首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibrinogen binding to receptors on stimulated platelets is a prerequisite for platelet aggregation. In order to identify the platelet fibrinogen receptor, we modified fibrinogen with the photoreactive, heterobifunctional cross-linking reagent methyl 4-azidobenzoimidate (MABI). MABI-fibrinogen was fully clottable and able to support platelet aggregation. To photoaffinity label the fibrinogen receptor, gel-filtered human platelets were incubated at 37 degrees C in the dark with 200 micrograms/ml of MABI-fibrinogen, 10 microM ADP, and 0.5 mM calcium. Irradiation of these platelets with ultraviolet light resulted in the incorporation of MABI-fibrinogen into the platelet surface. Incorporation could be prevented by excess native fibrinogen suggesting that MABI-fibrinogen had interacted with the fibrinogen receptor before photolysis. Examination of the irradiated platelets by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the photoactivated MABI-fibrinogen had been incorporated into a 105,000 molecular weight membrane polypeptide that also contained the PlA1 antigen. Thus, this polypeptide has the characteristics of the membrane glycoprotein IIIa. Previous studies have shown that thrombasthenic platelets lack this glycoprotein and fail to bind fibrinogen after stimulation by ADP. Consequently, our data suggest that glycoprotein IIIa constitutes at least one component of the platelet fibrinogen receptor.  相似文献   

2.
We have used platelets permeabilized with saponin to examine the mechanism by which platelet activation causes the exposure of surface receptors for fibrinogen. Receptor exposure was detected using 125I-fibrinogen and 125I-PAC1, a monoclonal antibody specific for the activated form of the fibrinogen receptor. The potential mediators that were studied included guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and guanosine 5'O-(thiotriphosphate) (GTP gamma S), which cause G protein-dependent phospholipase C activation in platelets; inositol 1,4,5-triphosphate (IP3), which causes Ca2+ release from the platelet dense tubular system; and diacylglycerol and phorbol ester, which activate protein kinase C. Each of these molecules caused fibrinogen and PAC1 binding. The effect of IP3 was mimicked by raising the cytosolic free Ca2+ concentration in the permeabilized platelets. However, IP3 and Ca2+-induced PAC1 binding were abolished by indomethacin or aspirin, which had no effect on PAC1 binding caused by Gpp(NH)p, phorbol ester, or diacylglycerol. This suggests that the response to IP3 and Ca2+ is due to the formation of metabolites of arachidonic acid. One such metabolite, TxA2, is believed to activate platelets by stimulating G protein-dependent phosphoinositide hydrolysis. Indeed, we found that the G protein inhibitor guanyl-5'-yl thiophosphate (GDP beta S) inhibited PAC1 binding caused by a thromboxane A2 analog (U46619), IP3, and Ca2+, but had no effect on diacylglycerol or phorbol ester-induced PAC1 binding. Thrombin-induced PAC1 binding and phosphoinositide hydrolysis were also inhibited by GDP beta S and by pertussis toxin. Increasing the thrombin concentration overcame the inhibition of PAC1 binding caused by GDP beta S but did not overcome the inhibition of phosphoinositide hydrolysis. These observations demonstrate that fibrinogen receptor exposure occurs by at least two routes. One of these, in response to agonists such as thrombin and U46619, is initiated by G protein-dependent phosphoinositide hydrolysis and involves the formation of IP3 and diacylglycerol. IP3 appears to act by stimulating Ca2+-dependent arachidonic acid metabolism which, in turn, triggers further phosphoinositide hydrolysis. Diacylglycerol acts by stimulating protein kinase C. A second route is activated by high concentrations of thrombin and is independent of phosphoinositide hydrolysis.  相似文献   

3.
4.
5.
Platelet cohesion requires the binding of fibrinogen to its receptor, a heterodimer consisting of the plasma-membrane glycoproteins GPIIb and GPIIIa. Although the GPIIb-IIIa complex is present on the surface of unstimulated platelets, it binds fibrinogen only after platelet activation. We have used an immunogold-surface replica technique to study the distribution of GPIIb-IIIa and bound fibrinogen over broad expanses of surface membranes in unstimulated and ADP-activated human platelets. We found that the gold prove was monodispersed over the surface of unstimulated platelets, although the cell surface lacked immunoreactive fibrinogen. To ascertain whether the receptors clustered prior to ligand binding or as a consequence thereof, we studied the surface distribution of GPIIb-IIIa after stimulation with ADP, which causes activation of the fibrinogen receptor function of GPIIb-IIIa without inducing the secretion of fibrinogen. In the absence of added fibrinogen, the unoccupied, yet binding-competent receptors on ADP-stimulated platelets were monodispersed. The addition of fibrinogen caused the GPIIb-IIIa molecules to cluster on the cell surface. Clustering was also induced by the addition of the GPIIb-IIIa binding domains of fibrinogen--namely, the tetrapeptide Arg-Gly-Asp-Ser on the alpha-chain or the gamma-chain decapeptide gamma 402-411. These results show that receptor occupancy causes clustering of GPIIb-IIIa in activated platelets.  相似文献   

6.
Fibrinogen binds to human platelets after specific receptor sites are exposed by thrombin, ADP, epinephrine, and other stimuli. Since prostaglandin I2 (PGI2), a potent activator of platelet adenylate cyclase, prevents mobilization of the fibrinogen receptor by aggregating agents, we investigated the relationship between platelet cAMP levels and fibrinogen receptor status in thrombin-stimulated human platelets. A dose-dependent rise in platelet cAMP in response to two adenylate cyclase agonists, PGI2 and forskolin, correlated with progressive inhibition of fibrinogen binding. Moreover, the receptor inhibition produced by either agonist was sustained up to 2 h and was associated with a persistent increase in cAMP levels. The phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine, in the presence of a subthreshold concentration of PGI2 also raised cAMP and inhibited fibrinogen binding. In contrast, the effects of PGI2 on both cAMP and fibrinogen binding were markedly attenuated by 9-(tetrahydro-2-furyl) adenine, an adenylate cyclase inhibitor. These results indicate that the inhibition of fibrinogen binding by PgI2 is linked to its effect on cAMP levels and suggest that elevation of platelet cAMP levels from any cause prevents exposure of the fibrinogen receptor.  相似文献   

7.
Characteristics of collagen-induced fibrinogen binding to human platelets   总被引:4,自引:0,他引:4  
Polymerized type I calf skin collagen induced a time-dependent specific binding of 125I-fibrinogen to washed human platelets. Binding occurred more rapidly in a shaken rather than in an unstirred system. It was linear in the range 0.05-0.3 microM added fibrinogen and was saturated at higher fibrinogen concentrations (more than 0.8 microM). Scatchard analysis showed a single population of binding sites (16530 +/- 5410 per platelet) with a Kd = 0.53 +/- 0.23 microM. Collagen-induced 125I-fibrinogen binding to platelets was completely inhibited by ADP antagonists such as creatine phosphate/creatine phosphokinase and AMP, and partially inhibited by pretreatment of the platelets with aspirin. With both normal and aspirin-treated platelets a close correlation was observed between the amount of 125I-fibrinogen bound and the extent of dense granule secretion. Our results confirm that fibrinogen becomes bound to platelet surface receptors during collagen-induced platelet aggregation and suggest that secreted ADP is an essential cofactor in this process.  相似文献   

8.
The capacity of epinephrine alone and the combination of low dose epinephrine and ADP to support the binding of fibrinogen to washed human platelets has been examined, 125I-Fibrinogen was bound to epinephrine-stimulated platelets, but 90 min were required to achieve maximal binding at 22 degrees C in contrast to 20 to 30 min with ADP. The overall rate of interaction appeared to reflect the slow binding of fibrinogen to epinephrine-stimulated platelets as opposed to the rate of stimulation of the cell. Divalent ions were required for binding of fibrinogen to epinephrine-stimulated platelets, and both calcium and magnesium supported binding with a prolonged time course. Fibrinogen binding was maximally supported by 20 to 30 microM epinephrine. The combination of low dose epinephrine (5 microM) and low dose ADP (0.5 microM), which acted synergistically to induce platelet aggregation, supported the rapid (10 min) binding of fibrinogen to platelets. With 4 microM epinephrine, more fibrinogen bound per platelet at all ADP doses than with ADP alone. With all the stimuli, saturable binding of fibrinogen to the platelet was observed, and Scatchard plots were linear, yielding very similar apparent association constants. The number of molecules bound per cell was stimulus-dependent, with 30 microM epinephrine inducing the binding of fewer fibrinogen molecules per cell (mean = 20,400) than 10 microM ADP (mean = 35,900) or the combination of 5 microM epinephrine + 0.5 microM ADP (mean = 43,600). The participation of endogenous ADP in fibrinogen binding to epinephrine-stimulated platelets was suggested since enzymes which remove ADP, apyrase, and creatine phosphate/creatine phosphokinase, and the ADP analogue, 2-chloroadenosine, completely inhibited the binding of fibrinogen to the platelet.  相似文献   

9.
Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[alpha(32)P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[alpha(32)P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca(2+) flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.  相似文献   

10.
Because of the central role of fibrinogen binding in platelet aggregation and recent evidence implicating S-nitrosothiol compounds in the platelet inhibitory effects of endogenous and exogenous organic nitrate compounds, we examined the effect of the S-nitrosothiol S-nitroso-N-acetylcysteine (SNOAC) on fibrinogen binding to gel-filtered human platelets. We found that SNOAC markedly inhibited the binding of fibrinogen to normal human platelets in a dose-dependent fashion and that this inhibitory effect was the result of both an increase in the apparent Kd of the platelet receptor for the fibrinogen molecule (from 6.8 x 10(-7) to 1.8 x 10(-6) M, a 2.7-fold increase) and a decrease in the total number of fibrinogen molecules bound to the platelet (from 76,200 to 38,250, a 50% decrease). In addition, we noted a rapid, dose-dependent rise in platelet cyclic GMP levels following exposure of platelets to SNOAC which was significantly inversely correlated with fibrinogen binding and was accompanied by inhibition of intracellular calcium flux in response to a variety of platelet agonists. Similar dose-dependent inhibition of fibrinogen binding was found in the presence of cyclic GMP analogues and was significantly enhanced by inhibition of platelet cyclic GMP phosphodiesterase. These results describe the inhibition of platelet fibrinogen binding by an S-nitrosothiol compound, help define the biochemical mechanism by which S-nitrosothiols inhibit platelet aggregation, and lend support to the view that cyclic GMP is an important inhibitory intracellular mediator in human platelets.  相似文献   

11.
The distribution of fibrinogen receptors was determined on the surface of adherent platelets using both direct labeling with the ligand fibrinogen which was immobilized on gold particles (Fg-Au) and indirect immunogold (Ig-Au) labeling of bound soluble fibrinogen identified with a rabbit polyclonal anti-fibrinogen antibody. Two distinctly different patterns of labeling were obtained and appeared to depend on whether solid phase fibrinogen (Fg-Au) or soluble phase released fibrinogen were bound to the membrane receptor. The membrane-bound Fg-Au reorganized in patterns that closely mimicked the organization of the underlying cytoskeleton. In approximately 18% of the adherent platelets, Fg-Au was seen in channels or vesicle-like structures lying deep to the platelet surface suggesting internalization into the open canalicular system and/or endocytosis. The labeling pattern obtained when identifying the location of membrane-bound soluble released fibrinogen by Ig-Au was diffuse and lacked the organizational patterns characteristic of Fg-Au. Unlike the Fg-Au probe, early dendritic platelets were heavily labeled by the soluble phase fibrinogen using the Ig-Au technique. Although the label covered the entire exposed platelet membrane in fully spread platelets, labeling over the peripheral web was more dense than that over the intermediate or granulomere zone. The diffuse organization and heavier peripheral distributional pattern of the glycoprotein IIb-IIIa (GP IIb-IIIa) receptor in fixed, adherent platelets, was also seen with the GP IIb-IIIa receptor-specific antibody AP-2. The binding of both the Fg-Au and Ig-Au were inhibited using the tetrapeptide Arg-Gly-Asp-Ser (RGDS) (93% and 98% inhibition, respectively), AP-2 (98% and 97%, respectively) and platelets from patients with Glanzmann's thrombasthenia (GT) (99% and 98%, respectively). The data presented provides the first report that receptor reorganization, following binding of fibrinogen, appears to be related to the state of the ligand. Substrate bound fibrinogen (i.e., Fg-Au or fibrinogen bound to another platelet) induces receptor translocation toward the platelet granulomere in a capping-like phenomenon. On the other hand, the binding of soluble released fibrinogen results in formation of microclusters and short linear arrays in a diffuse distribution but does not induce central movement of receptors. Furthermore, double labeling studies clarify that Fg-Au does not identify all available fibrinogen receptors as many are occupied by soluble released fibrinogen. The data presented provides an interesting new perspective on what constitutes an appropriate ligand-receptor stimulus sufficient to induce receptor reorganization.  相似文献   

12.
13.
Staphylococcus aureus is a leading cause of infective endocarditis (IE). Platelet activation promoted by S. aureus resulting in aggregation and thrombus formation is an important step in the pathogenesis of IE. Here, we report that the fibrinogen/fibronectin-binding proteins FnBPA and FnBPB are major platelet-activating factors on the surface of S. aureus from the exponential phase of growth. Truncated derivatives of FnBPA, presenting either the fibrinogen-binding A domain or the fibronectin-binding BCD region, each promoted platelet activation when expressed on the surface of S. aureus or Lactococcus lactis, indicating two distinct mechanisms of activation. FnBPA-promoted platelet activation is mediated by fibrinogen and fibronectin bridges between the A domain and the BCD domains, respectively, to the low affinity form of the integrin GPIIb/IIIa on resting platelets. Antibodies recognizing the FnBPA A domain or the complex between the FnBPA BCD domains and fibronectin were essential for activation promoted by bacteria expressing the A domain or the BCD domain respectively. Activation was inhibited by a monoclonal antibody (IV-3) specific for the FcgammaRIIa IgG receptor on platelets. We propose that the activation of quiescent platelets by bacteria expressing FnBPs involves the formation of a bridge between the bacterial cell and the platelet surface by (i) fibronectin and fibrinogen interacting with the low affinity form of GPIIb/IIIa and (ii) by antibodies specific to FnBPs that engage the platelet Fc receptor FcgammaRIIa. Platelet activation by S. aureus clinical IE isolates from both the exponential and stationary phases of growth was completely inhibited by monoclonal antibody IV-3 suggesting that the IgG-FcgammaRIIa interaction is of fundamental importance for platelet activation mediated by this organism. This suggests new avenues for development of therapeutics against vascular infections.  相似文献   

14.
《The Journal of cell biology》1987,105(4):1663-1670
Gamete recognition in the mouse is mediated by galactosyltransferase (GalTase) on the sperm surface, which binds to its appropriate glycoside substrate in the egg zona pellucida (Lopez, L. C., E. M. Bayna, D. Litoff, N. L. Shaper, J. H. Shaper, and B. D. Shur, 1985, J. Cell Biol., 101:1501-1510). GalTase has been localized by indirect immunofluorescence to the dorsal surface of the anterior sperm head overlying the intact acrosome. Sperm binding to the zona pellucida triggers induction of the acrosome reaction, an exocytotic event that results in vesiculation and release of the outer acrosomal and overlying plasma membranes. Consequently, we examined the fate of sperm surface GalTase after the acrosome reaction. Contrary to our expectations, surface GalTase is not lost during the acrosome reaction despite the loss of its membrane domain. Rather, double-label indirect immunofluorescence assays show that GalTase is redistributed to the lateral surface of the sperm, coincident with the acrosome reaction. This apparent redistribution of GalTase was confirmed by direct enzymatic assays, which show that 90% of sperm GalTase activity is retained during the acrosome reaction. No GalTase activity is detectable on plasma membrane vesicles released during the acrosome reaction. In contrast, removal of plasma membranes by nitrogen cavitation releases GalTase activity from the sperm surface, showing that GalTase redistribution requires a physiological acrosome reaction. The selective redistribution of GalTase to a new membrane domain from one that is lost during the acrosome reaction suggests that GalTase is repositioned for some additional function after initial sperm-zona binding.  相似文献   

15.
Mechanism of collagen activation in human platelets   总被引:4,自引:0,他引:4  
The mechanism of collagen-induced human platelet activation was examined using Ca2+, Na+, and the pH-sensitive fluorescent dyes calcium green/fura red, sodium-binding benzofuran isophthalate, and 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Administration of a moderate dose of collagen (10 microg/ml) to human platelets resulted in an increase in [Ca2+](i) and platelet aggregation. The majority of this increase in [Ca2+](i) resulted from the influx of calcium from the extracellular milieu via the Na+/Ca2+ exchanger (NCX) functioning in the reverse mode and was reduced in a dose-dependent manner by the NCX inhibitors 5-(4-chlorobenzyl)-2',4'-dimethylbenzamil (KD(50) = 4.7 +/- 1.1 microm) and KB-R7943 (KD(50) = 35.1 +/- 4.8 microm). Collagen-induced platelet aggregation was dependent on an increase in [Ca2+](i) and could be inhibited by chelation of intra- and extracellular calcium through the administration of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) and EGTA, respectively, or via the administration of BAPTA-AM to platelets suspended in no-Na+/HEPES buffer. Collagen induced an increase in [Ca2+](i) (23.2 +/- 7.6 mm) via the actions of thromboxane A(2) and, to a lesser extent, of the Na+/H+ exchanger. This study demonstrates that the collagen-induced increase in [Ca2+](i) is dependent on the concentration of Na+ in the extracellular milieu, indicating that the collagen-induced increase in [Ca2+](i) causes the reversal of the NCX, ultimately resulting in an increase in [Ca2+](i) and platelet aggregation.  相似文献   

16.
17.
18.
Identification of the immunoglobulin G receptor of human platelets   总被引:2,自引:0,他引:2  
The binding site of IgG on human platelets was studied by the use of the cleavable heterobifunctional cross-linking agent N-succinimidyl (4-azidophenyldithio)propionate. Binding characteristics of the derivatized IgG were similar to normal IgG. Periodate-borohydride treatment of platelets also did not significantly alter their ability to bind IgG. N-Succinimidyl (4-azidophenyldithio)propionate was bound to IgG via a succinimidyl ester and then photolyzed in the presence of intact platelets. Their membrane glycoproteins were first tritiated by the periodate-borohydride method. The cross-linked product was analyzed by two dimensional sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The non-reduced first-dimension gels were subjected to 5% 2-mercaptoethanol prior to separation in the second dimension. Such gels were then evaluated by fluorography, silver staining, and counting the radioactivity of sequential gel strips in the area of cross-linking. The protein complexes at the interface between stacking and running gel were further resolved in isoelectric focusing gels. One IgG-containing band could be identified. After reduction, the constituent proteins of the cross-linked complex were analyzed by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis and subsequent immunoblotting with an antiserum against platelet membrane glycoproteins. All of these studies gave evidence of glycoprotein IIIa as the receptor of IgG. Based on the results of the different experimental approaches, we conclude that glycoprotein IIIa is the IgG receptor in human platelets.  相似文献   

19.
Cytokines are well recognized for the pleiotropic nature of their signaling and biological activities on many cell types and their role in health and disease. Recent years have seen a steady stream of new cytokine receptor crystal structures including those that are activated by GM-CSF, type I interferon, and a variety of interleukins. Highlights include the observation of a dodecameric signaling complex for the GM-CSF receptor, electron microscopy imaging of an intact gp130/IL-6/IL-6Rα ternary receptor complex bound to its signal transducing Janus kinase and visualization of novel cytokine recognition mechanisms in the interleukin-17 and type I interferon families. This increasing knowledge in cytokine structural biology is driving new opportunities for developing novel therapies to modulate cytokine function in a diverse range of diseases including malignancies and chronic inflammation.  相似文献   

20.
Characterization of the Fc gamma receptor on human platelets   总被引:4,自引:0,他引:4  
IgG-containing immune complexes may play a role in the immune destruction of human platelets by interacting with an Fc gamma receptor on the platelet surface. We studied the platelet Fc gamma receptor and characterized its interaction with IgG ligand and anti-Fc gamma receptor monoclonal antibodies. Oligomers of IgG, but not monomeric IgG, bound to platelets and the number of binding sites was significantly increased at low ionic strength. Ligand-binding studies indicated that normal human platelets express a single Fc gamma receptor (Fc gamma RII) with 8559 +/- 852 sites per cell, Kd = 12.5 +/- 1.7 X 10(-8) M using trimeric IgG. Results of studies with bivalent and Fab monoclonal anti-Fc gamma RII were consistent with each Fc gamma receptor expressing two epitopes recognized by the antibody. The number of Fc gamma binding sites and affinity of binding were unchanged by the presence of 2.0 mM Mg2+ or 10 micrograms/ml cytochalasin B. Platelet stimulation with thrombin or ADP in the presence of fibrinogen also did not alter the number of Fc gamma binding sites or the affinity of binding. However, platelets preincubated with 5 microM dexamethasone expressed a decreased number of Fc gamma binding sites as well as decreased IgG-dependent platelet aggregation. Platelets from patients with Glanzmann's thrombasthenia and from patients with the Bernard Soulier syndrome expressed a normal number and affinity of Fc gamma binding sites. The data suggest that platelet Fc gamma RII binding of trimeric IgG occurs independent of actin filament interaction, Mg2+, ADP, or thrombin and does not require GPIIb/IIIa or GPIIb/IIIa-fibrinogen interaction. Furthermore, this receptor appears to be normally expressed on GPIb-deficient platelets and susceptible to modulation by glucocorticoids. Finally, the Fc gamma-binding protein was isolated from whole platelets as a 220-kDa protein which upon reduction dissociates into 50,000 Mr subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号