首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the effects of laminin and a basement membrane extract (BME) on the morphology of embryonic rat sympathetic neurons maintained in tissue culture in the absence of nonneuronal cells. Neurons were grown on polylysine-coated coverslips in the presence or absence of laminin or BME in serum-free medium. Axons were distinguished from dendrites using intracellular dye injections, immunocytochemistry, and [3H]uridine autoradiography. In short-term (less than or equal to 24 hr) culture, laminin had a potent neurite-promoting effect, causing increases in the number of processes, total neuritic length, and neuritic branching. In long-term (3-35 days) cultures chronically exposed to laminin, most (greater than 75%) neurons maintained supernumerary axons but failed to form dendrites. In contrast, most neurons (greater than 70%) grown in long-term culture on polylysine in the absence of laminin were unipolar, extending a single axon. BME caused sympathetic neurons to extend multiple (range, 1-15) dendrites. Morphometric measurements made after 1 month of exposure to BME indicated that the amount of dendritic growth that occurred in vitro was similar to that normally occurring during a comparable period in situ. BME did not cause changes in the number of axons per neuron or in the uptake of neurotransmitter. Preliminary characterization of the dendrite-promoting activity of BME suggests that it resides in extracellular matrix (ECM) molecules and not in low-molecular weight contaminants. These observations indicate that (1) axonal and dendritic growth may be differentially regulated by various constituents of the ECM, and (2) such process-specific interactions can significantly affect the morphological development of sympathetic neurons.  相似文献   

2.
We have examined the morphology of fetal rat sympathetic neurons grown in serum-free medium in the absence of nonneuronal cells. Because cell density can affect phenotypic expression in vitro, the morphological analysis was subdivided into the study of isolated neurons (neurons whose somata were at least 150 micron from their nearest neighbor) and of more highly aggregated neurons. When isolated neurons were injected with intracellular markers, it was found that most (79%) had a single process emanating from their somata and that this unipolar state persisted for at least 8 weeks in vitro. The processes of unipolar sympathetic neurons had the appearance of axons in that they were thin and long, had a constant diameter, and were relatively unbranched. Cytochemical methods revealed that such processes had other axonal characteristics: (1) they were more reactive with a monoclonal antibody against phosphorylated forms of the M and H neurofilament subunits than with an antibody to nonphosphorylated forms of these proteins; (2) they also reacted with antibodies to the tau microtubule-associated protein and to the phosphorylated forms of the H neurofilament subunit; and (3) they contained only small amounts of RNA as determined by [3H]uridine autoradiography. These data indicate that neurons which normally form dendrites in vivo need not express this capacity in vitro and that axonal and dendritic growth can be dissociated under some conditions in culture. While most isolated neurons were unipolar, neurons in regions of high neuronal cell density were usually multipolar. In addition to axons, multipolar neurons had processes with some of the characteristics expected of rudimentary dendrites: they ended locally (usually within 100 micron), were often highly branched, and reacted with an antibody to nonphosphorylated forms of the M and H neurofilament subunits. The effects of density were most prominent when neurons were within aggregates in which the somata were in close apposition. Density-dependent changes in morphology were less frequently observed when neuronal somata were separated by greater distances (30-100 micron). These data indicate that the morphology of sympathetic neurons is subject to environmental regulation and that neuron-neuron interactions can promote the extension of rudimentary dendrites in vitro.  相似文献   

3.
Ye B  Zhang Y  Song W  Younger SH  Jan LY  Jan YN 《Cell》2007,130(4):717-729
Little is known about how the distinct architectures of dendrites and axons are established. From a genetic screen, we isolated dendritic arbor reduction (dar) mutants with reduced dendritic arbors but normal axons of Drosophila neurons. We identified dar2, dar3, and dar6 genes as the homologs of Sec23, Sar1, and Rab1 of the secretory pathway. In both Drosophila and rodent neurons, defects in Sar1 expression preferentially affected dendritic growth, revealing evolutionarily conserved difference between dendritic and axonal development in the sensitivity to limiting membrane supply from the secretory pathway. Whereas limiting ER-to-Golgi transport resulted in decreased membrane supply from soma to dendrites, membrane supply to axons remained sustained. We also show that dendritic growth is contributed by Golgi outposts, which are found predominantly in dendrites. The distinct dependence between dendritic and axonal growth on the secretory pathway helps to establish different morphology of dendrites and axons.  相似文献   

4.
Axons and dendrites contain dense microtubule (MT) assays that are not attached to a traditional MT nucleating structure such as the centrosome. Nevertheless, the MTs within these neurites are highly organized with respect to their polarity, and consist of a regular 13-protofilament lattice, the two known characteristics of MTs nucleated at the centrosome. These observations suggest either that axonal and dendritic MTs arise at the centrosome, or that they are nucleated locally, following a redistribution of MT nucleating material from the centrosome during neuronal development. To begin distinguishing between these possibilities, we have determined the distribution of gamma-tubulin within cultured sympathetic neurons. gamma-tubulin, a newly discovered protein which is specifically localized to the pericentriolar region of nonneuronal cells (Zheng, Y., M. K. Jung, and B. R. Oakley. 1991. Cell. 65:817-823; Stearns, T., L. Evans, and M. Kirschner. 1991. Cell. 65:825-836), has been shown to play a critical role in MT nucleation in vivo (Joshi, H. C., M. J. Palacios, L. McNamara, and D. W. Cleveland. 1992. Nature (Lond.). 356:80-83). Because the gamma-tubulin content of individual cells is extremely low, we relied principally on the high degree of resolution and sensitivity afforded by immunoelectron microscopy. Our studies reveal that, like the situation in nonneuronal cells, gamma-tubulin is restricted to the pericentriolar region of the neuron. Furthermore, serial reconstruction analyses indicate that the minus ends of MTs in both axons and dendrites are free of gamma-tubulin immunoreactivity. The absence of gamma-tubulin from the axon was confirmed by immunoblot analyses of pure axonal fractions obtained from explant cultures. The observation that gamma-tubulin is restricted to the pericentriolar region of the neuron provides compelling support for the notion that MTs destined for axons and dendrites are nucleated at the centrosome, and subsequently released for translocation into these neurites.  相似文献   

5.
To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.  相似文献   

6.
Mesencephalic neurons were cultured from 2 to 5 days in mesencephalic (CM Gmes) or striatal (CM Gstr) astrocyte conditioned media or in the soluble (S100) and insoluble (P100) fractions prepared from these media by ultracentrifugation. CM Gmes as well as all soluble fractions induced dendritic and axonal elongation, whereas CM Gstr and the insoluble fractions promoted axonal growth only. The study of the shape of the neuronal cell bodies and the measurement of their adhesion to the substratum revealed that axons elongated under low adhesion conditions, but that dendrite growth was highly dependent upon adhesion and spreading of the neuronal soma. This different dependency of axonal and dendritic elongation upon spreading is explained by a model in which we consider the respective viscosities of axons and dendrites. From these observations and speculations we propose that axons and dendrites have different modes of elongation and that the primary effect of the astrocyte-derived factors capable of regulating neuronal polarity is to modify the adhesion of the neurons to their culture substratum.  相似文献   

7.
Bradke F  Dotti CG 《Current biology : CB》2000,10(22):1467-1470
Cutting the axon of a morphologically polarized neuron (stage 3) close to the cell body causes another neurite to grow as an axon [1-3]. Stage 3 neurons still lack molecular segregation of axonal and dendritic proteins, however. Axonal and dendritic compartments acquire their distinct composition at stage 4 (4-5days in culture), when proteins such as the microtubule-associated protein 2 (MAP-2) and the glutamate receptor subunit GluR1 localize to the dendrites and disappear from the axon [4,5]. We investigated whether cultured hippocampal neurons retained axon/dendrite plasticity after axons and dendrites have created their distinct cytoskeletal architecture and acquired their specific membrane composition. We found that axotomy of stage 4 neurons transformed a dendrite into an axon. Using axonal and dendritic markers, we tested whether cytoskeletal changes could cause similar transformations, and found that actin depolymerization induced multiple axons in unpolarized neurons. Moreover, depletion of actin filaments from both morphologically and molecularly polarized cells also resulted in the growth of multiple axons from pre-existing dendrites. These results imply that dendrites retain the potential to become axons even after molecular segregation has occurred and that the dendritic fate depends on the integrity of the actin cytoskeleton.  相似文献   

8.
To investigate the role of N-methyl-D-aspartate (NMDA) receptor activity in the stability of the presynaptic axon arbor and postsynaptic dendritic arbors in vivo, we took time-lapse confocal images of single DiI-labeled Xenopus retinotectal axons and optic tectal neurons in the presence and absence of the NMDA receptor antagonist, APV. Retinotectal axons or tectal neurons were imaged at 30-min intervals over 2 h, or twice over a 24-h period. Retinal axons in animals exposed to DL-APV (100 microM) showed an increase in rates of branch additions and a decrease in branch lifetimes over 2 h compared to untreated axons. Under the same experimental conditions, tectal neurons showed a decreased rate of branch tip additions and retractions. APV treatment over 24 h had no apparent effect on axon arbor morphology, but did decrease tectal cell dendritic arbor elaboration. These observations demonstrate that NMDA receptor activity in postsynaptic neurons stabilizes pre- and postsynaptic neuronal morphology in vivo.. However, when NMDA receptor activity is blocked, presynaptic retinal axons respond with increased arbor dynamics while postsynaptic tectal cell dendrites decrease arbor dynamics. Such differential responses of pre- and postsynaptic partners might increase the probability of coactive afferents converging onto a common target under conditions of lower NMDA receptor activity.  相似文献   

9.
A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis   总被引:11,自引:0,他引:11  
  相似文献   

10.
During central nervous system development, neurons differentiate distinct axonal and dendritic processes whose outgrowth is influenced by environmental cues. Given the known intrinsic differences between axons and dendrites and that little is known about the response of dendrites to inhibitory cues, we tested the hypothesis that outgrowth of differentiating axons and dendrites of hippocampal neurons is differentially influenced by inhibitory environmental cues. A sensitive growth cone behavior assay was used to assess responses of differentiating axonal and dendritic growth cones to oligodendrocytes and oligodendrocyte- derived, myelin-associated glycoprotein (MAG). We report that >90% of axonal growth cones collapsed after contact with oligodendrocytes. None of the encounters between differentiating, MAP-2 positive dendritic growth cones and oligodendrocytes resulted in growth cone collapse. The insensitivity of differentiating dendritic growth cones appears to be acquired since they develop from minor processes whose growth cones are inhibited (nearly 70% collapse) by contact with oligodendrocytes. Recombinant MAG(rMAG)-coated beads caused collapse of 72% of axonal growth cones but only 29% of differentiating dendritic growth cones. Unlike their response to contact with oligodendrocytes, few growth cones of minor processes were inhibited by rMAG-coated beads (20% collapsed). These results reveal the capability of differentiating growth cones of the same neuron to partition the complex molecular terrain they navigate by generating unique responses to particular inhibitory environmental cues.  相似文献   

11.
Traditional views of neurotrophic factor biology held that trophic factors are released from target cells, retrogradely transported along their axons, and rapidly degraded upon arrival in cell bodies. Increasing evidence indicates that several trophic factors such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF-2), glial cell-line derived neurotrophic factor (GDNF), insulin-like growth factor (IGF-I), and neurotrophin-3 (NT-3), can move anterogradely along axons. They can escape the degradative pathway upon internalization and are recycled for future uses. Internalized ligands can move through intermediary cells by transcytosis, presumably by endocytosis via endosomes to the Golgi system, by trafficking of the factor to dendrites or by sorting into anterograde axonal transport with subsequent release from axon terminals and uptake by second- or third-order target neurons. Such data suggest the existence of multiple “trophic currencies,” which may be used over several steps in neural networks to enable nurturing relationships between connected neurons or glial cells, not unlike currency exchanges between trading partners in the world economy. Functions of multistep transfer of trophic material through neural networks may include regulation of neuronal survival, differentiation of phenotypes and dendritic morphology, synapse plasticity, as well as excitatory neurotransmission. The molecular mechanisms of sorting, trafficking, and release of trophic factors from distinct neuronal compartments are important for an understanding of neurotrophism, but they present challenging tasks owing to the low levels of the endogeneous factors.  相似文献   

12.
Destabilization of cortical dendrites and spines by BDNF.   总被引:12,自引:0,他引:12  
Particle-mediated gene transfer and two-photon microscopy were used to monitor the behavior of dendrites of individual cortical pyramidal neurons coexpressing green fluorescent protein (GFP) and brain-derived neurotrophic factor (BDNF). While the dendrites and spines of neurons expressing GFP alone grew modestly over 24-48 hr, coexpressing BDNF elicited dramatic sprouting of basal dendrites, accompanied by a regression of dendritic spines. Compared to GFP-transfected controls, the newly formed dendrites and spines were highly unstable. Experiments utilizing Trk receptor bodies, K252a, and overexpression of nerve growth factor (NGF) demonstrated that these effects were mediated by secreted BDNF interacting with extracellular TrkB receptors. Thus, BDNF induces structural instability in dendrites and spines, which, when restricted to particular portions of a dendritic arbor, may help translate activity patterns into specific morphological changes.  相似文献   

13.
The morphology of cells and the organization of axons were studied in Golgi-Colonnier and toluidine blue stained preparations from the medial cerebral cortex of the lizard Lacerta pityusensis. In the medial cortex, six strata were distinguished between the superficial glial membrane and the ependyma. Strata I and II formed the outer plexiform layer, stratum III formed the cellular layer, and strata IV go VI the inner plexiform layer. The outer plexiform layer contained smooth bipolar neurons; their dendrites were oriented anteroposteriorly and their axons were directed towards the posterior zone of the brain. Five neuronal types were observed in the cellular layer. The spinous pyramidal neurons had well-developed apical dendrites and poorly developed basal ones. Their axons entered the inner plexiform layer and gave off collaterals oriented anteroposteriorly. The small, sparsely spinous pyramidal neurons had poorly developed dendrites and their axons entered the inner plexiform layer. The spinous bitufted neurons had well-developed apical and basal dendritic tufts. Their axons gave off collaterals that reached the outer and inner plexiform layers of both the dorsomedial and dorsal cortices. The sparsely spinous horizontal neurons had dendrites restricted to the outer plexiform layer. Their axons entered the inner plexiform layer. The sparsely spinous, multipolar neurons had their soma close to stratum IV and their axons entered the outer plexiform layer. In stratum V of the inner plexiform layer were large, spiny polymorphic neurons; they had dendrites with long spines, and their axons reached the cellular layer. On the basis of these results, we have subdivided the medial cortex into two subregions: the superficial region, which contains the neurons of the cellular layer and their dendritic domains, and the deep region, strata V and VI, which contains the large, spiny polymorphic neurons. The neurons in the medial cortex of these lizards resembles those in the area dentata of mammals. On this basis, the superficial region may be compared to the dentate gyrus and the deep region to the hilar region of the hippocampus of mammals.  相似文献   

14.
Horton AC  Ehlers MD 《Neuron》2003,40(2):277-295
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.  相似文献   

15.
In sympathetic neurons, unlike most nonneuronal cells, growth factor withdrawal-induced apoptosis requires the development of competence in addition to cytochrome c release to activate caspases. Thus, although most nonneuronal cells die rapidly with cytosolic cytochrome c alone, sympathetic neurons are remarkably resistant unless they develop competence. We have identified endogenous X-linked inhibitor of apoptosis protein (XIAP) as the essential postcytochrome c regulator of caspase activation in these neurons. In contrast to wild-type neurons that are resistant to injection of cytochrome c, XIAP-deficient neurons died rapidly with cytosolic cytochrome c alone. Surprisingly, the release of endogenous Smac was not sufficient to overcome the XIAP resistance in sympathetic neurons. In contrast, the neuronal competence pathway permitted cytochrome c to activate caspases by inducing a marked reduction in XIAP levels in these neurons. Thus, the removal of XIAP inhibition appears both necessary and sufficient for cytochrome c to activate caspases in sympathetic neurons. These data identify a critical function of endogenous XIAP in regulating apoptosis in mammalian cells.  相似文献   

16.
Summary A preembedding dual immunolabeling technique and electron microscopy were utilized to demonstrate the localization of immunoreactive substance P and methionine-enkephalin-octapeptide (Enk-8) in ultrathin sections of the surface layer (laminae I and II) of rat spinal dorsal horn. The immunoreaction of Enk-8 was visualized as goldtoned silver particles and that of substance P as diaminobenzidine reaction products. Axonal terminals with immunoreactive substance P, and also unlabeled axonal terminals, formed synaptic junctions with the perikarya and dendritic processes of Enk-8-containing neurons. Dendritic profiles immunolabeled for substance P were synaptically linked with unlabeled axons but not with Enk-8-positive ones. Furthermore, it was found that Enk-8 axons and substance P axons terminated synaptically in juxtaposition to one another on the same immunonegative dendrites. Among the Enk-8-containing neurons axonal profiles also appeared to be synaptically associated with immunoreactive Enk-8 dendritic processes.  相似文献   

17.
Axons and dendrites of neurons differ in the polarity orientation of their microtubules. Whereas the polarity orientation of microtubules in axons is uniform, with all plus ends distal, that in dendrites is nonuniform. The mechanisms responsible for establishment and maintenance of microtubule polarity orientation in neuronal processes remain unclear, however. We previously described a culture system in which dendrites of rat cortical neurons convert to axons. In the present study, we examined changes in microtubule polarity orientation in such dendrites. With the use of the hooking procedure and electron microscopy, we found that microtubule polarity orientation changed from nonuniform to uniform, with a plus end-distal arrangement, in dendrites that gave rise to axons during culture of neurons for 24 h. Microtubule polarity orientation remained nonuniform in dendrites that did not elongate. Axon regeneration at the dendritic tip thus triggered the disappearance of minus end-distal microtubules from dendrites. These minus end-distal microtubules also disappeared from dendrites during axon regeneration in the presence of inhibitors of actin polymerization, suggesting that actin-dependent transport of microtubules is not required for this process and implicating a previously unidentified mechanism in the establishment and maintenance of microtubule polarity orientation in neuronal processes.  相似文献   

18.
We examined the subcellular distribution of specific mRNAs in cultured sympathetic neurons. Under appropriate conditions, sympathetic neurons extend both axons and dendrites that are distinguishable by light microscopic and immunocytochemical criteria. In situ hybridization revealed a differential localization of mRNA within dendrites. mRNA encoding MAP2 was abundant in cell bodies and distributed nonhomogeneously throughout the dendritic compartment, but was not detected in axons. In contrast, mRNAs encoding GAP-43 and alpha-tubulin were restricted to the cell body and largely excluded from dendrites as well as axons. Detergent extraction revealed that most dendrite-associated mRNA encoding MAP2 was associated with the Triton X-100 insoluble fraction of the cell. The subset of mRNAs present in the dendritic compartment may encode proteins involved in the morphogenesis and remodeling of dendrites.  相似文献   

19.
Transforming growth factor beta (TGF beta) influences the growth and differentiation of a wide variety of nonneuronal cells (nnc) during embryogenesis and in response to wounding. In the present study TGF beta 1 and TGF beta 2 were examined for their neurotrophic actions on neonatal rat dorsal root ganglion (DRG) neurons with ganglionic nnc in dissociated cultures. TGF beta 1 and TGF beta 2 each increased both neuronal survival and levels of the peptide neurotransmitter substance P (SP) expressed per neuron as well as per culture. TGF beta 1 was maximally effective at a concentration of 40 pM, whereas TGF beta 2 was about 10-fold less potent. Survival effects promoted by simultaneous treatment with both factors were not additive. TGF beta 1 also changed the morphology and distribution of DRG nnc which resulted in clustering of DRG neurons on top of the nnc. Cotreatment of the cultures with two different anti-nerve growth factor (NGF) antibodies eliminated the neurotrophic effects of TGF beta 1. However, treatment with TGF beta 1 did not alter NGF mRNA expression in the cultures nor did it change the amount of NGF in the medium. Further, TGF beta 1 greatly enhanced survival effects and SP stimulation promoted by exogenous NGF at concentrations up to 100 ng/ml. The neurotrophic effects of TGF beta 1 were significantly attenuated by decreasing the proportion of the ganglionic nnc, suggesting a role for these cells in mediating TGF beta 1 action on the neurons. It is hypothesized that the neurotrophic activity of TGF beta depended upon the presence of molecules immunologically related to NGF and that the effects of TGF beta were synergistic with NGF. These observations suggest that TGF beta may play a role in the differentiation and regeneration of DRG neurons in vivo.  相似文献   

20.
The immature processes that give rise to both axons and dendrites contain microtubules (MTs) that are uniformly oriented with their plus- ends distal to the cell body, and this pattern is preserved in the developing axon. In contrast, developing dendrites gradually acquire nonuniform MT polarity orientation due to the addition of a subpopulation of oppositely oriented MTs (Baas, P. W., M. M. Black, and G. A. Banker. 1989. J. Cell Biol. 109:3085-3094). In theory, these minus-end-distal MTs could be locally nucleated and assembled within the dendrite itself, or could be transported into the dendrite after their nucleation within the cell body. To distinguish between these possibilities, we exposed cultured hippocampal neurons to nanomolar levels of vinblastine after one of the immature processes had developed into the axon but before the others had become dendrites. At these levels, vinblastine acts as a kinetic stabilizer of MTs, inhibiting further assembly while not substantially depolymerizing existing MTs. This treatment did not abolish dendritic differentiation, which occurred in timely fashion over the next two to three days. The resulting dendrites were flatter and shorter than controls, but were identifiable by their ultrastructure, chemical composition, and thickened tapering morphology. The growth of these dendrites was accompanied by a diminution of MTs from the cell body, indicating a net transfer of MTs from one compartment into the other. During this time, minus-end-distal microtubules arose in the experimental dendrites, indicating that new MT assembly is not required for the acquisition of nonuniform MT polarity orientation in the dendrite. Minus-end-distal microtubules predominated in the more proximal region of experimental dendrites, indicating that most of the MTs at this stage of development are transported into the dendrite with their minus-ends leading. These observations indicate that transport of MTs from the cell body is an essential feature of dendritic development, and that this transport establishes the nonuniform polarity orientation of MTs in the dendrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号