共查询到20条相似文献,搜索用时 1 毫秒
1.
José Fernando Huertas-Pérez Ana M García-Campa?a Antonio González-Casado Laura Gámiz-Gracia 《Luminescence》2004,19(4):222-224
This study presents the first analytical application of the luminol chemiluminescence (CL) reaction for the sensitive detection of carbamate residues. Some experiments have been carried out to check the influence of the presence of traces of a N-methylcarbamate (carbaryl) on the CL emission produced from the oxidation of luminol using different oxidants, showing a significant enhancing effect on the CL emission when the oxidation of luminol is produced by potassium permanganate in alkaline medium, this enhancement being proportional to the carbaryl concentration. This fact has permitted the establishment of a sensitive chemiluminescence flow-injection (CL-FIA) method for the direct determination of carbaryl. The optimization of instrumental and chemical variables influencing the CL response has been carried out by applying experimental designs. Under the optimal conditions, the CL intensity was linear for a carbaryl concentration over the range 5-100 ng/mL with a detection limit of 4.9 ng/mL. This luminol-KMnO4-based FIA-CL system in basic medium shows an easy, fast and cheap alternative detection mode for the analysis of carbaryl residues in environmental water samples. 相似文献
2.
Determination of thyroxine in pharmaceuticals using flow injection with luminol chemiluminescence inhibition detection. 总被引:1,自引:0,他引:1
A simple flow injection method is reported for the determination of thyroxine, based on its inhibition effect on luminol-iron(II) chemiluminescence in alkaline medium in the presence of molecular oxygen. The detection limits (2s) for d- and l-thyroxine are 0.08 and 0.1 mg/L, respectively, with a sample throughput of 100/h. The calibration data for d- and l-thyroxine over the range 0.2-1.0 mg/L gives correlation coefficients (r(2)) of 0.9915 and 0.984 with relative standard deviations (RSD; n = 4) in the range 1.2-2.8%. The effects of some organic compounds was studied on luminol-iron(II) CL system for thyroxine determination. The method was applied to pharmaceutical thyroxine tablets and the results obtained (in the range 50.5 +/- 2.0-51.6 +/- 1.2 microg l-thyroxine/tablet) were in reasonable agreement with the value quoted. 相似文献
3.
Determination of sulphite using an immobilized enzyme with flow injection chemiluminescence detection
《Luminescence》2004,19(1):26-30
A ?ow injection method is reported for the determination of sulphite‐based on chemiluminescent detection. Hydro‐gen peroxide is produced from sulphite using on‐line covalently bound immobilized sulphite oxidase packed in a mini‐column, which was mixed downstream and detected via cobalt(II)‐catalysed chemiluminescent oxidation of luminol. The limit of detection (2 × standard deviation of the blank) was 1 × 10?3 mmol/L with sample throughput 60 h?1. The calibration data was linear over the range of 0.2–1.0 mmol/L with relative standard deviation (n = 4) in the range 0.9–2.0%. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
4.
A novel flow injection chemiluminescence (CL) method for the determination of dihydralazine sulphate (DHZS) is described. The method is based on the CL produced during the oxidation of DHZS by acidic permanganate solution in the presence of rhodamine B. Rhodamine B is suggested as a fluorescing compound for the energy-transferred excitation. The CL emission allows quantitation of DHZS concentration in the range 5-800 ng/mL, with a detection limit of 1.9 ng/mL (3sigma). The experimental conditions for the CL reaction are optimized and the possible reaction mechanism is discussed. The method has been applied to the determination of DHZS in pharmaceutical preparations and compares well with the high performance liquid chromatography (HPLC) method. 相似文献
5.
《Luminescence》2003,18(5):245-248
A sensitive ?ow injection chemiluminescence method is described for the determination of parathion pesticide, based upon its direct chemiluminescence reaction with luminol and hydrogen peroxide in the presence of non‐ionic surfactant polyethylene glycol 400. Under the selected experimental conditions, the concentration of parathion is proportional to the CL intensity in the range 0.02–1.0 mg/L. The detection limit was 0.008 mg/L and the relative standard deviation was 2.8% for 0.2 mg/L parathion solution (n = 11). This method was successfully applied to the determination of parathion residue in rice samples. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
6.
A flow injection chemiluminescence method is described for the determination of subnanomolar concentrations of vanadium in environmental water samples. The procedure is based on the oxidation of luminol in the presence of dissolved oxygen catalyzed by vanadium(IV). Vanadium(V) reduction and preconcentration of vanadium(IV) was carried out using in‐line silver reductor and 8‐hydroxyquinoline chelating columns at pH 3.15, respectively. The calibration graph for vanadium(IV) was linear in the concentration range of 0.025–10 µg/L with relative standard deviation in the range of 0.4–5.58%. The detection limit (3s blank) was 3.8 × 10?3 µg/L without preconcentration; when the vanadium(IV) was preconcentrated with an 8‐HQ column for 1 min (2.0 mL of sample loaded), the detection limit of 5.1 × 10?4 µg/L was achieved. One analytical cycle can be completed in 2.0 min. The analysis of certified reference materials (CASS‐4, NASS‐5 and SLRS‐4) by the proposed method showed good agreement with the certified values. The method was successfully applied to the determination of total dissolved vanadium in environmental water samples. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
A simple and sensitive flow‐injection (FI) method for the determination of nitrate and nitrite in natural waters, based on luminol chemiluminescence (CL) detection, is reported. Nitrate was reduced online to nitrite via a copperized cadmium (Cu–Cd) column and then reacted with acidic hydrogen peroxide to form peroxynitrous acid. CL emission was observed from the oxidation of luminol in an alkaline medium in the presence of the peroxynitrite anion. The limits of detection (S:N = 3) were 0.02 and 0.01 µg N/L, with sample throughputs of 40 and 90 /h for nitrate and nitrite, respectively. Calibration graphs were linear over the range 0.02–50 and 0.01–50 µg N/L [R2 = 0.9984 (n = 8) and R2 = 0.9965 (n = 7)] for nitrate and nitrite, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.8–4.6%. The key chemical and physical variables (reagent concentrations, buffer pH, flow rates, sample volume, Cu–Cd reductor column length) were optimized and potential interferences investigated. The effect of cations [Ca(II), Mg(II), Co(II), Fe(II) and Cu(II)] was masked online with EDTA. Common anions (PO43?, SO42? and HCO3?) did not interfere at their maximum admissible concentrations in freshwaters. The effect of salinity on the luminol CL reaction with and without nitrate and nitrite (2 and 0.5 µg N/L, respectively) was also investigated. The method was successfully applied to freshwaters and the results obtained were in good agreement with those obtained by an automated segmented flow analyser reference method. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
A simple and rapid flow-injection method is described for the determination of iodide, based on potassium permanganate chemiluminescence detection via oxidation of formaldehyde in aqueous hydrochloric acid. The calibration graph was linear over the range 1.0-12 x 10(-6) mol/L (r2 = 0.9955) with relative standard deviations (n = 4) in the range 1.0-3.5%. The detection limit (3sigma) was 1.0 x 10(-7) mol/L, with sample throughput of 120/h. The effect of interfering cations [Ca(II), Mg(II), Ni(II), Fe(II), Fe(III) and Pb(II)] and anions (Cl-, SO4(2-), PO4(3-), NO3-, NO2-, F- and SO3(2-)) were studied. The method was applied to iodized salt samples and the results obtained in the range 0.03 +/- 0.005 - 0.10 +/- 0.006 mg I/g were in reasonable agreement with the amount labelled. The method was statistically compared with the results obtained by titration; no significant disagreement at 95% confidence was observed. 相似文献
9.
Hypochlorous acid (HOCl), the main product of the myeloperoxidase system, is a strong oxidant and a potent chlorinating agent, which can damage host tissues. In the present work, the scavenger effect of three aglycone flavonols (myricetin, quercetin and kaempferol) and of the natural glycoside flavonol, rutin, was studied towards HOCl using luminol-dependent chemiluminescence (CL). At 1 micro mol/L fi nal concentration, rutin was the most powerful scavenger of HOCl with an inhibitory luminol oxidation of 91.4% +/- 3.2%. Quercetin, kaempferol and myricetin inhibited the luminol-dependent CL at the same concentration only by 75.9% +/- 3.4%, 57.7% +/- 5.3% and 43.3% +/- 3.5%, respectively. With increasing concentration of these flavonols, a dose-dependent inhibition of luminol CL was observed. In order to prove to what extent flavonols scavenge HOCl, their concentrations that gave 50% inhibition of luminescence (IC50) were compared to IC50 values of the sulphur-containing compounds N-acetyl cysteine (NAC) and taurine. The scavenging activities of compounds tested decrease in the order: rutin > NAC > quercetin > kaempferol > taurine. The present study revealed that rutin was the most effective scavenger agent. 相似文献
10.
《Luminescence》2003,18(3):125-130
A new flow injection chemiluminescent method has been developed for the determination of procaine hydrochloride, based on the inhibition of the chemiluminescence reaction of luminol–hydrogen peroxide by procaine hydrochloride. The influence of several surfactants and β‐cyclodextrin on the chemiluminescence intensity were studied. It was found that β‐cyclodextrin enhanced the decrease in chemiluminescence intensity. The method is simple, convenient and sensitive, with a detection limit (3 σ) of 0.08 µg/mL. The decreased chemiluminescence intensity is linear, with the concentration of procaine hydrochloride in the range 0.2–100.0 µg/mL and 100.0–400.0 µg/mL. The relative standard deviation for 10 repeated measurements were 4.5% and 3.4% for 1.0 and 20.0 µg/mL procaine hydrochloride, respectively. The method has been successfully applied to the determination of procaine hydrochloride in injection solutions of this drug. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
A new flow injection chemiluminescence (CL) method has been developed for the determination of bisphenol A (BPA), based on the inhibitory effect of BPA on the chemiluminescence reaction between luminol and potassium hexacyanoferrate. Under optimum conditions, the decrease in CL emission intensity was linear with BPA concentration in the range 8.0 x 10(-7)-1.2 x 10(-5) mol/L, and the detection limit was 3.1 x 10(-7) mol/L. The relative standard deviation (RSD) of 11 replicate measurements was 2.6% for 2.0 x 10(-6) mol/L BPA (n = 11). The sampling frequency was calculated to be ca. 120/h. This method has been successfully used to determine the content of BPA in aqueous solution of polycarbonate materials. A brief discussion on the possible chemiluminescence reaction mechanism is presented. 相似文献
12.
The oxidation of sulphite by dissolved oxygen in aqueous solution catalysed by cobalt(II) was investigated. A weak chemiluminescence (CL) emission was observed when the reaction took place in a strong alkaline solution without any special CL reagent. Further studies showed that in the presence of fluorescein sodium the CL signal was enhanced significantly. The CL emission is linear with Co(II) concentration in the range 0.6-80 nmol/L and the detection limit is 0.3 nmol/L. In addition to Co(II), other transition metal ions were also tested, and the results showed that the proposed system was highly selective for Co(II). The method was successfully applied to the determination of Co(II) in pharmaceutical preparations. The possible CL mechanism was also discussed. 相似文献
13.
The post-chemiluminescence phenomenon arising from the permanganate-luminol reaction induced by hydrazine and isoniazid was investigated. When hydrazine or isoniazid was injected into the mixture after the end of the reaction of permanganate with alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A possible CL mechanism is suggested, based upon the studies of the kinetic characteristics of the CL reaction, the UV-visible spectra, the CL spectra and some other experiments. The present reactions allow the determination of 0.1-10.0 mg/L hydrazine and 0.02-1.0 mg/L isoniazid, with detection limits of 0.03 mg/L and 0.006 mg/L, respectively. The method was applied to the determination of isoniazid in pharmaceutical preparations. 相似文献
14.
Rapid determination of isoamyl nitrite in pharmaceutical preparations by flow injection analysis with on‐line UV irradiation and luminol chemiluminescence detection 下载免费PDF全文
Naoya Kishikawa Naoko Kondo Abena Amponsaa‐Karikari Hitoshi Kodamatani Kaname Ohyama Kenichiro Nakashima Shigeo Yamazaki Naotaka Kuroda 《Luminescence》2014,29(1):8-12
Isoamyl nitrite is used as a therapeutic reagent for cardiac angina and as an antidote for cyanide poisoning, but it is abused because of its euphoric properties. Therefore, a method to determine isoamyl nitrite is required in many fields, including pharmaceutical and forensic studies. In this study, a simple, rapid and sensitive method for the determination of isoamyl nitrite was developed using a flow injection analysis system equipped with a chemiluminescence detector and on‐line photoreactor. This method is based on on‐line ultraviolet irradiation of isoamyl nitrite and subsequent luminol chemiluminescence detection without the addition of an oxidant. A linear standard curve was obtained up to 1.0 μM of isoamyl nitrite with a detection limit (blank + 3SD) of 0.03 μM. The method was successfully applied to determine isoamyl nitrite content in pharmaceutical preparations. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
Liangqia Guo Zenghong Xie Xucong Lin Xiaohua Liu Weilin Zhang Guonan Chen 《Luminescence》2004,19(2):64-68
A flow-injection chemiluminescence method for the determination of tetracycline was developed. The method is based on an enhancement by tetracycline of the chemiluminescence light emission of tris(2,2'-bipyridine)ruthenium(II). In sulphuric acid medium, the chemiluminescence is generated by the continuous oxidation of tris(2,2'-bipyridine)ruthenium(II) by cerium (IV) sulphate. The light-emission intensity is greatly enhanced in the presence of tetracycline. Under the optimum conditions, the calibration curve is linear over the range 3.75 x 10(-8) g/mL-1.5 x 10(-5) g/mL for tetracycline with the linear equation: deltaINT = 205.898 x C - 20.442 (R2 = 0.9974). The detection limit is 3.27 x 10(-8) g/mL. The proposed method was also successfully used to determine tetracycline in pharmaceutical formulation (mean recovery of tetracycline, 100.7%). 相似文献
16.
A novel flow injection chemiluminescence (CL) method for the determination of rutin was reported. The proposed method was based on the enhanced effect of rutin on the chemiluminescence intensity of luminol and potassium hexacyanoferrate(III) reaction in NaOH medium. The variables of reaction system, such as luminol concentration, potassium hexacyanoferrate(III) concentration and NaOH concentration, were optimized with the aid of response surface methodology. For the responses prediction, a second‐order polynomial model (SOPM) was applied. The optimal conditions for determination of rutin estimated by the model equation were as follows: NaOH concentration of 0.13 mol/L luminol concentration of 0.94 × 10?6 mol/L, and K3Fe(CN)6 concentration of 1.09 × 10?4 mol/L. The theoretical increased ratio of CL intensity (IRI) predicted and actual IRI for 0.05 mg/L rutin under the above conditions were 99.40 and 99.74%, respectively. The SOPM model proved to be powerful for navigating the design space. Under the above optimum conditions, the increased IRI was linearly related to the concentration of rutin in the range from 0.008 to 0.100 mg/L with the regression equation IRI = 1948.20c + 5.24 (r = 0.9994) and in the range from 0.100 to 1.000 mg/L with the regression equation IRI = 1362.50 c + 61.94 (r = 0.9996). The detection limit (3σ) was of 1.95 × 10?3 mg/L. The sampling frequency of this method was 72/h. The method was used directly to determine rutin in tablets. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
We report for the first time that the sensitivity of the luminol–hypochlorite chemiluminescence (CL) reaction was enhanced approximately 10 times by the addition of phloxine B. The maximum wavelength of CL emission shifted from 431 to 595 nm in the absence and presence, respectively, of phloxine B, suggesting that an efficient chemiluminescence resonance energy transfer occurred between a luminol donor and a phloxine B acceptor in the luminol–hypochlorite–phloxine B system. Based on this observation, a simple, rapid and sensitive microflow injection CL method, using a microchip with spiral channel configurations, was developed for the determination of hypochlorite. Under optimized conditions, a linear calibration curve (R2 = 0.9944) over the range 0.1–10.0 µmol/L was obtained, with a detection limit of 0.025 µmol/L (S:N = 3). The relative standard deviation (RSD) was found to be 4.2% (n = 10) for 2.5 µmol/L hypochlorite. The sample consumption was only 2 μL, with a sample throughput of 90/h. The method has been used for determining trace amounts of hypochlorite in water samples with satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
In this paper, the novel trivalent copper–periodate complex {K5[Cu(HIO6)2], DPC} has been applied in a luminol‐based chemiluminescence (CL) reaction. Coupled with flow injection (FI) technology, the FI‐CL method was proposed for the determination of lincomycin hydrochloride. The CL reaction between luminol and DPC occurred in an alkaline medium. The CL intensity could be greatly enhanced by lincomycin hydrochloride. The relative CL intensity was proportional to the concentration of lincomycin hydrochloride in the range of 1 × 10?8 to 5 × 10?6 g mL?1 and the detection limit was at the 3.5 × 10?9 g mL?1 level. The relative standard deviation at 5 × 10?8 g mL?1 was 1.7% (n = 9). The sensitive method was successfully applied to the direct determination of lincomycin hydrochloride (ng mL?1) in serum. A possible mechanism of the lumonol–DPC CL reaction was discussed by the study of the CL kinetic characteristics and the spectra of CL reaction. The oxidability of DPC was studied by means of its electrochemical response. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
A novel chemiluminescence method for the determination of gentiopicroside is presented, which was based on the inhibitory effect of gentiopicroside on the chemiluminescence reaction between luminol and myoglobin in a flow‐injection system. The decrement of chemiluminescence intensity was linear with the logarithm of gentiopicroside concentration over the range from 10.0 pg mL?1 to 500.0 ng mL?1 (r2 = 0.9992), with a detection limit of 3.0 pg mL?1 (3σ). At a flow rate of 2.0 mL min?1, a complete analytical process could be performed within 0.5 min, including sampling and washing, with a relative standard deviation of less than 3.0% (n = 5). The proposed procedure was applied successfully in the determination of gentiopicroside in pharmaceutical preparations, human urine and serum without any pretreatment procedure. The possible mechanism of the reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Francisco García Sánchez Aurora Navas Díaz Visitación Bracho Alfonso Aguilar Manuel Algarra 《Luminescence》2009,24(6):448-452
A flow injection system with chemiluminescence detection for the determination of asulam, enhancer of the system luminol–H2O2–horseradish peroxidase, is proposed. The method shows a moderate selectivity against other pesticides usually present in formulations of herbicides and in water. The procedure was applied to the determination of asulam in tap water samples and a recovery study was carried out in order to validate the method. The obtained results show acceptable recovery values (between 88.3 and 93.9%). The detection limit for asulam was 0.12 ng/mL. The precision of the method expressed as relative standard deviation was 1.55% (n = 8), at the 19 ng/mL level. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献