首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic and biochemical strategies have been used to identify Schizosaccharomyces pombe proteins with roles in centromere function. One protein, identified by both approaches, shows significant homology to the human centromere DNA-binding protein, CENP-B, and is identical to Abp1p (autonomously replicating sequence-binding protein 1) (Murakami, Y., J.A. Huberman, and J. Hurwitz. 1996. Proc. Natl. Acad. Sci. USA. 93:502–507). Abp1p binds in vitro specifically to at least three sites in centromeric central core DNA of S. pombe chromosome II (cc2). Overexpression of abp1 affects mitotic chromosome stability in S. pombe. Although inactivation of the abp1 gene is not lethal, the abp1 null strain displays marked mitotic chromosome instability and a pronounced meiotic defect. The identification of a CENP-B–related centromere DNA-binding protein in S. pombe strongly supports the hypothesis that fission yeast centromeres are structurally and functionally related to the centromeres of higher eukaryotes.  相似文献   

2.
We have previously peported that the replication orgin region located near the ura4 gene on chromosome III of the fission yeast, Schizosaccharomyces pombe, contains three closely spaced origins, each associated with an autonomously replicating sequence (ARS) element. Here we report the nucleotide sequences of two of these ARS elements, ars3002 and ars3003. The two ARS elements are located on either side of a transcribed 1.5 kb open reading frame. Like 11 other S. pombe ARS elements whose sequences have previously been determined in other laboratories, the 2 new ARS elements are unusually A+T-rich. All 13 ARS elements contain easily unwound stretches of DNA. Each of the ARS elements contains numerous copies, at a higher than expected frequency, of short stretches of A+T-rich DNA in which most of the Ts are on one strand and most of the As are on the complementary strand. We discuss the potential significance for ARS function of these multiple asymmetric A+T-rich sequences.  相似文献   

3.
DNA replication origins in animal cells sometimes occur in clusters. Often one of the multiple origins within these clusters fires more frequently than the others. The reason for this hierarchy remains unknown. Similar origin clusters occur in the fission yeast, Schizosaccharomyces pombe. One such cluster is located near the ura4 gene on chromosome III and contains three origins: ars3002, ars3003, and ars3004. In their natural chromosomal context (ars3003 is about 2.5 kb upstream of ars3002 and ars3004 is adjacent to ars3002 on the downstream side) their initiation frequencies display a striking hierarchy: ars3002 > ars3003 > ars3004. Here, we describe experiments that reveal a 400 bp replication enhancer within ars3004, adjacent to ars3002. The enhancer is essential for ars3004 origin function in a plasmid, but even with the enhancer ars3004 is an inefficient origin. The enhancer is not essential for ars3002 plasmid origin activity, but dramatically stimulates this activity, converting ars3002 from an inefficient plasmid origin to a very efficient one. It also stimulates the plasmid origin activity of ars3001 and ars3003 at all tested positions and orientations on both sides of each autonomously replicating sequence (ARS) element. If ars3002 is redefined to include the enhancer, then the relative activities of the three ARS elements as single origins within separate plasmids or as origins when all three ARS elements are present in a single plasmid is the same as the chromosomal hierarchy. Thus, this replication enhancer defines the relative activities of the three origins in the ura4 origin region. Similar enhancers may affect relative activities in the origin clusters of animal cells.  相似文献   

4.
Abp1, and the closely related Cbh1 and Cbh2 are homologous to the human centromere-binding protein CENP-B that has been implicated in the assembly of centromeric heterochromatin. Fission yeast cells lacking Abp1 show an increase in mini-chromosome instability suggesting that Abp1 is important for chromosome segregation and/or DNA synthesis. Here we show that Abp1 interacts with the DNA replication protein Cdc23 (MCM10) in a two-hybrid assay, and that the Δabp1 mutant displays a synthetic phenotype with a cdc23 temperature-sensitive mutant. Moreover, genetic interactions were also observed between abp1 + and four additional DNA replication initiation genes cdc18 +, cdc21 +, orc1 +, and orc2 +. Interestingly, we find that S phase is delayed in cells deleted for abp1 + when released from a G1 block. However, no delay is observed when cells are released from an early S phase arrest induced by hydroxyurea suggesting that Abp1 functions prior to, or coincident with, the initiation of DNA replication.  相似文献   

5.
In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites.  相似文献   

6.
The fission yeast (Schizosaccharomyces pombe) taz1 gene encodes a telomere-associated protein. It contains a single copy of a Myb-like motif termed the telobox that is also found in the human telomere binding proteins TRF1 and TRF2, and Tbf1p, a protein that binds to sequences found within the sub-telomeric regions of budding yeast (Saccharomyces cerevisiae) chromosomes. Taz1p was synthesised in vitro and shown to bind to a fission yeast telomeric DNA fragment in a sequence specific manner that required the telobox motif. Like the mammalian TRF proteins, Taz1p bound to DNA as a preformed homodimer. The isolated Myb-like domain was also capable of sequence specific DNA binding, although with less specificity than the full-length dimer. Surprisingly, a protein extract produced from a taz1–fission yeast strain still contained the major telomere binding activity (complex I) we have characterised previously, suggesting that there could be other abundant telomere binding proteins in fission yeast. One candidate, SpX, was also synthesised in vitro, but despite the presence of two telobox domains, no sequence specific binding to telomeric DNA was detected.  相似文献   

7.
Rad54 is a dsDNA-dependent ATPase that translocates on duplex DNA. Its ATPase function is essential for homologous recombination, a pathway critical for meiotic chromosome segregation, repair of complex DNA damage, and recovery of stalled or broken replication forks. In recombination, Rad54 cooperates with Rad51 protein and is required to dissociate Rad51 from heteroduplex DNA to allow access by DNA polymerases for recombination-associated DNA synthesis. Sequence analysis revealed that Rad54 contains a perfect match to the consensus PIP box sequence, a widely spread PCNA interaction motif. Indeed, Rad54 interacts directly with PCNA, but this interaction is not mediated by the Rad54 PIP box-like sequence. This sequence is located as an extension of motif III of the Rad54 motor domain and is essential for full Rad54 ATPase activity. Mutations in this motif render Rad54 non-functional in vivo and severely compromise its activities in vitro. Further analysis demonstrated that such mutations affect dsDNA binding, consistent with the location of this sequence motif on the surface of the cleft formed by two RecA-like domains, which likely forms the dsDNA binding site of Rad54. Our study identified a novel sequence motif critical for Rad54 function and showed that even perfect matches to the PIP box consensus may not necessarily identify PCNA interaction sites.  相似文献   

8.
K Kuno  S Murakami  S Kuno 《Gene》1990,95(1):73-77
Since plasmids containing autonomously replicating sequence(s) (ARS) can transform Saccharomyces cerevisiae cells at high frequency, ARS are considered to be the replication origins of chromosomes. To study the mechanism of initiation of eukaryotic chromosomal replication, we examined protein factors which interact with the ARS1 region located near the centromere of chromosome IV in S. cerevisiae. Using the gel-shift assay, we found protein factors which bound to a single-stranded, 97-bp fragment of the ARS1 region containing the core consensus. Competition experiments with various oligodeoxyribonucleotides (oligos) suggest that a site recognized by the factor(s) was within the element containing the core consensus and adjacent close matches to the core consensus of the minus strand. Indeed, when the oligo containing the minus strand of this element was used as a probe, two oligo-protein complexes were detected. Mutations in the core consensus reduced these binding activities. When the plus-strand oligo of the same region was used as a probe, a retarded band was also detected, but with less specific binding. Considering the fact that the core consensus and close matches to the core consensus are important for ARS function, these results imply that the protein factors detected in this experiment may participate in DNA replication.  相似文献   

9.
Summary A DNA sequence has been isolated from Schizosaccharomyces pombe which promotes high frequency transformation of plasmids in the same organism. It is closely linked to the DNA ligase gene CDC17 and has therefore been named ARS17 although in structure it differs substantially from ARS elements in Saccharomyces cerevisiae. ARS17 spans some 1.8 kb of DNA and deletion of any part of this region affects activity. Moreover, there does not appear to be any short sequence which is, by itself, sufficient for high frequency transformation. ARS17 lies between and partly overlaps two divergently transcribed genes and it is extremely AT rich. It lacks the consensus sequence found in S. cerevisiae ARSs and it has no ARS activity in S. cerevisiae.  相似文献   

10.
11.
Summary Previous studies have indicated that DNA bending is a general structural feature of sequences (ARSs) from cellular DNAs of yeasts and nuclear and mitochondrial genomic DNAs of other eukaryotes that are capable of autonomous replication in Saccharomyces cerevisiae. Here we showed that bending activity is also tightly associated with S. cerevisiae ARS function of segments cloned from mitochondrial linear DNA plasmids of the basidiomycetes Pleurotus ostreatus and Lentinus edodes. Two plasmids, designated pLPO2-like (9.4 kb), and pLPO3 (6.6 kb) were isolated from a strain of P. ostreatus. A 1029 by fragment with high-level ARS activity was cloned from pLPO3 and it contained one ARS consensus sequence (A/T)TTTAT(A/G)TTT(A/T) indispensable for activity and seven dispersed ARS consensus-like (10/11 match) sequences. A discrete bent DNA region was found to lie around 500 by upstream from the ARS consensus sequence (T-rich strand). Removal of the bent DNA region impaired ARS function. DNA bending was also implicated in the ARS function associated with a 1430 by fragment containing three consecutive ARS consensus sequences which had been cloned from the L. edodes plasmid pLLE1 (11.0 kb): the three consecutive ARSs responsible for high-level ARS function occurred in, and immediately adjacent to, a bent DNA region. A clear difference exists between the two plasmid-derived ARS fragments with respect to the distance between the bent DNA region and the ARS consensus sequence(s).  相似文献   

12.
13.
Irelan JT  Gutkin GI  Clarke L 《Genetics》2001,157(3):1191-1203
Several members of protein families that are conserved in higher eukaryotes are known to play a role in centromere function in the fission yeast Schizosaccharomyces pombe, including two homologs of the mammalian centromere protein CENP-B, Abp1p and Cbh1p. Here we characterize a third S. pombe CENP-B homolog, Cbh2p (CENP-B homolog 2). cbh2Delta strains exhibited a modest elevation in minichromosome loss, similar to cbh1Delta or abp1Delta strains. cbh2Delta cbh1Delta strains showed little difference in growth or minichromosome loss rate when compared to single deletion strains. In contrast, cbh2Delta abp1Delta strains displayed dramatic morphological and chromosome segregation defects, as well as enhancement of the slow-growth phenotype of abp1Delta strains, indicating partial functional redundancy between these proteins. Both cbh2Delta abp1Delta and cbh1Delta abp1Delta strains also showed strongly enhanced sensitivity to a microtubule-destabilizing drug, consistent with a mitotic function for these proteins. Cbh2p was localized to the central core and core-associated repeat regions of centromeric heterochromatin, but not at several other centromeric and arm locations tested. Thus, like its mammalian counterpart, Cbh2p appeared to be localized exclusively to a portion of centromeric heterochromatin. In contrast, Abp1p was detected in both centromeric heterochromatin and in chromatin at two of three replication origins tested. Cbh2p and Abp1p homodimerized in the budding yeast two-hybrid assay, but did not interact with each other. These results suggest that indirect cooperation between different CENP-B-like DNA binding proteins with partially overlapping chromatin distributions helps to establish a functional centromere.  相似文献   

14.
A centromeric activity was identified in the previously isolated 3.8 kb DNA fragment that carries an autonomously replicating sequence (ARS) from the yeast Candida maltosa. Plasmids bearing duplicated copies of the centromeric DNA (dicentric plasmids) were physically unstable and structural rearrangements of the dicentric plasmids occurred frequently in the transformed cells. The centromeric DNA activity was dissociated from the ARS, which is 0.2 kb in size, and was delimited to a fragment at least 325 by in length. The centromeric DNA region included the consensus sequences of CDEI (centromeric DNA element I) and an AT-rich CDEII-like region of Saccharomyces cerevisiae but had no homology to the functionally critical CDEIII consensus. A plasmid bearing the whole 3.8 kb fragment was present in 1–2 copies per cell and was maintained stably even under non-selective culture conditions, while a plasmid having only the 0.2 kb ARS was unstable and accumulated to high copy numbers. The high-copy-number plasmid allowed us to overexpress a gene to a high level, which had never been attained before, under the control of both constitutive and inducible promoters in C. maltosa.  相似文献   

15.
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (K(s) = 7 x 10(9) M(-1)) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Deltaabp1 Deltacbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.  相似文献   

16.
17.
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (~570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.  相似文献   

18.
The ribosomal DNA (rDNA) repeats of Saccharomyces cerevisiae contain an autonomously replicating sequence (ARS) that colocalizes with a chromosomal origin of replication. We show that a minimal sequence necessary for full ARS function corresponds to a 107-bp rDNA fragment which contains three 10-of-11-bp matches to the ARS consensus sequence. Point mutations in only one of the 10-of-11-bp matches, GTTTAT GTTTT, inactivate the rDNA ARS, indicating that this consensus sequence is essential. A perfect match to a revised ARS consensus is present but not essential. Sequences up to 9 bp 5' from the essential consensus are dispensable. A broad DNA region directly 3' to the essential consensus is required and is easily unwound as indicated by: (i) hypersensitivity to nicking of an approximately 100-bp region by mung bean nuclease in a negatively supercoiled plasmid and (ii) helical instability determined by thermodynamic analysis of the nucleotide sequence. A correlation between DNA helical instability and replication efficiency of wild-type and mutated ribosomal ARS derivatives suggests that a broad region 3' to the essential ARS consensus functions as a DNA unwinding element. Certain point mutations that do not stabilize the DNA helix in the 3' region but reduce ARS efficiency reveal an element distinct from, but overlapping, the DNA unwinding element. The nucleotide sequence of the functionally important constituents in the ARS appears to be conserved among the rDNA repeats in the chromosome.  相似文献   

19.
T G Palzkill  C S Newlon 《Cell》1988,53(3):441-450
Autonomously replicating sequences (ARSs) of the yeast S. cerevisiae function as replication origins on plasmids and probably also on chromosomes. ARS function requires a copy of the ARS core consensus (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') and additional sequences 3' to the T-rich strand of the consensus. Our analysis of an ARS from chromosome III, the C2G1 ARS, suggests that ARS function depends on the presence of an exact match to the core consensus and the presence of additional near matches in the 3' flanking region. We have demonstrated that ARS function can be mediated by multiple matches to the core consensus by constructing synthetic ARS elements from oligonucleotides containing copies of the consensus sequence. We find that two copies of the core consensus are sufficient for ARS activity and that an artificial ARS as efficient as a natural chromosomal ARS can be constructed from multiple core consensus elements in a specific orientation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号