首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
500 MHz NMR spectroscopy has been used to investigate the complexation of the anthracycline antibiotic daunomycin (DAU) with self-complementary deoxytetranucleotides, 5'-d(CGCG), 5'-d(GCGC), 5'-d(TGCA), 5'-d(ACGT) and 5'-d(AGCT), of different base sequence in aqueous salt solution. 2D homonuclear 1H NMR spectroscopy (TOCSY and NOESY) and heteronuclear 1H - 31P NMR spectroscopy (HMBC) have been used for complete assignment of the non-exchangeable protons and the phosphorus resonance signals, respectively, and for a qualitative determination of the preferred binding sites of the drug. Analysis shows that DAU intercalates preferentially into the terminal sites of each of the tetranucleotides and that the aminosugar of the antibiotic is situated in the minor groove of the tetramer duplex, partly eclipsing the third base pair. A quantitative determination of the complexation of DAU with the deoxytetranucleotides has been made using the experimental concentration and temperature dependences of the drug proton chemical shifts; these have been analysed in terms of the equilibrium reaction constants, limiting proton chemical shifts and thermodynamical parameters (enthalpies deltaH, entropies deltaS) of different drug-DNA complexes (1:1, 1:2, 2:1, 2:2) in aqueous solution. It is found that DAU interacts with sites containing three adjacent base pairs but does not show any significant sequence specificity of binding with either single or double-stranded tetranucleotides, in contrast with other intercalating drugs such as proflavine, ethidium bromide and actinomycin D. The most favourable structures of the 1:2 complexes have been derived from the induced limiting proton chemical shifts of the drug in the intercalated complexes with the tetranucleotide duplex, in conjunction with 2D NOE data. It has been found that the conformational parameters of the double helix and the orientation of the DAU chromophore in the intercalated complexes depend on base sequence at the binding site of the tetramer duplexes in aqueous solution.  相似文献   

2.
Complexation of the trypanocidal drug, ethidium bromide (EB), and the self-complementary deoxytetraribonucleoside triphosphates, 5′-d(ApCpGpT), 5′-d(ApGpCpT), and 5′-d(TpGpCpA), in aqueous salt solution has been investigated using one-dimensional and two-dimensional 500/600 MHz 1H-nmr spectroscopy. Six hundred megahertz two-dimensional homonuclear 1H-nmr spectroscopy (nuclear Overhauser effect spectroscopy) was used for a qualitative determination of the structures of EB binding with the deoxytetranucleotides. Concentration dependencies of proton chemical shifts of the molecules have been measured at constant temperatures (T = 303 or 308 K). Different successive schemes of complex formation between the dye molecule and the tetranucleotides have been examined by taking into account various molecular associations in solution, viz., 1:1, 1:2, 2:1 and 2:2 complexes. Equilibrium reaction constants and the limiting proton chemical shifts in the complexes have been determined. The relative contributions of different types of complexes in the equilibrium mixture have been determined and special features of the dynamic equilibrium have been revealed by analysis of chemical shifts as a function of both the dye and tetranucleotide concentrations. The present analysis leads to the conclusion that EB binds preferentially to the pyrimidine-purine sites of the tetranucleotide duplexes. The results show that the energy of EB binding depends on the base content in the pyrimidine-purine sites of the tetramers and on the nucleotide residuals flanking the preferential site. The most favorable structures of the 1:2 and 2:2 complexes of the dye with the tetranucleotides have been constructed using calculated values of induced chemical shifts of EB protons in conjunction with intermolecular nuclear Overhauser effects. The structures of the EB:tetranucleotide complexes depend on tetramer base sequence and are characterized by differences in helix parameters. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The molecular basis of the action of caffeine as a complex forming agent, an interceptor of aromatic drugs intercalating into DNA was studied by the example of the an anticancer antibiotic actinomycin D examined. The hetero-association of caffeine and actionomycin D was studied by one- and two-dimensional 1H-NMR spectroscopy (500 MHz). Concentration and temperature dependences of the proton chemical shifts of molecules in aqueous solution were measured. The equilibrium reaction constant of hetero-association of caffeine with actinomycin D (K = 246 +/- 48 M-1), the limiting chemical shifts of caffeine protons in complexes were determined. The most favourable structure of the 1:1 caffeine-actinomycin D hetero-complex in aqueous solution was constructed using the calculated values of the induced proton chemical shifts of molecules and the quantum-mechanical iso-shielding curves for caffeine and actinomycin D. The thermo-dynamical parameters of the hetero-complex formation between caffeine and actinomycin D were also determined. The structural and thermo-dynamical analysis showed that dispersive forces and hydrophobic interactions play the major role in hetero-association of caffeine and actinomycin D in aqueous-salt solution. The relative content of different complexes in mixed solutions containing caffeine and actinomycin D was calculated and distinctive features of the dynamic equilibrium of caffeine-actinomycin D hetero-associates were revealed as a function of concentration and temperature. It is concluded that hetero-association of caffeine and actinomycin D molecules a lowers the effective concentration of the drug in solution and hence the pharmacological activity of actinomycin D.  相似文献   

4.
Complex formation of hairpin-producing heptadeoxynucleotide 5'-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H-1H (2M-TOCSY, 2M-NOESY), 1H-31P (2M-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2M-NOE data and the calculated values of limiting chemical shifts of ligand protons.  相似文献   

5.
Veselkov  A. N.  Eaton  R. J.  Semanin  A. V.  Pakhomov  V. I.  Djimant  L. N.  Karawaew  L.  Davies  D. B. 《Molecular Biology》2002,36(5):708-717
Complex formation of hairpin-producing heptadeoxynucleotide 5"-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H–1H (2D-TOCSY, 2D-NOESY), 1H–31P (2D-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2D-NOE data and the calculated values of limiting chemical shifts of ligand protons.  相似文献   

6.
Self-association of hexadeoxynucleotide 5'-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H-31P NMR spectroscopy in water-salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin-d(TACGTA)2 complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

7.
Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). (13)C and (15)N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding, and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, nonideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and nonideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (?, ψ) torsion angles for three "basis" states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding, and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins.  相似文献   

8.
RAG1 and RAG2 initiate V(D)J recombination by introducing DNA double strand breaks between each selected gene segment and its bordering recombination signal sequence (RSS) in a two-step mechanism in which the DNA is first nicked, followed by hairpin formation. The RSS consists of a conserved nonamer and heptamer sequence, in which the latter borders the site of DNA cleavage. A region within RAG1, referred to as the central domain (residues 528-760 of 1040 in the full-length protein), has been shown previously to bind specifically to the double-stranded (ds) RSS heptamer, but with both weak specificity and affinity. However, additional investigations into the RAG1-RSS heptamer interaction are required because the DNA substrate forms intermediate conformations during the V(D)J recombination reaction. These include the nicked and hairpin products, as well as likely base unpairing to produce single-stranded (ss) DNA near the cleavage site. Here, it was determined that although the central domain showed substantially higher binding affinity for ss and nicked versus ds substrate, the interaction with ss RSS was particularly robust. In addition, the central domain bound with greater sequence specificity to the ss RSS heptamer than to the ds form. This study provides important insight into the V(D)J recombination reaction, specifically that significant interaction of the RSS heptamer with RAG1 occurs only after the induction of conformational changes at the RSS heptamer.  相似文献   

9.
The nonexchangeable base and sugar proton nmr resonances and the 260 and 278-nm uv-absorbance bands of the nucleic acid were utilized to monitor the temperature-dependent duplex-to-strand transition of the alternating purine–pyrimidine deoxyribopolynucleotide poly(dA-dT) in the absence and presence of ethidium bromide (EB) at phosphate/drug = 50, 28, and 15 and propidium diiodide (PI) at P/D = 50, 25, 15, 10, and 5 in 0.1 M salt between 50° and 100°C. The nmr and optical methods monitor a biphasic duplex-to strand transition for the drug–poly(dA-dT) complexes. We have monitored the dissociation of the drug from the complex at the ethidium bromide phenanthridine ring and side-chain proton nmr resonances and the propidium diiodide 494 and 535-nm uv-absorbance bands and demonstrate that dissociation of the drug corresponds to the higher temperature transition in the biphasic nucleic acid melting curves. The lower temperature cooperative transition is assigned to the opening of drug-free AT base-pair regions in the drug–poly(dA-dT) complex and exhibits an increase in transition midpoint and a decrease in cooperativity with increasing drug concentration. The higher temperature cooperative transition is assigned to the opening of AT base-pair regions centered about the bound drug in the complex and exhibits an increase in the transition midpoint on raising the drug concentration. The large upfield shifts of the phenanthridine ring (but not side chain) protons of ethidium bromide on complex formation demonstrate intercalation of the drug between base pairs of the poly(dA-dT) duplex. The nucleic acid base and sugar resonances of poly(dA-dT) in 0.1 M phosphate undergo chemical shift changes between 0° and 50°C indicative of premelting conformational transition(s).  相似文献   

10.
NMR spectroscopy has been used to elucidate the molecular basis of the action of caffeine (CAF) on the complexation with DNA of mutagens such as ethidium bromide, propidium iodide, proflavine and acridine orange, and anticancer drugs such as actinomycin D and daunomycin. The hetero-association of CAF and each of the aromatic ligands in 0.1 mol L(-1) phosphate buffer (pD=7.1) has been investigated as a function of concentration and temperature by 500 MHz 1H NMR spectroscopy and analysed in terms of a statistical-thermodynamic model, in which molecules form indefinite aggregates for both self-association and hetero-association. The analysis leads to determination of the equilibrium constants of hetero-association and to the values of the limiting chemical shifts of the heteroassociation of CAF with each of the aromatic molecules. The hetero-association constants between CAF and each of the aromatic drugs/dyes are found to be intermediate in magnitude between those for self-association of CAF and the corresponding drug/dye. The most probable structures of the 1:1 CAF + ligand hetero-association complexes have been determined from the calculated values of the induced limiting chemical shifts of the drug protons. Knowledge of the equilibrium constants for self-association of CAF and the aromatic ligands, for their hetero-association and their complexation with a DNA fragment, the deoxytetranucleotide 5'-d(TpGpCpA), enabled the relative content of each of the CAF-ligand and CAF-ligand-d(TGCA) complexes to be calculated as a function of CAF concentration in mixed solutions. It is concluded that, on addition of CAF to the solution, the decrease in binding of drug or mutagen with DNA is due both to competition for the binding sites by CAF and the aromatic molecules, and to formation of CAF-ligand hetero-association complexes in the mixed solution; the relative importance of each process depends on the drug or mutagen being considered.  相似文献   

11.
1H-NMR spectroscopy (500 MHz) was used to study the complexation of the antibacterial agent norfloxacin (NOR) with DNA tetramers 5′-d(TpGpCpA) and 5′-d(CpGpCpG) in aqueous solution. For the first time, the equilibrium parameters (equilibrium constants, enthalpy, and entropy) were obtained for NOR binding with single-stranded and duplex DNA tetramers. By analyzing the complexation parameters and the induced proton chemical shifts in NOR in various complexes, the character of NOR binding was identified as intercalation in the case of the duplex tetramers and as intercalation with external binding in the case of single-stranded tetramers. NOR proved to preferentially bind to GC sites in DNA duplexes.  相似文献   

12.
The self-association of the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The two-dimensional homonuclear correlation NMR techniques (TOCSY and ROESY) were used to completely assign all the proton signals of the antibiotic and to quantitatively analyze the mutual arrangement of the antibiotic molecules in their aggregates. The concentration and temperature dependences of proton chemical shifts were used to determine the equilibrium constants and the thermodynamic parameters (delta H and delta S) of the self-association, as well as the limiting values of proton chemical shifts in associates. The experimental results were analyzed using both the indefinite noncooperative and cooperative models of the molecular self-association. The calculated value of the cooperativity coefficient (sigma approximately 1.1) for our synthetic antibiotic confirmed a substantially lower anticooperative effect at the aggregation of its molecules in comparison with that of the antitumor antibiotic actinomycin D (sigma approximately 1.5). We calculated the most favorable structure of the dimeric associate of the synthetic antibiotic in aqueous solution and found that, like in the actinomycin D dimer, the antiparallel orientation of the phenoxazone chromophore planes of interacting molecules is characteristic of its dimer. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 4; see also http://www.maik.ru.  相似文献   

13.
Complex formation between acridine dye proflavine and self-complementary deoxytetraribonucleoside triphosphate 5'-d(ApGpCpT) in water-salt solution was studied by the method of one- and two-dimensional 1H-NMR spectroscopy (500 MHz). Two-dimensional homonuclear 1H-NMR spectroscopy (2D-COSY and 2D-NOESY) was used for complete assignments of proton signals of molecules in solution and for qualitative analysis of the nature of interactions between proflavine and tetranucleotide. Concentration dependences of proton chemical shifts of the molecules were measured at 293 K. Equilibrium reaction constants and limiting chemical shifts of dye protons in the complexes were determined using suggested schemes of complex formation. Based on the obtained data possible types of complexes were considered. Analysis of relative content of different types of complexes was made and special features of dynamic equilibrium were revealed as a function of correlation of dye and tetranucleotide concentrations. The most favourable structure of 1:2 complex of dye with tetranucleotide was constructed using the calculated values of induced chemical shifts of proflavine protons and 2D-NOESY spectra.  相似文献   

14.
Self-association of hexadeoxynucleotide 5"-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H–31P NMR spectroscopy in water–salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin–d(TACGTA)2complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

15.
The self-association of self-complementary deoxyhexanucleotide d(GCATGC) was investigated in aqueous salt solution. Homonuclear 1H NMR correlation spectroscopy (2D-TOCSY and 2D-NOESY) was used for complete assignments of nonexchangeable protons of the hexamer. The equilibrium reaction constants and thermodynamical parameters of duplex d(GCATGC)2 formation were determined from experimental concentration and temperature dependences of proton chemical shifts of the deoxyhexanucleotide. Distinctive features of the concentration dependences in the range of small concentrations at relatively low temperatures of solution enable one to assume that one single-stranded hexamer sequence forms a compact structure (similar to a hairpin) in aqueous solution. A possible spatial hairpin structure of the hexamer was proposed. Comparative analysis of the experimental and theoretical (using the "nearest neighbor" model) thermodynamical parameters of duplex formation was made.  相似文献   

16.
X L Gao  D J Patel 《Biochemistry》1988,27(5):1744-1751
We report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets recorded in H2O and D2O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A change in sugar pucker from the C2'-endo range to the C3'-endo range is detected at C2 on formation of the d(ACGT) and d(TCGA) complexes. In addition, the sugar ring protons of C2 exhibit upfield shifts and a large 1 ppm separation between the H2' and H2" protons for both complexes. The L-Ala amide protons undergo large downfield complexation shifts consistent with their participation in intermolecular hydrogen bonds for both tetranucleotide complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mutually induced proton chemical shift changes were measured for the mixed solutions of pyrimidine and its methylated forms in deuterium oxide at 35 degrees C. The chemical shift vs. concentration profiles were analyzed using a three-state decomposition model based on competitive self- and hetero-association dimer equilibria. The equilibrium constants show an increasing association tendency within the series pyrimidine-5-methyl-pyrimidine (0.23 +/- 0.02 M(-1)) < pyrimidine-4,6-dimethyl-pyrimidine (0.32 +/- 0.04 M(-1)) < 5-methyl-pyrimidine-4,6-dimethyl-pyrimidine (0.51 +/- 0.04 M(-1)). The upfield dimer shifts suggest an offset stacked geometry for the structure of associations between the parent molecule of the pyrimidine nucleobases and its methylated derivatives in aqueous solution.  相似文献   

18.
M Delepierre  T H Dinh  B P Roques 《Biopolymers》1989,28(12):2115-2142
The structure of the complex formed in aqueous solution between ditercalinium, a bisintercalating drug, and the self-complementary hexanucleotide d(CpGpApTpCpG)2 is investigated by 400-MHz 1H-nmr and 162-MHz 31P-nmr. Whatever the drug to helix ratio, ditercalinium occurred in the bound form, whereas free and complexed hexanucleotide are in slow exchange. This allows unambiguous resonance assignment through two-dimensional chemical exchange experiments. The strong upfield shifts measured on most aromatic protons on both drug and bases as well as on DNA imino protons are consistent with bisintercalation of the dimer. Nuclear Overhauser effects observed between drug and nucleotide protons give a defined geometry for complexation, and suggest a DNA conformational change upon drug binding.  相似文献   

19.
In order to obtain insight into the repair mechanism of DNA containing thymine photo-dimer, the conformation of the duplex d(GCGTTGCG) x d(CGCAACGC) with a thymine dimer incorporated has been studied by proton NMR and the results are compared with NMR data of the parent octamer. Two-dimensional nuclear Overhauser enhancement (2D NOE) spectroscopy and two-dimensional homonuclear Hartmann-Hahn spectroscopy have been applied to assign all the non-exchangeable base protons and most of the deoxyribose protons of both duplexes. From these experiments it is clear that indeed a cis-syn cyclobutane-type thymine photodimer is formed by the irradiation of this oligonucleotide with ultraviolet light. Comparison of 2D NOE spectra and the 1H chemical shifts of the damaged and the intact DNA duplexes reveals that formation of a thymine dimer induces small distortions of the B-DNA structure, the main conformational change occurring at the site of the thymine dimer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号