首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D J Smith  A J Earl    G Turner 《The EMBO journal》1990,9(9):2743-2750
The nucleotide sequence of the Penicillium chrysogenum Oli13 acvA gene encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase, which performs the first step in penicillin biosynthesis, has been determined. The acvA gene contains an open reading frame of 11,238 bp encoding a protein of 3746 amino acids with a predicted mol. wt of 421,073 dalton. Three domains within the protein of approximately 570 amino acids have between 38% and 43% identity with each other and share similarity with two antibiotic peptide synthetases from Bacillus brevis as well as two other enzymes capable of performing ATP-pyrophosphate exchange reactions. The acvA gene is located close to the pcbC gene encoding isopenicillin N synthetase, the enzyme for the second step of beta-lactam biosynthesis, and is transcribed in the opposite orientation to it. The intergenic region of 1107 bp from which the acvA and pcbC genes are divergently transcribed has also been sequenced.  相似文献   

2.
3.
4.
delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase, the multienzyme catalyzing the formation of ACV from the constituent amino acids and ATP in the presence of Mg2+ and dithioerythritol, was purified about 2700-fold from Streptomyces clavuligerus. The molecular mass of the native enzyme as determined by gel filtration chromatography is 560 kDa, while that determined by denaturing gel electrophoresis is 500 kDa. The enzyme is able to catalyze pyrophosphate exchange in dependence on L-cysteine and L-valine, but no L-alpha-aminoadipic-acid-dependent ATP/PPi exchange could be detected. Other L-cysteine- and L-valine-activating enzymes present in crude extracts were identified as aminoacyl-tRNA synthetases which could be separated from ACV synthetase. The molecular mass of these enzymes is 140 kDa for L-valine ligase and 50 kDa for L-cysteine ligase. The dissociation constants have been estimated, assuming three independent activation sites, to be 1.25 mM and 1.5 mM for cysteine and ATP, and 2.4 mM and 0.25 mM for valine and ATP, respectively. The enzyme forms a thioester with alpha-aminoadipic acid and with valine in a molar ratio of 0.6:1 (amino acid/enzyme). Thus, the bacterial ACV synthetase is a multifunctional peptide synthetase, differing from fungal ACV synthetases in its mechanism of activation of the non-protein amino acid.  相似文献   

5.
We report the DNA sequence of the valS gene from Bacillus stearothermophilus and the predicted amino acid sequence of the valyl-tRNA synthetase encoded by the gene. The predicted primary structure is for a protein of 880 amino acids with a molecular mass of 102,036. The molecular mass and amino acid composition of the expressed enzyme are in close agreement with those values deduced from the DNA sequence. Comparison of the predicted protein sequence with known protein sequences revealed a considerable homology with the isoleucyl-tRNA synthetase of Escherichia coli. The two enzymes are identical in some 20-25% of their amino acid residues, and the homology is distributed approximately evenly from N-terminus to C-terminus. There are several regions which are highly conservative between the valyl- and isoleucyl-tRNA synthetases. In one of these regions, 15 of 20 amino acids are identical, and in another, 10 of 14 are identical. The valyl-tRNA synthetase also contains a region HLGH (His-Leu-Gly-His) near its N-terminus equivalent to the consensus HIGH (His-Ile-Gly-His) sequence known to participate in the binding of ATP in the tyrosyl-tRNA synthetase. This is the first example of extensive homology found between two different aminoacyl-tRNA synthetases.  相似文献   

6.
Isolation of a cDNA encoding the rat liver S-adenosylmethionine synthetase   总被引:4,自引:0,他引:4  
We have isolated cDNA clones encoding the rat liver S-adenosylmethionine synthetase by means of immunological screening from a phage lambda gt 11 expression library containing cDNA synthesized from adult rat liver poly(A)-RNA. The amino acid sequence deduced from the cDNA indicates that the rat liver enzyme for this protein contains 397 amino acid residues and has a molecular mass of 43697 Da. The deduced amino acid sequence of rat liver S-adenosylmethionine synthetase was 68% similar to those of yeast S-adenosylmethionine synthetases encoded by two unlinked genes SAM1 and SAM2. The rat liver S-adenosylmethionine synthetase also shows 52% similarity with the deduced amino acid sequence of the MetK gene encoding the S-adenosylmethionine synthetase in Escherichia coli.  相似文献   

7.
L-delta-(alpha-Aminoadipoyl)-L-cysteine-D-valine synthetase (ACVS) has been recently studied as a model enzyme for peptide synthetases. It was found that in the absence of alpha-aminoadipic acid but in the presence of several cysteine analogues it was incorporated into several analogue dipeptides upon incubation of the potential cysteine analogues with ACVS. [(14)C]Cysteine was incorporated into the[(14)C]cysteinyl-valine analogue dipeptides. Notably, [(14)C]valine incorporation in the presence of N-acylated cysteine analogues was observed. The alpha-aminoadipic acid activation site is influential, inhibitory or promotive, on the production of these putative dipeptide products. The production of dipeptide analogues, containing valine or analogues at the C-terminus, leads to the speculation that the biosynthetic direction of ACV could be from the C-terminus to the N-terminus.  相似文献   

8.
A yeast DNA fragment carrying the gene CP A1 encoding the small subunit of the arginine pathway carbamoyl-phosphate synthetase has been sequenced. Only one continuous coding sequence on this fragment was long enough to account for the presumed molecular mass of CP A1 protein product. It codes for a polypeptide of 411 amino acids having a relative molecular mass, Mr, of 45 358 and showing extensive homology with the product of carA, the homologous Escherichia coli gene. CP A1 and carA products are glutamine amidotransferases which bind glutamine and transfer its amide group to the large subunits where it is used for the synthesis of carbamoyl-phosphate. A comparison of the amino acid sequences of CP A1 polypeptide with the glutamine amidotransferase domains of anthranilate and p-amino-benzoate synthetases from various sources has revealed the presence in each of these sequences of three highly conserved regions of 8, 11 and 6 amino acids respectively. The 11-residue oligopeptide contains a cysteine which is considered as the active-site residue involved in the binding of glutamine. The distances (number of amino acid residues) which separate these homology regions are accurately conserved in these various enzymes. These observations provide support for the hypothesis that these synthetases have arisen by the combination of a common ancestral glutamine amidotransferase subunit with distinct ammonia-dependent synthetases. Little homology was detected with the amide transfer domain of glutamine phosphoribosyldiphosphate amidotransferase which may be the result of a convergent evolutionary process. The flanking regions of gene CP A1 have been sequenced, 803 base pairs being determined on the 5' side and 382 on the 3' side. Several features of the 5'-upstream region of CP A1 potentially related to the control of its expression have been noticed including the presence of two copies of the consensus sequence d(T-G-A-C-T-C) previously identified in several genes subject to the general control of amino acid biosynthesis.  相似文献   

9.
The gltX gene encoding the glutamyl-tRNA synthetase of Escherichia coli and adjacent regulatory regions was isolated and sequenced. The structural gene encodes a protein of 471 amino acids whose molecular weight is 53,810. The codon usage is that of genes highly expressed in E. coli. The amino acid sequence deduced from the nucleotide sequence of the gltX gene was confirmed by mass spectrometry of large peptides derived from the glutamyl-tRNA synthetase. The observed peptides confirm 73% of the predicted sequence, including the NH2-terminal and the COOH-terminal segments. Sequence homology between the glutamyl-tRNA synthetase and other aminoacyl-tRNA synthetases of E. coli was found in four segments. Three of them are aligned in the same order in all the synthetases where they are present, but the intersegment spacings are not constant; these ordered segments may come from a progenitor to which other domains were added. Starting from the NH2-end, the first two segments are part of a longer region of homology with the glutaminyl-tRNA synthetase, without need for gaps; its size, about 100 amino acids, is typical of a single folding domain. In the first segment, containing sequences homologous to the HIGH consensus, the homology is consistent with the following evolutionary linkage: gltX----glnS----metS----ileS and tyrS.  相似文献   

10.
Cloning, sequencing, and characterization of the iturin A operon   总被引:23,自引:0,他引:23       下载免费PDF全文
Bacillus subtilis RB14 is a producer of the antifungal lipopeptide iturin A. Using a transposon, we identified and cloned the iturin A synthetase operon of RB14, and the sequence of this operon was also determined. The iturin A operon spans a region that is more than 38 kb long and is composed of four open reading frames, ituD, ituA, ituB, and ituC. The ituD gene encodes a putative malonyl coenzyme A transacylase, whose disruption results in a specific deficiency in iturin A production. The second gene, ituA, encodes a 449-kDa protein that has three functional modules homologous to fatty acid synthetase, amino acid transferase, and peptide synthetase. The third gene, ituB, and the fourth gene, ituC, encode 609- and 297-kDa peptide synthetases that harbor four and two amino acid modules, respectively. Mycosubtilin, which is produced by B. subtilis ATCC 6633, has almost the same structure as iturin A, but the amino acids at positions 6 and 7 in the mycosubtilin sequence are D-Ser-->L-Asn, while in iturin A these amino acids are inverted (i.e., D-Asn-->L-Ser). Comparison of the amino acid sequences encoded by the iturin A operon and the mycosubtilin operon revealed that ituD, ituA, and ituB have high levels of homology to the counterpart genes fenF (79%), mycA (79%), and mycB (79%), respectively. Although the overall level of homology of the amino acid sequences encoded by ituC and mycC, the counterpart of ituC, is relatively low (64%), which indicates that there is a difference in the amino acid sequences of the two lipopeptides, the levels of homology between the putative serine adenylation domains and between the asparagine adenylation domains in the two synthetases are high (79 and 80%, respectively), implying that there is an intragenic domain change in the synthetases. The fact that the flanking sequence of the iturin A synthetase coding region was highly homologous to the flanking sequence that of xynD of B. subtilis 168 and the fact that the promoter of the iturin A operon which we identified was also conserved in an upstream sequence of xynD imply that horizontal transfer of this operon occurred. When the promoter was replaced by the repU promoter of the plasmid pUB110 replication protein, production of iturin A increased threefold.  相似文献   

11.
Anabaena strain 90 produces three hepatotoxic heptapeptides (microcystins), two seven-residue depsipeptides called anabaenopeptilide 90A and 90B, and three six-residue peptides called anabaenopeptins. The anabaenopeptilides belong to a group of cyanobacterial depsipeptides that share the structure of a six-amino-acid ring with a side-chain. Despite their similarity to known cyclic peptide toxins, no function has been assigned to the anabaenopeptilides. Degenerate oligonucleotide primers based on the conserved amino acid sequences of other peptide synthetases were used to amplify DNA from Anabaena 90, and the resulting polymerase chain reaction (PCR) products were used to identify a peptide synthetase gene cluster. Four genes encoding putative anabaenopeptilide synthetase domains were characterized. Three genes, apdA, apdB and apdD, contain two, four and one module, respectively, encoding a total of seven modules for activation and peptide bond formation of seven L-amino acids. Modules five and six also carry methyltransferase-like domains. Before the first module, there is a region similar in amino acid sequence to formyltransferases. A fourth gene (apdC), between modules six and seven, is similar in sequence to halogenase genes. Thus, the order of domains is co-linear with the positions of amino acid residues in the finished peptide. A mutant of Anabaena 90 was made by inserting a chloramphenicol resistance gene into the apdA gene. DNA amplification by PCR confirmed the insertion. Mass spectrometry analysis showed that anabaenopeptilides are not made in the mutant strain, but other peptides, such as microcystins and anabaenopeptins, are still produced by the mutant.  相似文献   

12.
《Gene》1996,173(2):195-197
A gene encoding a putative peptide synthetase has been cloned and partially sequenced from the filamentous fungus, Metarhizium anisopliae. The deduced amino acid sequence of one entire domain and the following spacer is typical of fungal peptide synthetases, showing good conservation of the six expected core sequences. There are two introns within this region, the first interrupting core 5 (RLDLTDIE) of the domain and the second in a conserved area of the spacer region.  相似文献   

13.
W K Wang  K Kruus    J H Wu 《Journal of bacteriology》1993,175(5):1293-1302
Clostridium thermocellum ATCC 27405 produces an extracellular cellulase system capable of hydrolyzing crystalline cellulose. The enzyme system involves a multicomponent protein aggregate (the cellulosome) with a total molecular weight in the millions, impeding mechanistic studies. However, two major components of the aggregate, SS (M(r) = 82,000) and SL (M(r) = 250,000), which act synergistically to hydrolyze crystalline cellulose, have been identified (J. H. D. Wu, W. H. Orme-Johnson, and A. L. Demain, Biochemistry 27:1703-1709, 1988). To further study this synergism, we cloned and sequenced the gene (celS) coding for the SS (CelS) protein by using a degenerate, inosine-containing oligonucleotide probe whose sequence was derived from the N-terminal amino acid sequence of the CelS protein. The open reading frame of celS consisted of 2,241 bp encoding 741 amino acid residues. It encoded the N-terminal amino acid sequence and two internal peptide sequences determined for the native CelS protein. A putative ribosome binding site was identified at the 5' end of the gene. A putative signal peptide of 27 amino acid residues was adjacent to the N terminus of the CelS protein. The predicted molecular weight of the secreted protein was 80,670. The celS gene contained a conserved reiterated sequence encoding 24 amino acid residues found in proteins encoded by many other clostridial cel or xyn genes. A palindromic structure was found downstream from the open reading frame. The celS gene is unique among the known cel genes of C. thermocellum. However, it is highly homologous to the partial open reading frame found in C. cellulolyticum and in Caldocellum saccharolyticum, indicating that these genes belong to a new family of cel genes.  相似文献   

14.
15.
The entire nucleotide sequence of the Bacillus brevis grsB gene encoding the gramicidin S synthetase 2, which activates and condenses the four amino acids proline, valine, ornithine and leucine has been determined. The gene contains an open reading frame of 13,359 bp which encodes a protein of 4453 amino acids with a predicted Mr of 510,287. The gene is located within the gramicidin S biosynthetic operon, also containing the genes grsT and grsA, whose nucleotide sequences have been determined previously. Within the GrsB amino acid sequence four conserved and repeated domains of about 600 amino acids (45-50% identity) have been identified. The four domains are separated by non-homologous sequences of about 500 amino acids. The domains also share a high degree of similarity (20-70%) with eight peptide synthetases of bacterial and fungal origin as well as with conserved sequences of nine other adenylate-forming enzymes of diverse origin. On the basis of sequence homology and functional similarities, we infer that those enzymes share a common evolutionary origin and present a phylogenetic tree for this superfamily of domain-bearing enzymes.  相似文献   

16.
Lysine epsilon-aminotransferase (LAT) in the beta-lactam-producing actinomycetes is considered to be the first step in the antibiotic biosynthetic pathway. Cloning of restriction fragments from Streptomyces clavuligerus, a beta-lactam producer, into Streptomyces lividans, a nonproducer that lacks LAT activity, led to the production of LAT in the host. DNA sequencing of restriction fragments containing the putative lat gene revealed a single open reading frame encoding a polypeptide with an approximately Mr 49,000. Expression of this coding sequence in Escherichia coli led to the production of LAT activity. Hence, LAT activity in S. clavuligerus is derived from a single polypeptide. A second open reading frame began immediately downstream from lat. Comparison of this partial sequence with the sequences of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D valine (ACV) synthetases from Penicillium chrysogenum and Cephalosporium acremonium and with nonribosomal peptide synthetases (gramicidin S and tyrocidine synthetases) found similarities among the open reading frames. Since mapping of the putative N and C termini of S. clavuligerus pcbAB suggests that the coding region occupies approximately 12 kbp and codes for a polypeptide related in size to the fungal ACV synthetases, the molecular characterization of the beta-lactam biosynthetic cluster between pcbC and cefE (approximately 25 kbp) is nearly complete.  相似文献   

17.
ATPase activity of non-ribosomal peptide synthetases   总被引:1,自引:0,他引:1  
Adenylation domains of non-ribosomal peptide synthetases (NRPS) catalyse the formation of aminoacyl adenylates, and in addition synthesize mono- and dinucleoside polyphosphates. Here, we show that NRPS systems furthermore contain an ATPase activity in the range of up to 2 P(i)/min. The hydrolysis rate by apo-tyrocidine synthetase 1 (apo-TY1) is enhanced in the presence of non-cognate amino acid substrates, correlating well with their structural features and the diminishing adenylation efficiency. A comparative analysis of the functional relevance of an analogous sequence motif in P-type ATPases and adenylate kinases (AK) allowed a putative assignment of the invariant aspartate residue from the TGDLA(V)R(K) core sequence in NRPS as the Mg(2+) binding site. Less pronounced variations in ATPase activity are observed in domains with relaxed amino acid specificity of gramicidin S synthetase 2 (GS2) and delta-(L-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), known to produce a set of substitutional variants of the respective peptide product. These results disclose new perspectives about the mode of substrate selection by NRPS.  相似文献   

18.
TheLysobacter lactamgenus YK90pcbAB gene encoding -(l--aminoadipyl)-l-cysteinyl-d-valine (ACV) synthetase is located immediately upstream of thepcbC gene in the same orientation in the gene cluster involved in cephalosporin biosynthesis. ThepcbAB gene encodes a large polypeptide composed of 3722 amino acid residues with a molecular mass of 411 593 Da. The predicted amino acid sequence has a high degree of similarity with those of known ACV synthetases from fungi and actinomycetes. Within thepcbAB amino acid sequence, three conserved and repeated domains of about 600 amino acids were identified. The domains also share a high degree of similarity with non-ribosomal peptide synthetases such as gramicidin synthatase 2 ofBacillus brevis. ThepcbAB gene was expressed under the control of thelac promoter inPseudomonas putida. Expression of the gene cluster involved in cephalosporin biosynthesis inP. putida led to the accumulation of -lactam antibiotics. Deletion analysis of an open-reading frame located between thecefE andcefD genes from the gene cluster revealed that it encoded deacetylcephalosporin C synthetase (cefF). From the results presented here and those of previous studies, the genes involved in cephalosporin biosynthesis inL. lactamgenus appear to be clustered in the orderpcb AB-pcbC- cefE-cefF-cefD-bla in the same orientation within a 17-kb region of DNA.  相似文献   

19.
We have determined the nucleotide sequence of the pbpA gene encoding penicillin-binding protein (PBP) 2 of Escherichia coli. The coding region for PBP 2 was 1899 base pairs in length and was preceded by a possible promoter sequence and two open reading frames. The primary structure of PBP 2, deduced from the nucleotide sequence, comprised 633 amino acid residues. The relative molecular mass was calculated to be 70867. The deduced sequence agreed with the NH2-terminal sequence of PBP 2 purified from membranes, suggesting that PBP 2 has no signal peptide. The hydropathy profile suggested that the NH2-terminal hydrophobic region (a stretch of 25 non-ionic amino acids) may anchor PBP 2 in the cytoplasmic membrane as an ectoprotein. There were nine homologous segments in the amino acid sequence of PBP 2 when compared with PBP 3 of E. coli. The active-site serine residue of PBP 2 was predicted to be Ser-330. Around this putative active-site serine residue was found the conserved sequence of Ser-Xaa-Xaa-Lys, which has been identified in all of the other E. coli PBPs so far studied (PBPs 1A, 1B, 3, 5 and 6) and class A and class C beta-lactamases. In the higher-molecular-mass PBPs 1A, 1B, 2 and 3, Ser-Xaa-Xaa-Lys-Pro was conserved. In the putative peptidoglycan transpeptidase domain there were six amino acid residues, which are common only in the PBPs of higher molecular mass.  相似文献   

20.
杨之帆  何光存 《昆虫学报》2006,49(6):1034-1041
利用反转录聚合酶链式反应(RT_PCR)结合快速扩增cDNA末端(RACE)技术克隆了褐飞虱Nilaparvata lugens 乙酰胆碱酯酶基因cDNA。该cDNA全长2 467 bp,包含一个1 938 bp的开放阅读框(GenBank登录号AJ852420); 在推导出的646个氨基酸残基的前体蛋白中, N端的前30个氨基酸残基为信号肽,随后的616个氨基酸残基是成熟的乙酰胆碱酯酶序列,其预测的分子量为69 418 D。在一级结构中,形成催化活性中心的3个氨基酸残基(Ser242,Glu371和His485),以及在亚基内形成二硫键的6个半胱氨酸完全保守; 位于催化功能域的14个芳香族氨基酸中有10 个完全保守。该酶的氨基酸序列与黑尾叶蝉的同源性最高,达83%。对来自23种昆虫(包括褐飞虱)的30个乙酰胆碱酯酶的聚类分析显示,褐飞虱的乙酰胆碱酯酶与其中6个Ⅱ型乙酰胆碱酯酶(AChE2)同属一个支系; 此外,只存在于昆虫AChE2中的超变区及特异的氨基酸残基,也存在于褐飞虱的乙酰胆碱酯酶中。以上结果表明,所克隆的褐飞虱的乙酰胆碱酯酶基因是一个与黑腹果蝇的orthologous型基因同源的AChE2基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号