首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citrus canker, contains a gene in the hrp [for hypersensitive response (HR) and pathogenicity] cluster that encodes a harpin protein called Hpa1. Hpa1 produced HR in the nonhost plants tobacco, pepper and Arabidopsis, whereas, in the host plant citrus, it elicited a weak defence response with no visible phenotype. Co‐infiltrations of Xac with or without the recombinant Hpa1 protein in citrus leaves produced a larger number of cankers in the presence of the protein. To characterize the effect of Hpa1 during the disease, an XacΔhpa1 mutant was constructed, and infiltration of this mutant caused a smaller number of cankers. In addition, the lack of Hpa1 hindered bacterial aggregation both in solution and in planta. Analysis of citrus leaves infiltrated with Hpa1 revealed alterations in mesophyll morphology caused by the presence of cavitations and crystal idioblasts, suggesting the binding of the harpin to plant membranes and the elicitation of signalling cascades. Overall, these results suggest that, even though Hpa1 elicits the defence response in nonhost plants and, to a lesser extent, in host plants, its main roles in citrus canker are to alter leaf mesophyll structure and to aggregate bacterial cells, and thus increase virulence and pathogen fitness. We expressed the N‐terminal and C‐terminal regions and found that, although both regions elicited HR in nonhost plants, only the N‐terminal region showed increased virulence and bacterial aggregation, supporting the role of this region of the protein as the main active domain.  相似文献   

3.
Harpins are heat-stable, glycine-rich type III-secreted proteins produced by plant pathogenic bacteria, which cause a hypersensitive response (HR) when infiltrated into the intercellular space of tobacco leaves; however, the biochemical mechanisms by which harpins cause plant cell death remain unclear. In this study, we determined the biochemical characteristics of HpaG, the first harpin identified from a Xanthomonas species, under plant apoplast-like conditions using electron microscopy and circular dichroism spectroscopy. We found that His(6)-HpaG formed biologically active spherical oligomers, protofibrils, and beta-sheet-rich fibrils, whereas the null HR mutant His(6)-HpaG(L50P) did not. Biochemical analysis and HR assay of various forms of HpaG demonstrated that the transition from an alpha-helix to beta-sheet-rich fibrils is important for the biological activity of protein. The fibrillar form of His(6)-HpaG is an amyloid protein based on positive staining with Congo red to produce green birefringence under polarized light, increased protease resistance, and beta-sheet fibril structure. Other harpins, such as HrpN from Erwinia amylovora and HrpZ from Pseudomonas syringae pv. syringae, also formed curvilinear protofibrils or fibrils under plant apoplast-like conditions, suggesting that amyloidogenesis is a common feature of harpins. Missense and deletion mutagenesis of HpaG indicated that the rate of HpaG fibril formation is modulated by a motif present in the C terminus. The plant cytotoxicity of HpaG is unique among the amyloid-forming proteins that occur in several microorganisms. Structural and morphological analogies between HpaG and disease-related amyloidogenic proteins, such as Abeta protein, suggest possible common biochemical characteristics in the induction of plant and animal cell death.  相似文献   

4.
Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1ΔNT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1ΔNT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1ΔNT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.  相似文献   

5.
Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpinPss-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E. carotovora subsp. carotovora. This resistance was due to the induction of HCD since different HCD markers viz. Athsr3, Athsr4, ion leakage, H2O2 and protein kinase were induced. One of the elicitor harpin proteins, HrpN, from Erwinia carotovora subsp. carotovora was able to induce a stronger HCD in hrap-Arabidopsis than non-transgenic controls. To elucidate the role of HrpN, we used E. carotovora subsp. carotovora defective in HrpN production. The hrpN mutant did not induce disease resistance or HCD markers in hrap-Arabidopsis. These results imply that the disease resistance of hrap-Arabidopsis against a virulent pathogen is harpin dependent.  相似文献   

6.
Recent advances in the understanding of plant signaling pathways have opened the way for using elicitor‐induced plant resistance as a tactic for protecting plants against arthropod pests. Four common elicitors of induced responses in tomato, Lycopersicon esculentum Mill. (Solanaceae), were evaluated with regard to phytotoxicity, induction of plant defensive proteins, and effects on population growth and fecundity of a common pest, the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Ethephon and methyl jasmonate (MJ) treatments caused varying degrees of phytotoxicity. Ethephon caused pronounced changes in plant growth form and severe, dose‐dependent negative impacts on plant growth and flowering. Effects with MJ were milder, but still caused temporary inhibition of development, leading to smaller plants and delayed flowering. The commercial elicitors benzothiadiazole (BTH) and harpin did not cause detectable phytotoxicity. The highest doses of ethephon and MJ significantly increased leaf peroxidase (POD) levels but only MJ treatments significantly increased polyphenol oxidase (PPO) levels. BTH and harpin had no detectable effects on POD and PPO. Populations of green peach aphids grew significantly more slowly on plants treated with BTH or MJ than on control plants or plants treated with harpin or ethephon. Slowed aphid population growth on BTH‐treated plants was due to significant reductions in aphid fecundity, although this was independent of changes in time to onset of reproduction or time to death. Aphid fecundity was also reduced on MJ‐treated plants relative to controls, but this difference was not statistically significant, suggesting that other mechanisms are involved in slowing aphid population growth on MJ‐treated plants. Growth of aphid populations on plants treated with a MJ–BTH mixture was reduced almost as much as with treatments of MJ alone, suggesting that antagonism between JA‐dependant and SA‐dependent plant signaling pathways is only mild with regard to induced defenses against aphids.  相似文献   

7.
Dong HP  Peng J  Bao Z  Meng X  Bonasera JM  Chen G  Beer SV  Dong H 《Plant physiology》2004,136(3):3628-3638
Ethylene (ET) signal transduction may regulate plant growth and defense, depending on which components are recruited into the pathway in response to different stimuli. We report here that the ET pathway controls both insect resistance (IR) and plant growth enhancement (PGE) in Arabidopsis (Arabidopsis thaliana) plants responding to harpin, a protein produced by a plant pathogenic bacterium. PGE may result from spraying plant tops with harpin or by soaking seeds in harpin solution; the latter especially enhances root growth. Plants treated similarly develop resistance to the green peach aphid (Myzus persicae). The salicylic acid pathway, although activated by harpin, does not lead to PGE and IR. By contrast, PGE and IR are induced in both wild-type plants and genotypes that have defects in salicylic acid signaling. In response to harpin, levels of jasmonic acid (JA) decrease, and the COI1 gene, which is indispensable for JA signal transduction, is not expressed in wild-type plants. However, PGE and IR are stimulated in the JA-resistant mutant jar1-1. In the wild type, PGE and IR develop coincidently with increases in ET levels and the expression of several genes essential for ET signaling. The ET receptor gene ETR1 is required because both phenotypes are arrested in the etr1-1 mutant. Consistently, inhibition of ET perception nullifies the induction of both PGE and IR. The signal transducer EIN2 is required for IR, and EIN5 is required for PGE because IR and PGE are impaired correspondingly in the ein2-1 and ein5-1 mutants. Therefore, harpin activates ET signaling while conscribing EIN2 and EIN5 to confer IR and PGE, respectively.  相似文献   

8.
Kim JG  Jeon E  Oh J  Moon JS  Hwang I 《Journal of bacteriology》2004,186(18):6239-6247
HpaG is a type III-secreted elicitor protein of Xanthomonas axonopodis pv. glycines. We have determined the critical amino acid residues important for hypersensitive response (HR) elicitation by random and site-directed mutagenesis of HpaG and its homolog XopA. A plasmid clone carrying hpaG was mutagenized by site-directed mutagenesis, hydroxylamine mutagenesis, and error-prone PCR. A total of 52 mutants were obtained, including 51 single missense mutants and 1 double missense mutant. The HR elicitation activity was abolished in the two missense mutants [HpaG(L50P) and HpaG(L43P/L50P)]. Seven single missense mutants showed reduced activity, and the HR elicitation activity of the rest of the mutants was similar to that of wild-type HpaG. Mutational and deletion analyses narrowed the region essential for elicitor activity to the 23-amino-acid peptide (H2N-NQGISEKQLDQLLTQLIMALLQQ-COOH). A synthetic peptide of this sequence possessed HR elicitor activity at the same concentration as the HpaG protein. This region has 78 and 74% homology with 23- and 27-amino-acid regions of the HrpW harpin domains, respectively, from Pseudomonas and Erwinia spp. The secondary structure of the peptide is predicted to be an alpha-helix, as is the HrpW region that is homologous to HpaG. The predicted alpha-helix of HpaG is probably critical for the elicitation of the HR in tobacco plants. In addition, mutagenesis of a xopA gene yielded two gain-of-function mutants: XopA(F48L) and XopA(F48L/M52L). These results indicate that the 12 amino acid residues between L39 and L50 of HpaG have critical roles in HR elicitation in tobacco plants.  相似文献   

9.
选用遮光率分别为55%、70%、85%的黑色、蓝色遮阳网,观测遮光后茶园小气候、茶树叶色、叶绿素荧光参数、茶树生长状况及茶叶生化成分,分析不同遮光处理对山东黄金芽生理生化特性的影响,明确适宜夏秋季的遮光方式.结果表明: 与对照相比,遮光直接降低光照强度,茶园空气温度、叶面温度明显降低,空气湿度则增高;遮光程度越大,黄金芽叶色返绿越明显,叶绿素含量增幅越大;55%遮光处理能保持品种叶色黄化特性,且生化品质较好;而70%遮光率处理茶苗生长势较好,不受光胁迫;与蓝色遮阳网相比,黑色遮光处理能更好地促进茶树生长,保持叶色黄化和提高茶叶品质.黄金芽茶树品种苗期管理宜选择黑色70%遮光率处理(日光合有效辐射为1.2~3.5万lx),以促进茶树生长;成龄后则以黑色55%遮光处理(日光合有效辐射为1.8~5.5万lx)为优,既能保证黄金芽叶色黄化又能提高茶叶生化品质,从而充分发挥其品种特色,实现优质高产目标.  相似文献   

10.
AM真菌对紫花苜蓿茎点霉叶斑病及豌豆蚜为害的影响   总被引:1,自引:0,他引:1  
李应德  段廷玉 《生态学杂志》2020,39(4):1214-1221
苜蓿茎点霉(Phoma medicaginis)叶斑病和豌豆蚜(Acyrthosiphon pisum)是紫花苜蓿(Medicago sativa)生产中重要的病虫害,在自然条件下常混合发生。本研究以紫花苜蓿为植物材料,探究接种AM真菌后,紫花苜蓿被苜蓿茎点霉侵染时,植物自身的防御机制,以及对后续豌豆蚜为害的影响,以期明确AM真菌对其调控机制。结果表明:AM真菌可显著降低植株茎点霉叶斑病病情指数(P<0.05);AM真菌促进了紫花苜蓿生长(P<0.05),改变了植株抗氧化酶(超氧化物歧化酶(SOD)和过氧化氢酶(CAT))活性以及植物激素信号物质(水杨酸(SA))含量(P<0.05);病原菌侵染会诱导植物抗氧化防御系统活性增强,包括过氧化物酶(POD)、SOD、CAT和多酚氧化酶(PPO)(P<0.05),从而增加植物对后续虫害的抗性;AM真菌在植物受到病原菌胁迫时会发挥积极作用,显著提高植株的SOD和CAT活性(P<0.05),有效抑制病原菌侵染对植株造成的危害;而蚜虫为害则进一步加重了植物受到的损害,抑制了AM真菌对植物抗病性的正向调控。研究结果对于利用AM真菌促进紫花苜蓿生长、提高植物抗逆性具有积极的实践和理论意义。  相似文献   

11.
The tea plant (Camellia sinensis) is susceptible to anthracnose disease that causes considerable crop loss and affects the yield and quality of tea. Multiple Colletotrichum spp. are the causative agents of this disease, which spreads quickly in warm and humid climates. During plant–pathogen interactions, resistant cultivars defend themselves against the hemibiotrophic pathogen by activating defence signalling pathways, whereas the pathogen suppresses plant defences in susceptible varieties. Various fungicides have been used to control this disease on susceptible plants, but these fungicide residues are dangerous to human health and cause fungicide resistance in pathogens. The problem-solving approaches to date are the development of resistant cultivars and ecofriendly biocontrol strategies to achieve sustainable tea cultivation and production. Understanding the infection stages of Colletotrichum, tea plant resistance mechanisms, and induced plant defence against Colletotrichum is essential to support sustainable disease management practices in the field. This review therefore summarizes the current knowledge of the identified causative agent of tea plant anthracnose, the infection strategies and pathogenicity of C. gloeosporioides, anthracnose disease resistance mechanisms, and the caffeine-induced defence response against Colletotrichum infection. The information reported in this review will advance our understanding of host–pathogen interactions and eventually help us to develop new disease control strategies.  相似文献   

12.
13.
Pyrrhalta viburni (Paykull) (Coleoptera: Chrysomelidae), a new landscape pest in the United States, feeds in both the larval and adult stages on foliage of plants in the genus Viburnum. A field trial was conducted from 2004 to 2006 to examine the impact of several elicitors of plant defense on ability of arrowwood viburnum (Viburnum dentatum L.) to resist attack by P. viburni in both larval and adult stages. The treatments included jasmonic acid (JA), harpin, and paclobutrazol. For comparison, imidacloprid and untreated controls were included in the trial. The soil-applied treatments (paclobutrazol and imidacloprid) were applied once during the trial (spring 2004), and the foliarly applied treatments (JA and harpin) were applied each spring. Herbivory by viburnum leaf beetle larvae and adults was measured yearly in spring and summer, respectively, and plant height was recorded at the end of each growing season. The only treatment that decreased feeding by viburnum leaf beetle was imidacloprid; these plants were virtually untouched throughout the duration of the trial. Plants treated with JA and harpin actually suffered greater feeding damage at the end of the second growing season; other than this observation, the elicitors had no impact on viburnum leaf beetle. As expected, plant height was decreased for the shrubs treated with paclobutrazol, a plant growth regulator, and unaffected by JA and harpin. Plant height was increased for the shrubs treated with imidacloprid. These shrubs also seemed to be protected from viburnum leaf beetle after residues dropped below lethal levels.  相似文献   

14.
The HrpZ harpin of Pseudomonas syringae is known to induce a hypersensitive response (HR) in some plants. In P. syringae pv. tabaci (Pta), the harpin gene hrpZ has been spontaneously disrupted by an internal deletion in its open reading frame and a frame shift. The loss of the ability of the recombinant harpin polypeptide of Pta to induce HR despite the high sensitivity of tobacco plants to harpin led us to investigate the meaning of the disrupted hrpZ gene in the virulence of Pta 6605. The hrpZ gene from P. syringae pv. pisi was introduced into wild-type (WT) Pta. The hrpZ-complemented Pta secreted harpin into the culture medium, but failed to cause disease symptoms by both infiltration and spray inoculation. Inoculation with the hrpZ-complemented Pta induced defence responses in tobacco plants, whereas the defence responses of tobacco plants were not prominent on inoculation with WT Pta. These results indicate that an ancestor of Pta might have disrupted hrpZ by an internal deletion to evade plant defences and confer the ability to cause disease in tobacco plants.  相似文献   

15.
Non-host resistance is the most general form of disease resistance in plants because it is effective against most phytopathogens. The importance of hypersensitive responses (HRs) in non-host resistance of Nicotiana species to the oomycete Phytophthora is clear. INF1 elicitin, an elicitor obtained from the late-blight pathogen Phytophthora infestans , is sufficient to induce a typical HR in Nicotiana species. The molecular mechanisms that underlie the non-host resistance component of plant defence responses have been investigated using differential-display polymerase chain reaction (PCR) in a model HR system between INF1 elicitin and tobacco BY-2 cells. Differential-display PCR has revealed that Cdc27B is down-regulated in tobacco BY-2 cells after treatment with INF1 elicitin. Cdc27B is one of 13 essential components of the anaphase-promoting complex or cyclosome (APC/C)-type E3 ubiquitin ligase complex in yeast. This APC/C-type E3 ubiquitin ligase complex regulates G2-to-M phase transition of the cell cycle by proteolytic degradation. In this study, we investigated the roles of this gene, NbCdc27B , in plant defence responses using virus-induced gene silencing. Suppression of NbCdc27B in Nicotiana benthamiana plants induced defence responses and a gain of resistance to Colletotrichum lagenarium fungus. Elicitin-induced hypersensitive cell death (HCD) was inhibited mildly in plants silenced with tobacco rattle virus::Cdc27B. Cdc27B could manage the signalling pathways of plant defence responses as a negative regulator without HCD.  相似文献   

16.
Oh CS  Beer SV 《Plant physiology》2007,145(2):426-436
HrpN (harpin) protein is critical to the virulence of the fire blight pathogen Erwinia amylovora in host plants like apple (Malus x domestica). Moreover, exogenous treatment of Arabidopsis (Arabidopsis thaliana), a nonhost plant, with partially purified HrpN enhances growth. To address the bases of the effects of HrpN in disease, we sought a HrpN-interacting protein(s) in apple, using a yeast two-hybrid assay. A single positive clone, designated HIPM (HrpN-interacting protein from Malus), was found. HIPM, a 6.5-kD protein, interacted with HrpN in yeast and in vitro. Deletion analysis showed that the N-terminal 198 of 403 amino acids of HrpN are required for interaction with HIPM. HIPM orthologs were found in Arabidopsis (AtHIPM) and rice (Oryza sativa; OsHIPM). HrpN also interacted with AtHIPM in yeast and in vitro. In silico analyses revealed that the three plant proteins contain putative signal peptides and putative transmembrane domains. We showed that both HIPM and AtHIPM have functional signal peptides, and green fluorescent protein-tagged HIPM and AtHIPM associated, in clusters, with plasma membranes. Both HIPM and AtHIPM are expressed constitutively; however, they are expressed more strongly in apple and Arabidopsis flowers than in leaves and stems. The size of AtHIPM knockout mutant plants of Arabidopsis was slightly larger than the wild-type plants. Interestingly, the knockout mutant did not exhibit enhanced plant growth in response to treatment with HrpN. Overexpression of AtHIPM conversely resulted in smaller plants. These results indicate that AtHIPM functions as a negative regulator of plant growth and mediates enhanced growth that results from treatment with HrpN.  相似文献   

17.
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana–Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from β‐sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen‐inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild‐type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild‐type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen‐associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/β‐sitosterol ratio as whole‐leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid‐mediated defence signalling but attenuate pathogen‐induced expression of the defence regulator flavin‐dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to β‐sitosterol ratio in plant membranes.  相似文献   

18.
Plants can use induced volatiles to detect herbivore‐ and pathogen‐attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress‐related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore‐induced volatile priming cues with complementary information content, the green leaf volatile (Z)‐3‐hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile‐exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile‐exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual‐exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.  相似文献   

19.
Tea, the second most consumed beverage after water in the world, is produced from the processed tender leaves of tea plants (Camellia sinensis). Production of tea is hindered by various biotic and abiotic stresses. Among the biotic factors, blister blight disease caused by an obligate fungal pathogen, Exobasidium vexans Massee, is a serious problem to the tea industry. The present study was to evaluate the efficacy of elicitor calcium chloride (CaCl2) in inducing resistance in tea plants against blister blight disease. During the pick time of blister incidence at Darjeeling tea garden, the application of CaCl2 at a concentration of 1% resulted in disease inhibition around 71% over the control set. Treatment also resulted in the induction of defence enzymes like peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, β-1,3-glucanase and higher phenol accumulation. Furthermore, the increase in defence molecules also correlated with increase in nitric oxide (NO) generation, a potent defence molecule in plant defence. The result suggests that CaCl2 can used as a potential elicitor in the integrated disease management in organic tea cultivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号