首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
METIVIER  J. R.; DALE  J. E. 《Annals of botany》1977,41(6):1287-1296
Five cultivars of barley with widely differing grain nitrogencontents were compared. In the absence of exogenous nitratesupply plants grown from high nitrogen grain showed a more rapidleaf emergence, greater leaf size, especially of the first leaf,higher photosynthetic rate and greater total souble proteinand Fraction 1 protein content of the first leaf, than plantsgrown from low nitrogen grain. However, early supply of nitrateto plants grown from low nitrogen grain enabled these to performas well as those from grain with a high nitrogen content. Regressionanalysis showed that Fraction 1 content of the first leaf isclosely correlated with grain nitrogen which exerts a progressivelygreater effect on content of this protein as application ofexogenous nitrate is delayed. The more rapid photosyntheticrate of plants grown with high nitrogen, and the consequentgreater rate of dry matter accumulation, is attributable mainlyto effects of nitrogen availability on leaf area and much lessto effects on leaf protein.  相似文献   

2.
The effects of nitrate supply on the composition (cell numbers,protein and chlorophyll contents) of flag leaves of winter wheatgrown with two amounts of N fertilizer and of spring wheat grownin the glasshouse under controlled nitrate supply are describedand related to photosynthesis. Nitrogen deficiency decreasedthe size of leaves, mainly by reducing cell number and, to asmaller extent, by decreasing cell volume. Protein content perunit leaf area, per cell and per unit cell volume was largerwith abundant N. Total soluble protein, ribulose bisphosphatecarboxylase-oxygenase (RuBPc-o) protein and chlorophyll changedin proportion irrespective of nitrogen supply and leaf age.Photosynthesis per unit area of flag leaf and carboxylationefficiency in both winter and spring wheat were proportionalto the amount of total soluble protein up to 7.0 g m–2and to the amount of RuBPc-o protein up to 4.0 g m–2.However, photosynthesis did not increase in proportion to theamount of total soluble or RuBPc-o protein above these amounts.In young leaves with a high protein content the measured ratesof photosynthesis were lower than expected from the amount andactivity of RuBPc-o. Carboxylation per unit of RuBPc-o protein,measured in vitro, was slightly greater in N-deficient leavesof winter wheat but not of spring wheat. RuBPc-o activity perunit of RuBPc-o protein was similar in winter and spring wheatleaves and remained approximately constant with age, but increasedin leaves showing advanced senescence. RuBPc-o protein fromN-deficient leaves migrated faster on polyacrylamide gels thanprotein from leaves with high N content. Regulation of the rateof photosynthesis in leaves and chloroplasts with a high proteincontent is discussed. The conductance of the cell to the fluxof CO2 from intercellular spaces to RuBPc-o active sites iscalculated, from cell surface areas and CO2 fluxes, to decreasethe CO2 partial pressure at the active site by less than 0.8Pa at an internal CO2 partial pressure of 34 Pa. Thus the decreasein partial pressure of CO2 is insufficient to account for theinefficiency of RuBPc-o in vivo at high protein contents. Otherlimitations to the rate of photosynthesis are considered. Key words: Wheat, photosynthesis, nitrogen, ribulose, bisphosphate carboxylase  相似文献   

3.
It has been confirmed that shading leaves from day 5 onwardslowers the rate of CO2 fixation when they are placed in saturatingirradiances. The reduction due to shade treatment is about 46per cent and a similar reduction in maximum chlorophyll contentof the leaf follows shading. Maximum amounts of total solubleprotein and of Fraction I protein are less in shaded leavesthan in control leaves and prolonged treatment leads to a declinein leaf protein content. The relative amounts of different proteinare also affected by treatment; in control leaves Fraction Iprotein accounts for about 45 per cent of the total but in shadedleaves the value is about 30 per cent. Increases and decreasesin leaf protein amount, with concomitant changes in the ratioof Fraction I to total protein can be brought about by removingshades and re-applying them. Such changes can be induced evenin fully expanded leaves in which net protein synthesis is notusually found. Maximal amounts of leaf protein are found in irradiances of60 W m–2 or more, with lower values at lower light intensities.Where the first leaf is held in a stream of CO2-free air a lowerlevel of protein is found. This, and the ratio of Fraction Ito total protein, are similar to values for shaded leaves, andsuggest the involvement of photosynthetic carbon fixation indetermining leaf protein amount. A 1:1 linear correlation between amount of Fraction I proteinand RuDP carboxylase activity is shown but the rate of CO2 incorporationby leaf extracts is 2–3 times greater than that of theintact leaf. The significance of this and the effect of irradianceon leaf protein amount are discussed.  相似文献   

4.
以来自山西的菘蓝(Isatis indigotica Fort.)为实验对象,采用盆栽法研究铵态氮(NH4+-N)、硝态氮(NO3--N)和酰胺态氮〔CO(NH2)2〕的不同配比对夏播菘蓝生长,叶和根中的可溶性蛋白质及总氮含量,根中多糖含量,叶中叶绿素相对含量,以及叶中靛玉红和靛蓝、根中(R,S)-告依春的含量和积累量的影响.结果表明:各施氮处理组的单株叶干质量均高于对照(不施用氮素)组,但单株根干质量或高于或低于对照组,其中,T4〔n(铵态氮):n(硝态氮):n(酰胺态氮)=25:75:0〕处理组的单株叶和根干质量均最大,且总体上显著高于对照组及其他施氮处理组(P<005);而施氮处理组的根冠比均显著低于对照组.各施氮处理组叶中的可溶性蛋白质含量与对照均无显著差异,但各施氮处理组根中的可溶性蛋白质含量、叶和根中的总氮含量以及叶中的叶绿素相对含量总体上显著高于对照组,而根中的多糖含量或高于或低于对照组,其中,T6〔n(铵态氮):n(硝态氮):n(酰胺态氮)=0:75:25〕处理组根中的多糖含量和叶中的叶绿素相对含量均最高,T3〔n(铵态氮):n(硝态氮):n(酰胺态氮)=50:50:0〕处理组叶和根中的可溶性蛋白质含量均较高.各施氮处理组叶中靛玉红含量总体上显著高于对照组,多数施氮处理组叶中靛蓝含量则显著低于对照组,但各施氮处理组的单株叶中靛蓝和靛玉红积累量总体上高于对照组;其中,T2〔n(铵态氮):n(硝态氮):n(酰胺态氮)=75:25:0〕处理组叶中靛玉红含量及其单株积累量均最高,T6处理组叶中靛蓝含量最高,而单株叶中靛蓝积累量则以T3处理组最高.各施氮处理组根中(R,S)-告依春含量总体上显著低于对照组,其中,以T1〔n(铵态氮):n(硝态氮):n(酰胺态氮)=100:0:0〕处理组根中(R,S)-告依春含量最高,T4处理组单株根中(R,S)-告依春积累量最高.综合分析结果表明:按不同配比施用不同形态氮素,夏播菘蓝的生长及活性成分含量有明显差异,因此,若以收获叶为目的,结合叶中靛玉红含量,建议施用铵态氮和硝态氮物质的量比为75:25的复合氮肥;若以收获根为目的,结合根中(R,S)-告依春含量,建议施用铵态氮和硝态氮物质的量比为25:75的复合氮肥.  相似文献   

5.
Summary A pot experiment has been made with oats fertilized with increasing amounts of calcium nitrate, phosphorus, and various combinations of these. The yield of dry matter and the content of phosphorus, potassium, total nitrogen, soluble nitrogen, peptide nitrogen, and nitrate nitrogen were determined on three separate occasions during the growing period.The number of tillers was increased to a certain extent by nitrogen and then decreased again with further applications. Phosphorus alone had no influence, but a positive interaction between phosphorus and nitrogen on the number of tillers was observed. Nitrogen increased the number of seeds per spikelet and the percentage of grain.Except at maturity the content of potassium followed the content of total nitrogen, the percentage of which increased with increasing nitrogen supply. The content of nitrate nitrogen decreased during the growing period and at maturity was decreased by increasing phosphorus supply.As a percentage of the total nitrogen, the peptide nitrogen and soluble non-nitrate nitrogen in the straw decreased with increasing nitrogen supply. Peptide nitrogen increased at maturity. When the phosphorus was added with a heavy dressing of calcium nitrate, the percentage and the yield of protein nitrogen seemed to increase.  相似文献   

6.
Abstract. The effect of nitrate supply upon leaf area development in willow ( Salix viminalis ) was investigated. Rooted cuttings were grown in culture solution at two different rates of exponentially-increasing nitrate supply and with free access to other nutrients. During the lag-phase in attaining stable nutrition, the rate of production of unfolded leaves, in the treatment with poorer N-supply, decreased. After acclimation to the different N-availabilities, the rate of dry matter increase per plant nitrogen was constant and the same in both treatments. The ratio of total leaf area to total amount of nitrogen in the plant was slightly higher in the treatment with poorer nitrogen supply. During the exponential (stable) phases of growth, nearly all the increase in total leaf area was attributable to main-stem leaves; large numbers of leaves on axillary shoots in the treatment with better N-supply contributed little to the total area. During the stable growth phase, the rate of production of unfolded leaves was the same in both treatments. Higher maximum values of relative rate of increase in area of single leaves were found with a better N-supply and at higher leaf positions on the main stem. The duration of leaf expansion was not much affected by N-supply. Final leaf size was greater at higher positions on the main-stem. Within a treatment (investigated for poorer N-supply), differences in final leaf size were proportional to differences in numbers of epidermal cells. Final leaf size was greater, at the same node, in the treatment with better N-supply. Better N-availability had increased the final size but not the number of epidermal cells. It was concluded that the higher exponential rate of total area increase with a better N-supply was largely associated with higher rates of expansion in epidermal cells.  相似文献   

7.
Lawlor, D. W., Boyle, F. A., Kendall, A. C. and Keys, A. J.1987. Nitrate nutrition and temperature effects on wheat: Enzymecomposition, nitrate and total amino acid content of leaves.—J.exp. Bot. 38: 378–392. Wheat plants were grown in controlled environments in two temperatureregimes with two rates of nitrate fertilization. In some experimentstwo light intensities were combined with the nitrogen and temperaturetreatments. The composition of the third leaf was studied fromsoon after emergence until early senescence. The amounts ofchlorophyll, soluble protein, ribulose bisphosphate carboxylase-oxygenase(RuBPc-o) protein, nitrate, and total amino acids were measuredtogether with the activities of RuBPc-o, fructose- 1,6-bisphosphatase,glycolate oxidase, carbonic anhydrase, nitrate reductase, glutaminesynthetase and serine- and glutamate-glyoxylate aminotransferases.Additional nitrate supply increased the amounts, per unit leafarea, of chlorophyll, total soluble protein and RuBPc-o proteinand the activities of all the enzymes. The ratio of RuBP carboxylaseto RuBP oxygenase activity, when measured at constant CO2/O2ratio and temperature, was unaffected by growth conditions orleaf age. Leaves grown at the lower temperature, especiallywith more nitrate, contained much more soluble protein, nitratereductase, fructose bisphosphatase and free amino acids perunit area than the plants grown in the warmer conditions. However,young leaves grown in the warm contained more nitrate than thosegrown in the cool. Amounts of protein, amino acids and chlorophylland most enzyme activities reached maxima near full leaf expansionand decreased with age; additional nitrate slowed the decreaseand senescence was delayed. Nitrate content and nitrate reductaseactivities were highest in leaves before full expansion andthen fell rapidly after full expansion. Increased light intensityincreased the content of RuBPc-o protein at the higher rateof nitrate supply. Chloroplast components and, to a lesser extent,peroxisomal enzymes associated with photosynthetic nitrogenassimilation changed in proportion with different treatmentsbut nitrate reductase activity was not closely related to chloroplastenzymes. Control of tissue composition in relation to environmentalconditions is discussed. Key words: Nitrate nutrition, temperature, wheat, enzyme, amino acid, leaves, ribulose bisphosphate carboxylase oxygenase, nitrate reductase  相似文献   

8.
Coaldrake, P. D., Pearson, C. J. and Saffigna, P. G. 1987. Grainyield of Pennisetum americanum adjusts to nitrogen supply bychanging rates of grain filling and root uptake of nitrogen.–J.exp. Bot 38: 558–566. Pearl millet (Pennisetum americanum(L.)Leeke) was grown in containers at three constant rates of nitrogensupply or with the nitrogen supply increased from the lowestto the highest rate during panicle differentiation or at anthesis.We measured the rate and duration of nitrogen and dry weightgain by individual grains and nitrogen (15N) uptake by rootsand its distribution during grain filling. The total amountsof nitrogen and dry weight in all grain per plant at the lowestnitrogen supply were 8% and 14% respectively of plants growncontinuously at the highest rate of nitrogen. This was becauselow rates of nitrogen supply reduced grain number, mean grainweight and the nitrogen content of each individual grain. Theamino acid composition of the grain protein was affected onlyslightly by nitrogen treatments. Rates of grain growth were sensitive to nitrogen supply whereasthe duration of nitrogen movement to the grain was not. Nitrogenuptake by roots continued throughout grain filling; rates ofuptake per g root in plants given least nitrogen were one-halfthose of plants given the highest amount of nitrogen. A changefrom lowest to highest nitrogen supply at panicle differentiationincreased the uptake of nitrogen by roots and the rates of growthof individual grains, to the rates observed in plants whichhad been supplied continuously with the highest nitrogen. Whenthe change in supply was made at anthesis there was rapid movementof nitrogen into the plant but this was not translated intomore rapid grain growth. Key words: Nitrogen supply, Pennisetum americanum, grain yield, root uptake  相似文献   

9.
Nitrate reductase activity (in vivo method, substrate non-limiting)in unshaded leaves from the top of the canopy has been determinedfor field-grown potato plants over the course of the growingseason. The pattern of change was almost identical for plantsreceiving no added fertilizer and those receiving 24 g N m–2.Activity increased to a peak at about 90 days after plantingand declined thereafter. On a fresh weight basis activity wasalways higher in fertilized plants. Nitrate reductase activitywas positively and significantly correlated with leaf proteincontent in high N plants (r2 = 0.71; P = 0.05), but poorly correlatedwith both the nitrate content of the leaf lamina and the nitrateconcentration in petiole sap. Up until 90 days after planting(mid-July) there appeared to be a positive relationship betweenincreased activity of nitrate reductase and solar radiation.However, results obtained over two seasons showed that the declinein activity after this time was not consistently linked witha fall in the level of solar radiation. Remobilization of reduced-Nand stored nitrate from leaves and stems accompanied this declinein nitrate reductase activity and in the latter part of theseason appeared to account for all of the N gained by growingtubers. In unfertilized plants nitrate-N accounted for 5 per cent orless of total plant N. Fertilized plants contained up to 25per cent nitrate-N. While nitrate availability limited growthin unfertilized plants, sub-optimal rates of nitrate assimilationin fertilized plants, particularly during the early stages ofpost-emergence growth, may contribute to inefficient use ofacquired nitrate. The carbohydrate status of leaf lamina and petiole sap weremodified by N supply. The soluble sugar and starch contentsof low N leaves were higher than in their high N counterparts.By contrast, the concentration of soluble sugars in petiolesap increased to a higher value in high N samples. Althoughsap sugar levels declined in both treatments towards the endof the season, N application delayed this decline for severalweeks. Solanum tuberosum, nitrate reductase, nitrate assimilation, senescence  相似文献   

10.
The reasons for the sensitivity of young barley seedlings totime of application of nitrogen have been examined. It is shownthat the transfer of nitrogenous reserves from endosperm toembryo which begins at about 36 h from planting proceeds ata faster relative rate than that of dry matter as a whole. Inconsequence embryo and endosperm nitrogen contents become temporarilysimilar some 24–36 h earlier than is the case for dryweights. Addition of nitrate on day 2 does not affect ratesof transfer of endosperm reserves but leads to a significantlyhigher nitrogen content in the embryo of treated plants, particularlyin the shoots. This additional nitrogen is present as nitrateup to around day 5 when reduction of accumulated nitrate commencesin the first leaf in significant amounts. For plants up to 14 days old delay in application of nitrateleads to a lowering of total nitrogen level which is proportionalto the delay in treatment. This is so for all parts of the plantexcept the first leaf for which the evidence indicates thatlevels of total and organic nitrogen and of accumulated nitrateare much lower when treatment is made late. It is argued thatnitrate accumulation by the leaf becomes progressively lessas it reaches full expansion, but irrespective of time of nitrateapplication about 95 per cent of the additional nitrogen presentin the leaf is in organic form Significant increases in organic nitrogen are found from day6 for plants supplied with nitrate up to day 4; for plants suppliedon day 6, or day 8nitrateand nitrate reductase activity in leafextracts are found within 6 h of treatment. Peak levels of nitratereductase activity are found for all treatments around days8–10 when the first leaf is fully expanded and when photosyntheticactivity is maximal. However, late supply of nitrate leads toa lower level of enzyme activity. Nitrate reduction in the rootsystem is undetectably low, and it is concluded that a substantialamount of carbon translocated from leaf to roots is in the formof nitrogenous compounds. The effects of time of application are also found when ammoniumnitrogen is substituted for nitrate indicating that the responseis independent of effects on the nitrate reducing system inthe leaf. Some inhibition of growth, particularly of the roots,is found due to ammonium toxicity. Why plants supplied early with nitrate show superior growthand enhanced photosynthetic activity in the first leaves isexplained in terms of treatment alleviating the restrictiveeffects of declining endosperm reserves. This is only possibleif nitrogen is supplied while the first leaf is expanding andable to accumulateand utilise the available nitrogen. Late supplyis associated with failure to use the nitrogen provided leadingto a lower protein level in the leaf; this can be correlatedwith the smaller size of leaf and the lower rates of carbonfixation occurring there.  相似文献   

11.
DALE  J. E. 《Annals of botany》1972,36(5):967-979
Using Proctor barley grown in sand under controlled-environmentconditions it was shown that when application of nitrogen, asnitrate, was delayed beyond day 4, at which time the first leafwas beginning to unfold, absolute and relative growth-ratesof seedlings were reduced so that the young plants were significantlysmaller. Delay in nitrate application led to reduction in length,breadth, area, and dry weight of the first leaf, and also toa lower photosynthetic activity on day 8, as measured by infra-redgas analysis. Measurement of the uptake of 14CO2 by first leaves showed thatapplication of nitrate on days 2 or 4 led to high rates of fixationof carbon over the period days 8–12, whereas applicationon days 6 or 8 led to a substantially lower maximum rate offixation which was maintained for a shorter period. When nitratewas applied on day 8 total fixation of carbon over the perioddays 7–14 was only 60 per cent of that for leaves on plantsfor which nitrate was supplied on day 2. When amounts of carbon fixed were compared on a leaf dry-weightbasis, maximum values were found to be similar for all treatments,suggesting that the differences in fixation per leaf resultmainly from the effect of treatment on leaf area. For all treatmentsit was confirmed that a decline in photosynthetic activity occurredby day 14. This was not correlated with photosynthetic activityin the second leaf, nor with emergence of the third leaf. Analysis of different parts of the lamina of the first leafshowed all to be affected by the timing of the supply, bothin growth and in photosynthetic activity. Leaf dry weight didnot increase after day 8 for any treatment, yet when nitratewas applied on day 8 plants showed a fourfold increase in photosyntheticrate. The significance of this in relation to carboxylationand other resistances in photosynthesis is discussed.  相似文献   

12.
D. E. Lincoln  D. Couvet 《Oecologia》1989,78(1):112-114
Summary The carbon supply of peppermint plants was manipulated by growing clonal propagules under three carbon dioxide regimes (350, 500 and 650 l l-1). Feeding by fourth instar caterpillars of Spodoptera eridania increased with elevated CO2 hostplant regime, as well as with low leaf nitrogen content and by a high proportion of leaf volatile terpenoids. Leaf weight increased significantly with the increased carbon supply, but the amount of nitrogen per leaf did not change. The amount of volatile leaf mono-and sesquiterpenes increased proportionately with total leaf dry weight and hence was not influenced by CO2 supply. These results are consistent with ecological hypotheses which assume that allocation to defense is closely regulated and not sensitive to carbon supply per se.  相似文献   

13.
植物叶片氮分配及其影响因子研究进展   总被引:5,自引:0,他引:5  
史作民  唐敬超  程瑞梅  罗达  刘世荣 《生态学报》2015,35(18):5909-5919
氮是植物生长的基本限制性因子,它的有效利用可以增加植物的适应性。叶片氮分配是指氮在植物叶片细胞各细胞结构以及游离化合物中所分配的比例。叶片氮的分配方式决定了叶片光合作用的强弱,影响叶片的坚韧程度以及化学防御强度,因此研究氮在植物叶片内的分配方式具有重要意义。阐述了叶片氮分配的方式,分析了影响叶片氮分配的生物和非生物因子(CO2,光,土壤养分),介绍了常用的叶片氮分配的研究方法,并对未来的研究进行了展望。  相似文献   

14.
通过田间试验,研究了不同烯效唑干拌种剂量对3个不同筋力小麦品种植株氮素积累、运转和籽粒蛋白质品质的影响,结果表明,基因型、环境及烯效唑处理对小麦品质的影响效应依次减小,且均达到了极显著水平,但三者的互作效应较小。烯效唑处理后提高了不同生态点下不同小麦品种籽粒蛋白质含量和产量,处理后的面筋含量和沉淀值增加,面团形成时间和稳定时间延长;干拌种增加了开花期各营养器官中的氮素含量和单株氮素积累量,花后氮素总转移量、总转移率及其对籽粒氮的贡献率极显著提高,且处理后旗叶中可溶性蛋白质含量在花后15 d内均显著高于对照;对籽粒中氮含量而言,烯效唑处理后提高了灌浆初期籽粒中的非蛋白氮含量,花后5—20 d内均高于对照,灌浆期间籽粒蛋白氮含量均高于对照,因而处理后的粗蛋白质含量变化动态特点为谷底高、回升快。研究认为,烯效唑处理如同基因、环境一样独立影响小麦籽粒品质,而烯效唑处理后提高了开花初期旗叶中的可溶性蛋白质含量和花前营养器官中氮素含量及花后氮素转运量,可能是其提高籽粒非蛋白氮含量、促进籽粒蛋白质含量增加和蛋白质质量提高的重要原因之一,烯效唑干拌种对小麦籽粒蛋白质品质的改善具有广适性。  相似文献   

15.
防雨池栽条件下,设置渍水、干旱和对照3个土壤水分处理,每水分处理下再设置两个施氮水平,研究了花后渍水和干旱逆境下氮素水平对两个蛋白质含量不同的小麦品种光合特性和籽粒淀粉积累的影响.结果表明,与对照相比,花后渍水和干旱处理显著降低小麦旗叶净光合速率和SPAD值,干物质积累量下降.干旱处理下,增施氮肥提高旗叶光合速率和SPAD值,渍水处理下则相反.水分逆境明显降低籽粒可溶性总糖含量,且渍水处理下增施氮肥降低小麦叶片和籽粒可溶性总糖含量,干旱状态下规律相反.渍水处理下增施氮肥降低淀粉积累速率.水分逆境明显降低小麦粒重、产量和淀粉产量,且干旱处理下增施氮肥有利于籽粒重、产量和淀粉产量的提高,而渍水下增施氮肥使粒重和产量进一步降低.试验结果表明,花后渍水和干旱逆境下施用氮肥对小麦旗叶光合速率和籽粒淀粉积累有明显的调节效应.  相似文献   

16.
施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响   总被引:12,自引:1,他引:12  
研究了不同施氮水平对高产麦田土壤硝态氮时空变化和氨挥发的影响.结果表明,高产麦田土壤硝态氮在播种至冬前阶段不断向深层移动,并在140cm以下土层积累.施纯氮96~168 kg·hm-2处理,增加了60 cm以上土层土壤硝态氮含量,降低了土壤氮素表观损失量占施氮量的比例,提高了小麦籽粒蛋白质含量和籽粒产量,且土壤氨挥发损失较低,基施氮氨挥发损失占基施氮量的4.23%~5.51%;施氮量超过240 kg N·hm-2,促进了土壤硝态氮向深层的移动和积累,基施氮氨挥发损失、土壤氮素表观损失量及其占施氮量的比例均显著升高,对小麦籽粒蛋白质含量无显著影响,但籽粒产量降低.高产麦田适宜的氮素用量为132~204 kg N·hm-2.  相似文献   

17.
The growth and development of soybeans (Glycine max L. cv. Amsoy) was studied at soil matric potentials of ?0.1 to ?1.0 bars. Chlorophyll, photosynthesis, and leaf nitrogen per plant was greatest at ?4 bars leaf water potential. Leaf area, number of internodes, plant height and dry weight of vegetative parts declined as leaf water potential decreased from ?2 to ?19 bars. Nitrogen content and nitrate reductase activity per g fresh weight determined the percentage protein of individual seeds but nitrogen content and nitrate reductase activity per plant determined the amount of total seed protein. The protein synthesized in the seed changed little in amino acid composition with changes in leaf water potential. Leaf water potentials above or below ?4 bars decreased yield, total protein and total lipid but plants produced the largest percentage of individual seed protein at ?19 bars leaf water potential.  相似文献   

18.
Changes in various nitrogen compounds during senescence of the fourth leaf were studied in two cultivars of spring wheat (Triticum aestivum L.). One of the cultivars (Yecora) was supplied with two N levels; the other (Tauro) was grown with the high N level and pruned above the fourth leaf, whereas the control was left intact. In both cultivars grown with high N supply, net nitrogen export from the fourth leaf did not occur until 35 days after sowing (DAS). Loss of leaf soluble proteins started earlier than that of chlorophylis, and coincided initially with an increase in insoluble protein. In N deficient plants the level of total N, soluble protein, and the activity of nitrate reductase (NRA. EC 1.6.6.1) started to decrease about 5 days earlier, and along with chlorophyll, continued to decrease at a faster rate, than in high N plants. Also, with low N supply, the large subunit (LSU, 58 kDa) of ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) decreased in greater proportion than other soluble proteins, while with high N supply the decrease in Rubisco LSU was similar to that of other soluble proteins. Nitrogen deficiency caused a greater decrease in soluble proteins than in insoluble proteins, and NRA relative to soluble proteins. The faster senescing Tauro cultivar had lower levels of most parameters, especially NRA, soluble protein and, after 35 DAS. Rubisco LSU as a proportion of soluble protein. The decrease in sink strength due to shoot pruning did generally not affect the level of the various nitrogenous compounds until 35 DAS; thereafter the levels of most parameters, especially soluble protein, Rubisco LSU and, at late stages of senescence, insoluble protein, were higher in pruned than in control shoots. Thus, shoot pruning slows down senescence. The 56- and 78-kDa polypeptides increased, rather than decreased, with leaf age; the level of these two polypeptides showed a negative relationship with Rubisco LSU (r = -0.933 and r = -0.758, respectively).  相似文献   

19.
Guiamét, J. J., Balatti, P. A. and Montaldi, E. R. 1986.Nitrogen assimilation and leaf development in indeterminatesoybeans as influenced by post-flowering photoperiod.—J.exp. Bot. 37: 1611–1618. The effects of photoperiod on nitrogen fixation and leaf developmentin indeterminate soybeans were studied during early reproductivegrowth. Soybean plants cv. Williams were grown under short days(SD: 8 h-natural daylight (N.D.)+16 h-darkness) or long days(LD: 8 h-N.D. + 8 h-low intensity artificial light+ 8 h-darkness)from full bloom until mid pod filling. Long days greatly increased plant growth, both on the basisof leaf area or weight, mainly due to higher net assimilationrate. Average daily rates of N2-fixation increased under LD;however, average N2-fixation rates on a nodule weight or N basisdid not vary, suggesting that changes were not in nodule efficiencybut in nodule biomass. As compared to SD, LD reduced N contentin vegetative parts (pooled roots, stems and leaves), individualleaf blades and fruits. This seemed to be due to greater drymatter accumulation relative to N2-fixation. The 2nd and 5th trifoliolate leaves showed larger specific leafweight (SLW) under LD. Soluble protein content on a dry weightbasis was higher in the 5th (younger) leaf than in the 2nd,but did not vary due to photoperiod. On the other hand, chlorophylland Fraction I protein content decreased in terms of dry weightunder LD. A larger proportion of leaf N was allocated to solubleproteins under LD, thus compensating for the lower N content.On the whole, growth enhancement by LD seemed unrelated to increasedavailability of N or to greater leaf soluble protein or FractionI content. Key words: Photoperiod, leaf development, soybean, nitrogen fixation  相似文献   

20.
Photosynthesis and nitrogen relationships in leaves of C3 plants   总被引:53,自引:0,他引:53  
Summary The photosynthetic capacity of leaves is related to the nitrogen content primarily bacause the proteins of the Calvin cycle and thylakoids represent the majority of leaf nitrogen. To a first approximation, thylakoid nitrogen is proportional to the chlorophyll content (50 mol thylakoid N mol-1 Chl). Within species there are strong linear relationships between nitrogen and both RuBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases. In many species, growth under lower irradiance greatly increases the partitioning of nitrogen into chlorophyll and the thylakoids, while the electron transport capacity per unit of chlorophyll declines. If growth irradiance influences the relationship between photosynthetic capacity and nitrogen content, predicting nitrogen distribution between leaves in a canopy becomes more complicated. When both photosynthetic capacity and leaf nitrogen content are expressed on the basis of leaf area, considerable variation in the photosynthetic capacity for a given leaf nitrogen content is found between species. The variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase. Survival in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content. Species that flourish in the shade partition relatively more nitrogen into the thylakoids, although this is associated with lower photosynthetic capacity per unit of nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号