首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phaeodactylum tricornutum is an unicellular silica-less diatom in which eicosapentaenoic acid accumulates up to 30% of the total fatty acids. This marine diatom was used for cloning genes encoding fatty acid desaturases involved in eicosapentaenoic acid biosynthesis. Using a combination of PCR, mass sequencing and library screening, the coding sequences of two desaturases were identified. Both protein sequences contained a cytochrome b5 domain fused to the N-terminus and the three histidine clusters common to all front-end fatty acid desaturases. The full length clones were expressed in Saccharomyces cerevisiae and characterized as Delta5- and Delta6-fatty acid desaturases. The substrate specificity of each enzyme was determined and confirmed their involvement in eicosapentaenoic acid biosynthesis. Using both desaturases in combination with the Delta6-specific elongase from Physcomitrella patens, the biosynthetic pathways of arachidonic and eicosapentaenoic acid were reconstituted in yeast. These reconstitutions indicated that these two desaturases functioned in the omega3- and omega6-pathways, in good agreement with both routes coexisting in Phaeodactylum tricornutum. Interestingly, when the substrate selectivity of each enzyme was determined, both desaturases converted the omega3- and omega6-fatty acids with similar efficiencies, indicating that none of them was specific for either the omega3- or the omega6-pathway. To our knowledge, this is the first report describing the isolation and biochemical characterization of fatty acid desaturases from diatoms.  相似文献   

2.
The methylotrophic yeast Pichia pastoris GS115, a widely used strain in production of various heterologous proteins, especially membrane-bound enzymes, can also produce linoleic and linolenic acids, which indicates the existence of membrane-bound Delta12 and Delta15-fatty acid desaturases. This paper describes the cloning and functional characterization of a novel Delta12-fatty acid desaturase gene from this methylotrophic yeast. The open reading frame of the gene (named Pp-FAD12) is 1263 bp in size and encodes a 420-amino-acid peptide. The deduced Pp-FAD12 protein shows high identity (50-67%) with Delta12-fatty acid desaturases from other fungi. It also shows a high identity (57%) with Delta15-fatty acid desaturase (named Sk-FAD15) from Saccharomyces kluyveri. Expression of Pp-FAD12 in polyunsaturated fatty acids non-producing yeast Saccharomyces cerevisiae demonstrated that its product converted oleic acid (18 : 1) to linoleic acid (18 : 2). This result suggests that Pp-FAD12 encodes a novel Delta12-fatty acid desaturase in P. pastoris GS115. This is the first report about the cloning and functional characterization of Delta12-fatty acid desaturase gene in methylotrophic yeast.  相似文献   

3.
Dimorphecolic acid (9-OH-18:2Delta(10)(trans)(,12)(trans)) is the major fatty acid of seeds of Dimorphotheca species. This fatty acid contains structural features that are not typically found in plant fatty acids, including a C-9 hydroxyl group, Delta(10),Delta(12)-conjugated double bonds, and trans-Delta(12) unsaturation. Expressed sequence tag analysis was conducted to determine the biosynthetic origin of dimorphecolic acid. cDNAs for two divergent forms of Delta(12)-oleic acid desaturase, designated DsFAD2-1 and Ds-FAD2-2, were identified among expressed sequence tags generated from developing Dimorphotheca sinuata seeds. Expression of DsFAD2-1 in Saccharomyces cerevisiae and soybean somatic embryos resulted in the accumulation of the trans-Delta(12) isomer of linoleic acid (18: 2Delta(9)(cis)(,12)(trans)) rather than the more typical cis-Delta(12) isomer. When co-expressed with DsFAD2-1 in soybean embryos or yeast, DsFAD2-2 converted 18:2Delta(9)(cis)(,12)(trans) into dimorphecolic acid. When DsFAD2-2 was expressed alone in soybean embryos or together with a typical cis-Delta(12)-oleic acid desaturase in yeast, trace amounts of the cis-Delta(12) isomer of dimorphecolic acid (9-OH-18:2Delta(10)(trans,)(12)(cis)) were formed from DsFAD2-2 activity with cis-Delta(12)-linoleic acid [corrected]. These results indicate that DsFAD2-2 catalyzes the conversion of the Delta(9) double bond of linoleic acid into a C-9 hydroxyl group and Delta(10)(trans) double bond and displays a substrate preference for the trans-Delta(12), rather than the cis-Delta(12), isomer of linoleic acid. Overall these data are consistent with a biosynthetic pathway of dimorphecolic acid involving the concerted activities of DsFAD2-1 and DsFAD2-2. The evolution of two divergent Delta(12)-oleic acid desaturases for the biosynthesis of an unusual fatty acid is unprecedented in plants.  相似文献   

4.
Oligomers based on amino acids conserved between known plant omega-3 and cyanobacterium omega-6 fatty acid desaturases were used to screen an Arabidopsis cDNA library for related sequences. An identified clone encoding a novel desaturase-like polypeptide was used to isolate its homologs from Glycine max and Brassica napus. The plant deduced amino acid sequences showed less than 27% similarity to known plant omega-6 and omega-3 desaturases but more than 48% similarity to cyanobacterial omega-6 desaturase, and they contained putative plastid transit sequences. Thus, we deduce that the plant cDNAs encode the plastid omega-6 desaturase. The identity was supported by expression of the B. napus cDNA in cyanobacterium. Synechococcus transformed with a chimeric gene that contains a prokaryotic promoter fused to the rapeseed cDNA encoding all but the first 73 amino acids partially converted its oleic acid fatty acid to linoleic acid, and the 16:1(9c) fatty acid was converted primarily to 16:2(9c, 12) in vivo. Thus, the plant omega-6 desaturase, which utilizes 16:1(7c) in plants, can utilize 16:1(9c) in the cyanobacterium. The plastid and cytosolic homologs of plant omega-6 desaturases are much more distantly related than those of omega-3 desaturases.  相似文献   

5.
Sorgoleone, produced in root hair cells of sorghum (Sorghum bicolor), is likely responsible for much of the allelopathic properties of sorghum root exudates against broadleaf and grass weeds. Previous studies suggest that the biosynthetic pathway of this compound initiates with the synthesis of an unusual 16:3 fatty acid possessing a terminal double bond. The corresponding fatty acyl-CoA serves as a starter unit for polyketide synthases, resulting in the formation of 5-pentadecatrienyl resorcinol. This resorcinolic intermediate is then methylated by an S-adenosylmethionine-dependent O-methyltransferase and subsequently dihydroxylated, yielding the reduced (hydroquinone) form of sorgoleone. To characterize the corresponding enzymes responsible for the biosynthesis of the 16:3 fatty acyl-CoA precursor, we identified and cloned three putative fatty acid desaturases, designated SbDES1, SbDES2, and SbDES3, from an expressed sequence tag (EST) data base prepared from isolated root hairs. Quantitative real-time RT-PCR analyses revealed that these three genes were preferentially expressed in sorghum root hairs where the 16:2 and 16:3 fatty acids were exclusively localized. Heterologous expression of the cDNAs in Saccharomyces cerevisiae revealed that recombinant SbDES2 converted palmitoleic acid (16:1Delta(9)) to hexadecadienoic acid (16:2Delta(9,12)), and that recombinant SbDES3 was capable of converting hexadecadienoic acid into hexadecatrienoic acid (16:3Delta(9,12,15)). Unlike other desaturases reported to date, the double bond introduced by SbDES3 occurred between carbons 15 and 16 resulting in a terminal double bond aliphatic chain. Collectively, the present results strongly suggest that these fatty acid desaturases represent key enzymes involved in the biosynthesis of the allelochemical sorgoleone.  相似文献   

6.
The free-living soil protozoon Acanthamoeba castellanii synthesizes a range of polyunsaturated fatty acids, the balance of which can be altered by environmental changes. We have isolated and functionally characterized in yeast a microsomal desaturase from A. castellanii, which catalyzes the sequential conversion of C(16) and C(18) Delta9-monounsaturated fatty acids to di- and tri-unsaturated forms. In the case of C(16) substrates, this bifunctional A. castellanii Delta12,Delta15-desaturase generated a highly unusual fatty acid, hexadecatrienoic acid (16:3Delta(9,12,15)(n-1)). The identification of a desaturase, which can catalyze the insertion of a double bond between the terminal two carbons of a fatty acid represents a new addition to desaturase functionality and plasticity. We have also co-expressed in yeast the A. castellanii bifunctional Delta12,Delta15-desaturase with a microsomal Delta6-desaturase, resulting in the synthesis of the highly unsaturated C(16) fatty acid hexadecatetraenoic acid (16:4Delta(6,9,12,15)(n-1)), previously only reported in marine microorganisms. Our work therefore demonstrates the feasibility of the heterologous synthesis of polyunsaturated fatty acids of the n-1 series. The presence of a bifunctional Delta12,Delta15-desaturase in A. castellanii is also considered with reference to the evolution of desaturases and the lineage of this protist.  相似文献   

7.
γ-亚麻酸(GLA,C18:3△6,9,12)是由△6-脂肪酸脱氢酶以亚油酸(LA,C18:2△9,12)为底物,在C6位脱氢形成的。由于在人体中,γ-亚麻酸是花生四烯酸、前列腺素类和白三烯类等生理活性物质的前体物,而深黄被孢霉是目前用于微生物发酵生产γ-亚麻酸的主要菌株。本文根据脂肪酸脱氢酶的保守区设计引物,利用反转录聚合酶链式反应从丝状真菌深黄被孢霉中克隆了编码△6-脂肪酸脱氢酶的cDNA,全长为1374个核苷酸,编码457 个氨基酸,但与其他位点的脂肪酸脱氢酶不同的是, △6-脂肪酸脱氢酶在其序列的 N 端特有细胞色素 b5(Cytb5)区。这是国际上对深黄被孢霉△6-脂肪酸脱氢酶基因的首次报道。  相似文献   

8.
Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which there is a relative wealth of data on the nutritional regulation of fatty acid desaturation and HUFA synthesis, and between which substantive differences occur.  相似文献   

9.
Unlike most other plant microsomal desaturases, the Delta6-fatty acid desaturase from borage (Borago officinalis) contains an N-terminal extension that shows homology to the small hemoprotein cytochrome (Cyt) b5. To determine if this domain serves as a functional electron donor for the Delta6-fatty acid desaturase, mutagenesis and functional analysis by expression in transgenic Arabidopsis was carried out. Although expression of the wild-type borage Delta6-fatty acid desaturase resulted in the synthesis and accumulation of Delta6-unsaturated fatty acids, this was not observed in plants transformed with N-terminally deleted forms of the desaturase. Site-directed mutagenesis was used to disrupt one of the axial heme-binding residues (histidine-41) of the Cyt b5 domain; expression of this mutant form of the Delta6-desaturase in transgenic plants failed to produce Delta6-unsaturated fatty acids. These data indicate that the Cyt b5 domain of the borage Delta6-fatty acid desaturase is essential for enzymatic activity.  相似文献   

10.
Liu W  Rooney AP  Xue B  Roelofs WL 《Gene》2004,342(2):303-311
Six acyl-CoA desaturase-encoding cDNAs from mRNA isolated from the spotted fireworm moth, Choristoneura parallela (Lepidoptera: Tortricidae) were characterized and assayed for functionality. The expression levels of these cDNAs were determined in the pheromone gland and fat body by real-time PCR and the resulting patterns are in line with results from published studies on other moth sex pheromone desaturases. The cDNAs were found to correspond to six genes. Using both biochemical and phylogenetic analyses, four of these were found to belong to previously characterized desaturase functional groups [the Delta 10,11, the Delta 9 (16>18) and the Delta 9 (18>16) groups]. A desaturase highly expressed in the pheromone gland was a novel E11 desaturase that was specific to 14-carbon precursor acids. The fifth gene [CpaZ9(14-26)] was found to display a novel Z9 activity indicating that it belongs to a new Delta 9 functional group, whereas the sixth gene was determined to be nonfunctional with respect to desaturase activity. In accordance with previous studies, we find that desaturases of the Delta 10,11 and Delta 14 groups, which are the fastest evolving desaturases and possess the novel pheromone biosynthetic function, are expressed primarily in the pheromone gland whereas all other desaturases, which do not possess the novel reproductive function, evolve more slowly and display the ancestral metabolic function and pattern of gene expression.  相似文献   

11.
Hexadeca 7,10,13-trienoic acid (16:3Delta(7,10,13)) is one of the most abundant fatty acids in Arabidopsis (Arabidopsis thaliana) and a functional component of thylakoid membranes, where it is found as an sn-2 ester of monogalactosyldiacylglycerol. The Arabidopsis fad5 mutant lacks activity of the plastidial palmitoyl-monogalactosyldiacylglycerol Delta7-desaturase FAD5, and is characterized biochemically by the absence of 16:3Delta(7,10,13) and physiologically by reduced chlorophyll content and a reduced recovery rate after photoinhibition. While the fad5 mutation has been mapped, the FAD5 gene was not unambiguously identified, and a formal functional characterization by complementation of fad5 mutant phenotypes has not been reported. Two candidate genes (At3g15850 and At3g15870) predicted to encode plastid-targeted desaturases at the fad5 chromosomal locus were cloned from fad5 plants and sequenced. A nonsense mutation changing codon TGG (Trp-98) into TGA (stop) was identified in At3g15850 (ADS3), whereas the fad5 At3g15870 allele was identical to wild type (after correction of a sequencing error in the published wild-type genomic At3g15870 sequence). Expression of a genomic clone or cDNA for wild-type At3g15850 conferred on fad5 plants the ability to synthesize 16:3Delta(7,10,13) and restored leaf chlorophyll content. Arabidopsis carrying a T-DNA insertion in At3g15870 had wild-type levels of both 16:3Delta(7,10,13) and chlorophyll. Together, these data formally prove that At3g15850 is FAD5. Interestingly, the fad5 phenotype was partially complemented when extraplastidial Delta9-desaturases of the Arabidopsis desaturase (ADS) family were expressed as fusions with a plastidial transit peptide. Tight correlation between leaf 16:3Delta(7,10,13) levels and chlorophyll content suggests a role for plastidial fatty acid desaturases in thylakoid formation.  相似文献   

12.
Two cDNAs encoding acyl-CoA Z9-desaturase from the fat body and Z10-desaturase from the pheromone gland of the greenhead leafroller moth, Planotortrix octo, were obtained by RACE PCR. The Z9-desaturase (Pocto-Z9) cDNA spans 2291 nt with an ORF encoding a 352 amino-acid protein, which has 65% identity to Trichoplusia ni Delta 9 desaturase (Tni-Z9). The Z10-desaturase (Pocto-Z10) cDNA spans 2777 nt with an ORF encoding a protein with 356 amino acids. Pocto-Z10 shows lower identity to Pocto-Z9 and Tni-Z9 (48 and 46%, respectively) and relatively higher identity to the Delta 11 desaturases of T. ni and Helicoverpa zea (57 and 56%, respectively). The ORFs of these two P. octo cDNAs were constructed into an expression vector, YEpOLEX, that complemented the unsaturated fatty acid (UFA) auxotrophy of a desaturase-deficient ole1 strain of Saccharomyces cerevisiae. Expression of Pocto-Z9 produced a 5:2 ratio of Z9-16 and Z9-18 acids, with minor amounts (<4%) of Z9-14, Z9-15, and Z9-17 acids. Pocto-Z10 was successfully expressed in the YEpOLEX system when complemented with Z11-18:Me, and the major desaturase product proved to be Z10-16:Acid. The results confirm the regio- and stereo-selectivity of this unusual Delta 10 desaturase.  相似文献   

13.
14.
Δ^6-脂肪酸脱氢酶是一种膜整合蛋白,也是多不饱和脂肪酸合成途径中的限速酶。在前期工作中,通过RT-PCR和RACE技术,从少根根霉NK300037中克隆到一个潜在编码Δ^6-脂肪酸脱氢酶的序列,序列和功能分析结果表明该序列具有一个长度为1377bp、编码由458个氨基酸组成、大小为52kD的新的Δ^6-肪酸脱氢酶基因。把少根根霉Δ^6-脂肪酸脱氢酶基因(RAD6)亚克隆到表达载体pPIC3.5K,构建重组表达载体pPICRAD6,并转化到毕赤酵母菌株GS115进行表达。提取酵母细胞总脂肪酸和进行甲酯化,经气相色谱和气相色谱-质谱连用分析表明,目的基因的编码产物能将C16:1、C17:1、C18:1、亚油酸和α-亚麻酸在△6和7位间特异性脱氢而引入一个新的双键,生成更高不饱和的脂肪酸,该催化反应没有链长特异性,只有键位特异性。此外,按Kozak序列特点,改变目的基因转译起始密码子周边序列结构,并把改变后序列导入毕赤酵母GS115中进行功能表达分析,结果表明在毕赤酵母中这种改变同样能提高目的基因的表达水平。综合所有分析结果表明,巴斯德毕赤酵母更适合用来综合分析Δ^6-脂肪酸脱氢酶基因的功能。  相似文献   

15.
Docosahexaenoic acid (DHA) can be synthesized via alternative routes from which only the omega3/omega6-pathways involve the action of a Delta4-fatty acid desaturase. We examined the suitability of Euglena gracilis, Thraustochytrium sp., Schizochytrium sp., and Crypthecodinium cohnii to serve as sources for cloning a cDNA encoding a Delta4-fatty acid desaturase. For this purpose we carried out in vivo labeling studies with radiolabeled C22 polyunsaturated fatty acid substrates. Schizochytrium sp. was unable to convert exogenously supplied [2-(14)C]-docosapentaenoic acid (DPA, 22:5(Delta)(7,10,13,16,19)) to DHA, while E. gracilis and Thraustochytrium sp. carried out this desaturation very efficiently. Hydrogenation and alpha-oxidation of the labeled DHA isolated from these two organisms showed that it was the result of direct Delta4-desaturation and not of substrate breakdown and resynthesis. To clone the desaturase gene, a cDNA library of E. gracilis was subjected to mass sequencing. A full-length clone with highest homology to the Delta4-desaturase of Thraustochytrium sp. was isolated, and its function was verified by heterologous expression in yeast. The desaturase efficiently converted DPA to DHA. Analysis of the substrate specificity demonstrated that the enzyme activity was not limited to C22 fatty acids, since it also efficiently desaturated C16 fatty acids. The enzyme showed strict Delta4-regioselectivity and required the presence of a Delta7-double bond in the substrate. Positional analysis of phosphatidylcholine revealed that the proportion of the Delta4-desaturated products was up to 20 times higher in the sn-2 position than in the sn-1 position.  相似文献   

16.
Transgenic tobacco plants O9 and T16 expressing the yeast acyl-CoA Delta9 desaturase and an insect acyl-CoA Delta11 desaturase, respectively, displayed altered profiles of fatty acids compared to wild-type tobacco plants and marked increases in cis-3-hexenal, a major leaf volatile derived from alpha-linolenic acid (18:3). As expected, O9 and T16 plants had increased levels of the major unsaturated fatty acid products formed by the transgenic desaturases they expressed, viz., palmitoleic acid (16:1(Delta9)) and palmitvaccenic acid (16:1(Delta11)), respectively. In addition, levels of 18:3 lipid declined slightly and the pool of free 18:3, which accounts for about 30% of free fatty acids in wild-type plants, disappeared completely in both transgenics. Both O9 and T16 plants were found to have a two-fold increase in 13-lipoxygenase (13-LOX) activity, which catalyzes the first of two steps leading to hexenal production from 18:3. In O9 and T16 plants, the activity of 9-lipoxygenase and hydroperoxide lyase, the latter catalyzing the formation of cis-3-hexenal from alpha-linolenic acid hydroperoxide, was significantly different from that of the wild-type plants. Although 16:1(Delta9) and 16:1(Delta11) had no direct effects on 13-LOX activity in vitro, cis-3-hexenal production increased in tobacco leaves treated with these fatty acids, suggesting that they may act in vivo by stimulating 13-LOX gene expression.  相似文献   

17.
Many plant genes have been cloned that encode regioselective desaturases catalyzing the formation of cis-unsaturated fatty acids. However, very few genes have been cloned that encode enzymes catalyzing the formation of the functional groups found in unusual fatty acids (e.g. hydroxy, epoxy or acetylenic fatty acids). Here, we describe the characterization of an acetylenase from the moss Ceratodon purpureus with a regioselectivity differing from the previously described Delta12-acetylenase. The gene encoding this protein, together with a Delta6-desaturase, was cloned by a PCR-based approach with primers derived from conserved regions in Delta5-, Delta6-fatty-acid desaturases and Delta8-sphingolipid desaturases. The proteins that are encoded by the two cloned cDNAs are likely to consist of a N-terminal extension of unknown function, a cytochrome b5-domain, and a C-terminal domain that is similar to acyl lipid desaturases with characteristic histidine boxes. The proteins were highly homologous in sequence to the Delta6-desaturase from the moss Physcomitrella patens. When these two cDNAs were expressed in Saccharomyces cerevisiae, both transgenic yeast cultures desaturated Delta9-unsaturated C16- and C18-fatty acids by inserting an additional Delta6cis-double bond. One of these transgenic yeast clones was also able to introduce a Delta6-triple bond into gamma-linolenic and stearidonic acid. This resulted in the formation of 9,12,15-(Z,Z,Z)-octadecatrien-6-ynoic acid, the main fatty acid found in C. pupureus. These results demonstrate that the Delta6-acetylenase from C. pupureus is a bifunctional enzyme, which can introduce a Delta6cis-double bond into 9,12,(15)-C18-polyenoic acids as well as converting a Delta6cis-double bond to a Delta6-triple bond.  相似文献   

18.
Biosynthesis of polyunsaturated fatty acids in C. elegans is initiated by the introduction of a double bond at the delta9 position of a saturated fatty acid. We identified three C. elegans fatty acid desaturase genes related to the yeast delta9 desaturase OLE1 and the rat stearoyl-CoA desaturase SCD1. Heterologous expression of all three genes rescues the fatty acid auxotrophy of the yeast delta9 desaturase mutant ole1. Examination of the fatty acid composition of the transgenic yeast reveals striking differences in the substrate specificities of these desaturases. Two desaturases, FAT-6 and FAT-7, readily desaturate stearic acid (18:0) and show less activity on palmitic acid (16:0). In contrast, the other desaturase, FAT-5, readily desaturates palmitic acid (16:0), but shows nearly undetectable activity on the common delta9 substrate stearic acid. This is the first report of a palmitoyl-CoA-specific membrane fatty acid desaturase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号