clustered into osmoregulatory patches on the lamellae of the posterior gills. To examine changes in the branchial osmoregulatory patch in the blue crab Callinectes sapidus in response to change in salinity and to correlate these changes with other osmoregulatory responses, crabs were acclimated to a range of salinities between 10 and 35 ppt. When crabs that had been acclimated to 35 ppt were subsequently transferred to 10 ppt, both the size of the osmoregulatory patch on individual gill lamellae and the specific activity of Na+, K+-ATPase in whole-gill homogenates increased only after the first 24 h of exposure to dilute seawater. Enzyme activity and size of patch area increased gradually and reached their maxima (increasing by 200% and 60%, respectively) 6 days following transfer to 10 ppt seawater and then remained at these levels. Patch size at acclimation varied inversely with the salinity for seawater dilutions below 26 ppt (the isosmotic point of the crab), although it did not vary in salinities at or above 26 ppt. Thus, the size of the patch clearly is modulated with acclimation salinity, but it increases only in those salinities in which the crab hyperosmoregulates. An increase in the total RNA/DNA ratio in gill homogenates, the lack of mitotic figures in the lamellae, and the lack of incorporation of bromodeoxyuridine into nuclei of lamellar epithelial cells during acclimation to dilute seawater were interpreted as evidence that no cell proliferation had occurred and that increases in the size of the osmoregulatory patch occurred through differentiation of existing gas exchange cells or of undifferentiated epithelial cells into ion-transporting cells.  相似文献   

5.
The time course of induction of activity of carbonic anhydrase (CA) and Na/K ATPase, two enzymes that are central to osmotic and ionic regulation in the eyryhaline green crab, Carcinus maenas, was measured in response to a transfer from 32 to 10 ppt salinity. CA activity was low in all gills in crabs acclimated to high salinity. Activity was induced in the posterior three gills (G6-G9) starting at 96 hr following transfer to low salinity, with activity peaking at seven post-transfer. Na/K ATPase activity in posterior gills was already high in crabs acclimated to 32 ppt salinity, and it did not increase as a result of transfer to 10 ppt. Acclimation of crabs to hypersaline (40 ppt) conditions resulted in uniformly low levels of Na/K ATPase activity, and transfer from 40 ppt to 10 ppt stimulated a four-fold induction of activity in the posterior gills that was evident by seven days of low salinity exposure. Low salinity stimulates the activity of both enzymes, but a different degree of salinity change appears to be necessary to cause the induction of each enzyme. The Na/K ATPase activity is already high at a salinity (32 ppt) at which the crab is still an osmotic and ionic conformer. CA activity, however, even when expressed in low levels, is still present in excess of what is needed to supply counterions at a rate adequate to match the rate of active ion transport. It is possible that two strategies exist for the regulation of these two enzymes that coincide with the crab's intertidal and estuarine lifestyle: short-term modulation of activity of highly expressed enzyme (Na/K ATPase) and long-term modulation of enzyme concentration by changes in gene expression (CA). For all ranges of low salinity exposure, crabs undergo hemodilution, cell swelling, and subsequent cell volume readjustment as evidenced by the increase in concentration of TNPS in the hemolymph. This response takes place before the induction of enzyme activity, and it could serve as the initial signal in the induction pathway.  相似文献   

6.
The Cabo Rojo salt flats are an important wintering area for migratory shorebirds. Their quality is intimately related to prey availability, as prey are needed to meet energetic requirements. Understanding prey dynamics is, therefore, a key element of shorebird conservation plans. To this end, we monitored the density and distribution of water-boatmen (Trichocorixa spp.) and brine shrimp (Artemia spp.) in relation to water salinity from September to November of 1994 and 1995. Salinity ranged from 4 to 292 ppt, and gradients were related to hydrological alterations (e.g., salt extraction) and connection to the ocean. Brine shrimp were restricted to areas of highest salinity ( 106 ppt), whereas water-boatmen to areas of lowest salinity (< 65 ppt). We used aquaria experiments to discern potential mechanisms influencing density and distribution of water boatmen. We focused on this species because its caloric value is similar to the brine shrimp's, but it occurs in areas of lower salinity where shorebirds are less prone to hyperosmotic stress. We hypothesized that areas devoid of water boatmen exceeded their tolerance limit, and that these limits could hamper survival as individuals move among areas. Experiments showed that an increase of 8.5 ± 2.1 ppt, when the base salinity was 40 ppt, induced a 50% mortality rate. From a base salinity of 55 ppt, median survival time decreased curvilinearly across salinity concentrations of 65 to 195 ppt. Median survival was lowest > 100 ppt. Lowering water salinity did not result in osmolal related mortality. Results underscored the sensitivity of water boatmen to high salinity, particularly when the difference in salinity between the source and destination localities widened. Water boatmen density increased in one lagoon as salinity decreased from 65 to 47 ppt. On the basis of our experiments, local adult survivorship improved and immigration and subsequent survival of adults, if any, was not hindered. The density of nymphs also suggested that hatching occurred concurrently. The foraging value of the salt flats can be enhanced by maintaining salinity at < 65 ppt in selected management units and minimizing differences in salinity concentrations among them.  相似文献   

7.
1. The 24,48,96, 144-hr lc50 (median lethal concentration) of ammonia on Penaeus penicillatus juveniles were 59.49, 38.72, 29.77, 25.03 mg/l and 50.28, 31.26, 24.88, 20.66 mg/l for ammonia-N (un-ionized plus ionized ammonia as nitrogen); and 2.22, 1.44, 1.11, 0.93 mg/l and 2.00, 1.25, 0.99, 0.82 mg/l for NH3-N (un-ionized ammonia as nitrogen) in 34 and 25 ppt seawater, respectively.2. The 24, 48, 96, 144-hr lc50 of nitrite-N on P. penicillatus juveniles were 92.88, 79.45, 40.86, 26.29 mg/l and 83.34, 52.93, 38.52, 25.55 mg/l in 34 and 25 ppt seawater, respectively.3. A decrease of salinity from 34 to 25 ppt increased by more than 20% toxicities of ammonia and nitrite to P. penicillatus juveniles.4. The “threshold” was found at 156 and 144 hr for ammonia, and 192 and 168 hr for nitrite in 34 and 25 ppt, respectively.5. The “safety level” for P. penicillatus juveniles was 2.37 and 1.97 mg/l for ammonia-N; 0.09 and 0.08 mg/l for NH3-N and 2.04 and 2.28 mg/l for nitrite-N in 34 and 25 ppt, respectively.  相似文献   

8.
Spotted seatrout are capable of spawning in a wide range of salinities. Along the Texas Gulf Coast, bay salinities increase from an average of 14 ppt in Galveston Bay to an average of 40 ppt in Lower Laguna Madre due to the negative gradient of freshwater inflow from north to south. Tagging studies have shown that the majority of spotted seatrout do not migrate between adjacent bay systems. Spawning salinity has been shown to affect many properties of eggs including the diameter and salinity of neutral buoyancy. Spotted seatrout from two historically different salinity regimes (Matagorda Bay (MB) and Upper Laguna Madre (ULM)) were kept in the laboratory and induced to spawn in three salinities: 20, 30, and 40 ppt. The purpose of this study was to evaluate eggs at each of the three salinities and between the two bay systems. Two-way ANOVA showed a significant effect on the egg diameter of bay and spawning salinity, and a significant interaction between bays and spawning salinity. No significant difference in size at hatch was found between spawning salinities or between bays. Hatch rates in spawning salinity were >90% in all cases. Regression of wet weight on spawning salinity was highly significant for both bays. Eggs spawned in 20 ppt have the largest wet weight and eggs spawned in 40 ppt have the smallest wet weight, irrespective of parental bay origin. Percentage of water varied between 92% for 20 ppt spawned eggs and 86% in 40 ppt spawned eggs. Neutral Buoyancy Salinity (NBS) of eggs increased with increasing spawning salinity. Eggs spawned by the Upper Laguna Madre fish held at 20 ppt were not positively buoyant at 20 ppt. The results of this study suggest that spotted seatrout are locally adapted to the prevailing salinity regime within an estuary.  相似文献   

9.
The effects of substrate salinity and salt spray upon seedlings of Scaevola sericea were examined in this study. Three levels of substrate salinity: 0.0 ppt, 3.0 ppt, and 10.0 ppt were examined in conjunction with three levels of salt spray: zero, medium (200 mg m-2mdd-1), and high (1200–1500 mg-m-2mdd-1). Leaf surface area, root to shoot ratio, as well as leaf, stem, and root mass decreased significantly (P 0.05) with increasing substrate salinity. Biomass accumulation was very low at 10.0 ppt substrate salinity, suggesting that higher levels of substrate salinity cannot be tolerated by the seedlings. Salt spray had a substantial effect on several of these variables, however its effects were less pronounced than those of substrate salinity. Cell sap osmolarity, leaf thickness, and leaf specific mass increased significantly (P 0.05) with both increasing substrate salinity and salt spray levels. Leaf carbon isotope ratios (δl3C) became more positive with increasing salinity, indicating an enhancement of the intrinsic water use efficiency of the seedlings at higher salinities. Scaevola sericea is one of the dominant plants found at the leading edge of strand communities in the Hawaiian archipelago and throughout much of the tropical Pacific. Since substrate salinity and salt spray increase with proximity to the ocean, the two factors may act together to limit the seaward expansion of S. sericea in coastal habitats.  相似文献   

10.
11.
Carbonic anhydrase (CA) activity in the gills of the euryhaline blue crab, Callinectes sapidus, was measured in response to acute low-salinity transfer and treatment with eyestalk ablation (ESA) in an attempt to elucidate potential regulatory mechanisms of salinity-mediated CA induction. ESA alone resulted in an approximate doubling of CA activity in the posterior, ion-transporting gills of crabs acclimated to 35 ppt. Transfer of intact crabs to 28 ppt, a salinity at which the blue crab is still an osmotic and ionic conformer, had no effect on CA activity, but treatment with ESA prior to transfer resulted in a 5-fold increase. Hemolymph osmolality was unaffected by ESA. There was a 7-fold induction of CA activity in posterior gills of intact crabs transferred from 35 to 15 ppt, and this was potentiated by about 100% by ESA. Hemolymph osmolality was slightly elevated in the ESA-treated crabs. CA activity in anterior gills did not increase in response to any treatment. Hemolymph concentrations of methyl farnesoate (MF) were measured for all experimental animals. MF concentrations were undetectable in all intact crabs, regardless of salinity. Treatment with ESA resulted in elevated levels of hemolymph MF, but these levels were still relatively low and unrelated to salinity. These results suggest that CA induction is under the control of a regulatory substance located in the eyestalk. This substance appears to be a CA repressor, keeping CA expression at low levels in the gills of crabs acclimated to high salinity. Exposure to low salinity, or treatment with ESA, removes the effects of this putative repressor and allows CA induction to occur.  相似文献   

12.
Cultured Perkinsus marinus cells were exposed for 24 hr to salinities of 0, 3, 6, 9, 12 and 22 ppt at temperatures of 1, 5, 10, 15 and 28°C in artificial seawater (ASW) and to the same salinities at 28°C in ASW with the osmotic concentration adjusted with sucrose to the equivalent of 22 ppt. At 28°C mortality increased as salinity decreased below 22 ppt. Mortality was greater than 99% at 0 ppt and greater than 90% at 3 ppt. Mortality was 70% at 6 ppt, 43% at 9 ppt and 20% at 12 ppt. Mortality was low (<5%) and equal to that at 22 ppt in all treatments where osmotic concentration was maintained with sucrose. Mortality occurred rapidly, within 5 min of exposure to experimental conditions. In the region where mortality was most sensitive to salinity changes (6–12 ppt), lower temperature caused an increase in mortality, but the temperature effect was significant only at 9 ppt.  相似文献   

13.
1. The effects of a sudden decrease in salinity and exposure to sublethal concentrations of the herbicide, alachlor, on osmoregulation and respiration of the crab, Rithropanopeus harrisii, were studied. 2. Crabs were hyperosmotic regulators at salinities below 24 ppt and became hypoosmotic at higher salinities. Upon a salinity decrease from 20 to 1 ppt, crabs adjusted their haemolymph osmolality to a stable hyperosmotic level in 8 hr. Alachlor concentrations to 50 ppm did not affect this adjustment. 3. A salinity decrease from 10 to 0 ppt elevated VO2 and the critical oxygen tension. This response was unaffected by alachlor concentrations as high as 25 ppm.  相似文献   

14.
ABSTRACT: BACKGROUND: Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. RESULTS: A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5[PRIME] and 3[PRIME] RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-I was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. CONCLUSIONS: We report the ontogenetic variation in CasAQP-1 expression during the larval development of C. sapidus and the induction of its expression at early larval stages in the exposure of hyposalinity. However, it remains to be determined if the increase in CasAQP-1 expression at later larval stages may have a role in adaptation to hyposalinity.  相似文献   

15.
Ecophysiological responses of Litopenaeus vannamei were evaluated as functions of environmental salinity and animal size. Growth rate, routine metabolic rate, limiting oxygen concentration, and marginal metabolic scope were determined for L. vannamei acclimated to, and tested at, salinities of 2, 10, and 28 ppt, all at 28 °C. Routine metabolic rate (RMR), estimated as oxygen-consumption rate per unit body weight for fasted, routinely-active shrimp, was independent of salinity but decreased with increasing shrimp weight. Limiting oxygen concentration for routine metabolism (LOCr) decreased with increased shrimp weight for the 10 and 28 ppt treatments, but not for the 2 ppt treatment. Marginal metabolic scope (MMS = RMR/LOCr) also decreased with increasing shrimp weight and was independent of salinity. Growth rate was significantly less at 2 ppt than at either 10 or 28 ppt, which gave similar growth rates.  相似文献   

16.
A two-chamber-system was used to study whole-plant gas exchange responses of Spartina alterniflora to long-term and transient salinity treatments over the range of 5 to 40 ppt NaCl. Lower photosynthetic rates, leaf water vapor conductances, belowground respiration rates, and higher aboveground respiration rates in plants adapted to 40 ppt NaCl were observed. Area-specific leaf weight increased with salinity, although the salt content of leaf tissues did not. A reduced rate of gross photosynthesis and higher aboveground respiration rate in 40-ppt NaCl plants significantly lowered the net whole-plant CO2 gain below that of 5-ppt NaCl plants, while the net CO2 gain of 25-ppt NaCl plants was intermediate. Within 6 hr of increasing the salinity of 5- and 25-ppt NaCl plants by 20 and 15 ppt NaCl, S. alterniflora responded by reducing leaf water vapor conductance, which in turn reduced the photosynthetic rate. This response was reversed by returning the plants to their original salinity, which indicates that S. alterniflora adjusts water loss and gas exchange in response to transient salinity stress by regulating stomatal aperture. On the other hand, decreasing salinity of the growth media of plants cultured at 25 and 40 ppt NaCl had little or no effect on gas exchange characteristics. This suggests that S. alterniflora adapts to constant salinity through fixed, salinity-dependent structural modifications, such as stomatal density.  相似文献   

17.
A microcosm experiment was conducted to assess the effects of salinity on coastal lagoon plankton assemblages. Five salinity levels were replicated four-fold in 3801 fiberglass tanks. Salinity levels used were 0, 8.5, 17, 34 and 51 ppt, or 0, 25, 50, 100 and 150 percent seawater. These were achieved by mixing concentrated lagoon water and tapwater in different proportions. Tanks were inoculated with plankton collected from San Dieguito Lagoon (Del Mar, San Diego County, California) and other fresh and saline waterbodies in the area. Selected physical-chemical variables, phytoplankton, zooplankton, and other invertebrate populations were monitored on five sampling dates over a 114 day period (13 August–5 December 1986).Total phytoplankton abundance increased with salinity, for salinities >17 ppt. Most taxa showed marked effects of salinity, though the pattern of the effects often varied greatly from date to date. Chlorophytes tended to be most abundant at 51 ppt. Pyrrhophytes were most abundant at 0 or 51 ppt, and least abundant at 8.5 or 17 ppt. Cryptophytes increased with increasing salinity. Euglenophytes exhibited no salinity effect on any date. Bacillariophytes were most abundant at 8.5–34 ppt and least abundant at 51 ppt, with individual taxa showing maxima at 0–17 ppt (Navicula, Synedra), 8.5–34 ppt (Surirella, Amphora), and 34 ppt (Cylindrotheca).Total zooplankton abundance decreased with salinity, for salinities > 17 ppt. The dominant taxa were protozoans, rotifers, cladocerans, and copepods, and all but the first group showed strong salinity effects. Protozoan abundance was unaffected by salinity. Rotifers were most abundant at 0 ppt (Keratella, Filinia) or 8.5 ppt (Brachionus). With few exceptions, cladocerans (Alona, Ceriodaphnia, Scapholeberis) were found only at 0 ppt. Abundance of calanoid copepods decreased with increasing salinity, with individual taxa showing maxima at 0 ppt (Diaptomus), 8.5–17 ppt (Pseudodiaptomus, Eurytemora), and 34 ppt (Acartia). Cyclopoid copepods were most abundant at 17 ppt, with individual taxa showing maxima at 0 ppt (Eucyclops), 8.5 ppt (Halicyclops), and 17 ppt (Oithona). Harpacticoid copepods (Cletocamptus, Tachidius) were most abundant at 17–34 ppt. Ostracods and mosquito (Culex) larvae were most abundant at 8.5 ppt and absent at 34 and 51 ppt. Polychaetes generally were most abundant at 17–34 ppt, and water boatmen (Trichocorixa) at 8.5–34 ppt. Various physical and chemical variables also showed significant variations with salinity. Tending to increase with salinity were temperature, ammonia and orthophosphate concentrations. Decreasing with salinity were pH, dissolved oxygen and silica concentrations. The causes and interrelationships of these salinity effects are discussed.  相似文献   

18.
The acute toxicity of Cr(VI) to the diatom Thalassiosira pseudonana (Hasle and Heimdal) clone 3H was determined in artificial media of 3.2 and 0.32 ppt salinity and with variations of sulfate concentration in the media independent of salinity. Inhibitory concentrations of Cr(VI) ranged from 6.6 μM for growth rate and 4.9 μM for cell yield at 3.2 ppt salinity and 2.8 μM sulfate to 0.04 μM for growth rate and 0.02 μM for cell yield at 0.32 ppt salinity and 0.019 mM sulfate. The inhibition by Cr(VI) was a function of the ratio of Cr(VI) to sulfate. Inhibition occurred when-this ratio exceeded about 500:1. It is suggested that the mechanism for the toxicity of Cr(VI) to diatoms and perhaps other aquatic organisms involves a site at which sulfate and chromate compete.  相似文献   

19.
Toxic effect due to chloride and condensable tannin on anaerobic digestion of vegetable tanning wastewater was investigated at different hydraulic retention times viz 24, 48 and 60 hr respectively. The toxicity to anaerobic contact filter was observed at a chloride concentration of 4500 mg/l and tannin concentration of 790 mg/l respectively under synergistic condition. In the case of constant influent tannin concentration of 600 mg/l, the toxicity due to chloride on anaerobic contact filter was observed at 5500 mg/l. The COD removal percent ranged from 50% to 79% at 48 hr and 67% to 91% at 60 hr HRT respectively. In the case of constant influent chloride concentration of 4000 mg/l and at an increasing influent COD concentration, the toxicity due to tannin on anaerobic contact filter was observed at 1180 mg/l. The COD removal percent ranged from 64% to 89% at 48 hr and 78% to 96% at 60 hr HRT respectively. The results showed that at least 60 hr HRT would be desirable to have good COD removal percent.  相似文献   

20.
Acute salinity tolerance limits for the estuarine spawning spotted seatrout, Cynoscion nebulosus (Cuvier). were evaluated by examining 18 h survival of larvae in an extensive range of salinity treatments (0 to 56 ppt). Larvae from eggs spawned in two different salinities (24 and 32 ppt) as well as larvae acclimated in hypersaline and brackish waters were compared. Both upper and lower salinity tolerance limits showed an age-linked pattern, decreasing to a minimum tolerance range (6.4 to 42.5 ppt) at age 3 days after hatching (at 28 o C) and increasing to the widest range tolerated (1.9 to 49.8 ppt) on the last day tested (age 9 days). Acclimation to hyposaline conditions was demonstrated by larvae spawned at 32 ppt although significant hypersaline acclimation could not be demonstrated. Altered upper limits to the range tolerated by larvae from different spawning salinities indicated parental and/or early acclimation effects are important. Consistently greater vulnerability to both hyper- and hyposaline conditions at age 3 days after hatching was observed in all tests conducted. Exposures related to the onset of feeding at this time are likely explanations for this reduced tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号