首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The pathway of propionate conversion in a syntrophic coculture of Smithella propionica and Methanospirillum hungatei JF1 was investigated by 13C-NMR spectroscopy. Cocultures produced acetate and butyrate from propionate. [3-13C]propionate was converted to [2-13C]acetate, with no [1-13C]acetate formed. Butyrate from [3-13C]propionate was labeled at the C2 and C4 positions in a ratio of about 1:1.5. Double-labeled propionate (2,3-13C) yielded not only double-labeled acetate but also single-labeled acetate at the C1 or C2 position. Most butyrate formed from [2,3-13C]propionate was also double labeled in either the C1 and C2 atoms or the C3 and C4 atoms in a ratio of about 1:1.5. Smaller amounts of single-labeled butyrate and other combinations were also produced. 1-13C-labeled propionate yielded both [1-13C]acetate and [2-13C]acetate. When 13C-labeled bicarbonate was present, label was not incorporated into acetate, propionate, or butyrate. In each of the incubations described above, 13C was never recovered in bicarbonate or methane. These results indicate that S. propionica does not degrade propionate via the methyl-malonyl-coenzyme A (CoA) pathway or any other of the known pathways, such as the acryloyl-CoA pathway or the reductive carboxylation pathway. Our results strongly suggest that propionate is dismutated to acetate and butyrate via a six-carbon intermediate.  相似文献   

2.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

3.
Lens PN  Dijkema C  Stams AJ 《Biodegradation》1998,9(3-4):179-186
Applications of nuclear magnetic resonance (NMR) to study a variety of physiological and biochemical aspects of bacteria with a role in the sulfur cycle are reviewed. Then, a case-study of high resolution13 C-NMR spectroscopy on sludges from bioreactors used for treating sulfate and sulfide rich wastewaters is presented.13 C-NMR was used to study the effect of sulfate and butyrate on propionate conversion by mesophilic anaerobic (methanogenic and sulfate reducing) granular sludge and microaerobic (sulfide oxidizing) flocculant sludge. In the presence of sulfate, propionate was degraded via the randomising pathway in all sludge types investigated. This was evidenced by scrambling of [3-13C]propionate into [2-13C]propionate and the formation of acetate equally labeled in the C1 and C2 position. In the absence of sulfate, [3-13C]propionate scrambled to a lesser extend without being degraded further. Anaerobic sludges converted [2,3-13C]propionate partly into the higher fatty acid 2-methyl[2,3-13C]butyrate during the simultaneous degradation of [2,3-13C]propionate and butyrate. [4,5-13C]valerate was also formed in the methanogenic sludges. Up to 10% of the propionate present was converted via these alternative degradation routes. Labeled butyrate was not detected in the incubations, suggesting that reductive carboxylation of propionate does not occur in the sludges.  相似文献   

4.
Acarbose inhibits starch digestion in the human small intestine. This increases the amount of starch available for microbial fermentation to acetate, propionate, and butyrate in the colon. Relatively large amounts of butyrate are produced from starch by colonic microbes. Colonic epithelial cells use butyrate as an energy source, and butyrate causes the differentiation of colon cancer cells. In this study we investigated whether colonic fermentation pathways changed during treatment with acarbose. We examined fermentations by fecal suspensions obtained from subjects who participated in an acarbose-placebo crossover trial. After incubation with [1-13C]glucose and 12CO2 or with unlabeled glucose and 13CO2, the distribution of 13C in product C atoms was determined by nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Regardless of the treatment, acetate, propionate, and butyrate were produced from pyruvate formed by the Embden-Meyerhof-Parnas pathway. Considerable amounts of acetate were also formed by the reduction of CO2. Butyrate formation from glucose increased and propionate formation decreased with acarbose treatment. Concomitantly, the amounts of CO2 reduced to acetate were 30% of the total acetate in untreated subjects and 17% of the total acetate in the treated subjects. The acetate, propionate, and butyrate concentrations were 57, 20, and 23% of the total final concentrations, respectively, for the untreated subjects and 57, 13, and 30% of the total final concentrations, respectively, for the treated subjects.  相似文献   

5.
Metabolism of propionate to acetate in the cockroach Periplaneta americana   总被引:2,自引:0,他引:2  
Carbon-13 NMR and radiotracer studies were used to determine the precursor to methylmalonate and to study the metabolism of propionate in the cockroach Periplaneta americana. [3,4,5-13C3]Valine labeled carbons 3, 4, and 26 of 3-methylpentacosane, indicating that valine was metabolized via propionyl-CoA to methylmalonyl-CoA and served as the methyl branch unit precursor. Potassium [2-13C]propionate labeled the odd-numbered carbons of hydrocarbons and potassium [3-13C]propionate labeled the even-numbered carbons of hydrocarbons in this insect. This labeling pattern indicates that propionate is metabolized to acetate, with carbon-2 of propionate becoming the methyl carbon of acetate and carbon-3 of propionate becoming the carboxyl carbon of acetate. In vivo studies in which products were separated by HPLC showed that [2-14C]propionate was readily metabolized to acetate. The radioactivity from sodium [1-14C]propionate was not incorporated into succinate nor into any other tricarboxylic acid cycle intermediate, indicating that propionate was not metabolized via methylmalonate to succinate. Similarly, [1-14C]propionate did not label acetate. An experiment designed to determine the subcellular localization of the enzymes involved in converting propionate to acetate showed that they were located in the mitochondrial fraction. Data from both in vivo and in vitro studies as a function of time indicated that propionate was converted directly to acetate and did not first go through tricarboxylic acid cycle intermediates. These data demonstrate a novel pathway of propionate metabolism in insects.  相似文献   

6.
During the batch degradation of sodium propionate by the anaerobic sludge from an industrial digestor, we observed a significant amount of butyrate formation. Varying the initial propionate concentrations did not alter the ratio of maximal butyrate accumulation to initial propionate concentration within a large range. By measuring the decrease in the radioactivity of [1-14C]butyrate during propionate degradation, we estimated that about 20% of the propionate was converted to butyrate. Labeled butyrate was formed from [1-14C]propionate with the same specific radioactivity, suggesting a possible direct pathway from propionate to butyrate. We confirmed this hypothesis by nuclear magnetic resonance studies with [13C]propionate. The results showed that [1-13C]-, [2-13C]-, and [3-13C]propionate were converted to [2-13C]-, [3-13C]-, and [4-13C]butyrate, respectively, demonstrating the direct carboxylation on the carboxyl group of propionate without randomization of the other two carbons. In addition, we observed an exchange reaction between C-2 and C-3 of the propionate, indicating that acetogensis may proceed through a randomizing pathway. The physiological significance and importance of various metabolic pathways involved in propionate degradation are discussed, and an unusual pathway of butyrate synthesis is proposed.  相似文献   

7.
13C NMR studies of butyric fermentation in Clostridium kluyveri   总被引:1,自引:0,他引:1  
The fermentation of 13C-labeled ethanol and acetate into butyrate and caproate by Clostridium kluyveri has been studied by using 13C NMR. The pathway involves the conversion of both ethanol and acetate into acetyl coenzymes A, two of which condense to form CoA-linked precursors of butyrate. If butyryl-CoA is involved in the condensation, caproate is the ultimate product. ATP is produced from acetyl-CoA via the reactions catalyzed by phosphotransacetylase and acetate kinase with acetate, a required carbon source, as a co-product. In spectra of whole cells incubated with the labeled carbon sources, label from ethanol appears rapidly in acetate, which then reaches a lower, steady-state concentration due to its re-entry into the pathway. The rapid initial production of acetate indicates equally rapid production of ATP. Label from acetate appears in ethanol only if ethanol is already present, indicating that this process is one of isotopic equilibration rather than net synthesis of ethanol from acetate. The ratio of butyrate to caproate produced depends strongly on the initial ratio of ethanol to acetate in the medium. The relative rates of utilization of ethanol and acetate vary as the fermentation proceeds. 13C-13C coupling in the butyrate and caproate produced from [1-13C]ethanol and [2-13C]acetate can be used to determine if the acetyl-CoA molecules arising from ethanol and acetate enter the same pool or if they remain separated. The data are consistent with random mixing of the acetyl-CoA produced from the two carbon sources.  相似文献   

8.
An incorporation study of [1-(13)C] and [1,2-(13)C2] labeled sodium acetates into sorbicillinol 1 established a ring closure system between C-1 and C-6 and the positions that were oxidized and/or methylated on a hexaketide chain. Subsequent investigations, using 13C-labeled 1 prepared from [1-(13)C] labeled sodium acetate, clearly demonstrated that both bisorbicillinol 2 and sorbicillin 6 incorporated 13C-labeled 1 into their carbon skeletons. 13C-labeled bisorbicillinols 2 derived from [1-(13)C]- and [2-(13)C]-labeled sodium acetates clearly indicate that these were on the biosynthetic route from 1 to bisorbibutenolide (bislongiquinolide) 3 and bisorbicillinolide 4 via 2 as a branching point in the fungus.  相似文献   

9.
We have evaluated the use of [1,2-13C2]propionate for the analysis of propionic acid metabolism, based on the ability to distinguish between the methylcitrate and methylmalonate pathways. Studies using propionate-adapted Escherichia coli MG1655 cells were performed. Preservation of the 13C-13C-12C carbon skeleton in labeled alanine and alanine-containing peptides involved in cell wall recycling is indicative of the direct formation of pyruvate from propionate via the methylcitrate cycle, the enzymes of which have recently been demonstrated in E. coli. Additionally, formation of 13C-labeled formate from pyruvate by the action of pyruvate-formate lyase is also consistent with the labeling of pyruvate C-1. Carboxylation of the labeled pyruvate leads to formation of [1,2-13C2]oxaloacetate and to multiply labeled glutamate and succinate isotopomers, also consistent with the flux through the methylcitrate pathway, followed by the tricarboxylic acid (TCA) cycle. Additional labeling of TCA intermediates arises due to the formation of [1-13C]acetyl coenzyme A from the labeled pyruvate, formed via pyruvate-formate lyase. Labeling patterns in trehalose and glycine are also interpreted in terms of the above pathways. The information derived from the [1, 2-13C2]propionate label is contrasted with information which can be derived from singly or triply labeled propionate and shown to be more useful for distinguishing the different propionate utilization pathways via nuclear magnetic resonance analysis.  相似文献   

10.
Abstract Serial dilutions of methanogenic sludges in propionate medium gave a methanogenic non-acetoclastic enrichment degrading 1 mol of propionate to 1.6 mol of acetate and 0.17 mol of methane, with a transient accumulation of butyrate. NMR recordings showed the conversion of [2-13C]- and [3-13C]-propionate to [3-13C]- and [4-13C]-butyrate, respectively, thus demonstrating a reductive carboxylation of propionate to butyrate. The labelling found in the accumulated acetate and fermentation balances also suggested that reductive carboxylation was the major pathway involved in propionate conversion to acetate.  相似文献   

11.
Washed excised roots of rice (Oryza sativa) produced H(2), CH(4) and fatty acids (millimolar concentrations of acetate, propionate, butyrate; micromolar concentrations of isovalerate, valerate) when incubated under anoxic conditions. Surface sterilization of the root material resulted in the inactivation of the production of CH(4), a strong reduction of the production of fatty acids and a transient (75 h) but complete inhibition of the production of H(2). Radioactive bicarbonate was incorporated into CH(4), acetate, propionate and butyrate. About 20-40% of the fatty acid carbon originated from CO(2) reduction. In the presence of phosphate, CH(4) was exclusively produced from H(2)/CO(2), since phosphate selectively inhibited acetoclastic methanogenesis. Acetoclastic methanogenesis was also selectively inhibited by methyl fluoride, while chloroform or 2-bromoethane sulfonate inhibited CH(4) production completely. Production of CH(4), acetate, propionate and butyrate from H(2)/CO(2) was always exergonic with Gibbs free energies <-20 kJ mol(-1) product. Chloroform inhibited the production of acetate and the incorporation of radioactive CO(2) into acetate. Simultaneously, H(2) was no longer consumed and accumulated, indicating that acetate was produced from H(2)/CO(2). Chloroform also resulted in increased production of propionate and butyrate whose formation from CO(2) became more exergonic upon addition of chloroform. Nevertheless, the incorporation of radioactive CO(2) into propionate and butyrate was inhibited by chloroform. The accumulation of propionate and butyrate in the presence of chloroform probably occurred by fermentation of organic matter, rather than by reduction of acetate and CO(2). [U-(14)C]Glucose was indeed converted to acetate, propionate, butyrate, CO(2) and CH(4). Radioactive acetate, CO(2) and CH(4) were also products of the degradation of [U-(14)C]cellulose and [U-(14)C]xylose. Addition of chloroform and methyl fluoride did not affect the product spectrum of [U-(14)C]glucose degradation. The application of combinations of selective inhibitors may be useful to elucidate anaerobic metabolic pathways in mixed microbial cultures and natural microbial communities.  相似文献   

12.
Abstract The degradation of [1-14C]- and [2-14C] propionate to acetate and bicarbonate by the sulfate- reducing bacterium Desulfobulbus propionicus was studied. When [1-14C]propionate was used, more than 95% of the label was recovered in the HCO3 fraction. [2-14C]Propionate was quantitatively converted into labeled acetate of which the methyl and carboxyl group were equally labeled. These results are in accordance with a randomizing route such as the methylmalonyl-CoA pathway for propionate degradation and support earlier evidence for the functioning of this pathway on the basis of enzyme assays.  相似文献   

13.
Pathway of lysine degradation in Fusobacterium nucleatum.   总被引:5,自引:3,他引:2       下载免费PDF全文
Lysine was fermented by Fusobacterium nucleatum ATCC 25586 with the formation of about 1 mol each of acetate and butyrate. By the use of [1-14C]lysine or [6-14C]lysine, acetate and butyrate were shown to be derived from both ends of lysine, with acetate being formed preferentially from carbon atoms 1 and 2 and butyrate being formed preferentially from carbon atoms 3 to 6. This indicates that the lysine carbon chain is cleaved between both carbon atoms 2 and 3 and carbon atoms 4 and 5, with the former predominating [1-14C]acetate was also extensively incorporated into butyrate, preferentially into carbon atoms 3 and 4. Cell-free extracts of F. nucleatum were shown to catalyze the reactions of the 3-keto,5-aminohexanoate pathway of lysine degradation, previously described in lysine-fermenting clostridia. The 3-keto,5-aminohexanoate cleavage enzyme was partially purified and shown to have properties much like those of the clostridial enzyme. We conclude that both the pathway and the enzymes of lysine degradation are similar in F. nucleatum and lysine-fermenting clostridia.  相似文献   

14.
Ramezani M  Resmer KL  White RL 《The FEBS journal》2011,278(14):2540-2551
The pathways of glutamate catabolism in the anaerobic bacterium Fusobacterium varium, grown on complex, undefined medium and chemically defined, minimal medium, were investigated using specifically labelled (13)C-glutamate. The metabolic end-products acetate and butyrate were isolated from culture fluids and derivatized for analysis by nuclear magnetic resonance and mass spectrometry. On complex medium, labels from L-[1-(13)C]glutamate and L-[4-(13)C]glutamate were incorporated into C1 of acetate and equally into C1/C3 of butyrate, while label derived from L-[5-(13)C]glutamate was not incorporated. The isotopic incorporation results and the detection of glutamate mutase and 3-methylaspartate ammonia lyase in cell extracts are most consistent with the methylaspartate pathway, the best known route of glutamate catabolism in Clostridium species. When F. varium was grown on defined medium, label from L-[4-(13)C]glutamate was incorporated mainly into C4 of butyrate, demonstrating a major role for the hydroxyglutarate pathway. Upon addition of coenzyme B(12) or cobalt ion to the defined medium in replicate experiments, isotope was located equally at C1/C3 of butyrate in accord with the methylaspartate pathway. Racemization of D-glutamate and subsequent degradation of L-glutamate via the methylaspartate pathway are supported by incorporation of label into C2 of acetate and equally into C2/C4 of butyrate from D-[3-(13)C]glutamate and the detection of a cofactor-independent glutamate racemase in cell extracts. Together the results demonstrate a major role for the methylaspartate pathway of glutamate catabolism in F. varium and substantial participation of the hydroxyglutarate pathway when coenzyme B(12) is not available.  相似文献   

15.
The metabolism of m-cresol by methanogenic cultures enriched from domestic sewage sludge was investigated. In the initial studies, bromoethanesulfonic acid was used to inhibit methane production. This led to the accumulation of 4.0 +/- 0.8 mol of acetate per mol of m-cresol metabolized. These results suggested that CO(2) incorporation occurred because each molecule of m-cresol contained seven carbon atoms, whereas four molecules of acetate product contained a total of eight carbon atoms. To verify this, [C]bicarbonate was added to bromoethanesulfonic acid-inhibited cultures, and those cultures yielded [C]acetate. Of the label recovered as acetate, 89% was found in the carboxyl position. Similar cultures fed [methyl-C]m-cresol yielded methyl-labeled acetate. A C-labeled transient intermediate was detected in cultures given either m-cresol and [C]bicarbonate or bicarbonate and [methyl-C]m-cresol. The intermediate was identified as 4-hydroxy-2-methylbenzoic acid. In addition, another metabolite was detected and identified as 2-methylbenzoic acid. This compound appeared to be produced only sporadically, and it accumulated in the medium, suggesting that the dehydroxylation of 4-hydroxy-2-methylbenzoic acid led to an apparent dead-end product.  相似文献   

16.
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.  相似文献   

17.
The flux of 13C-labeled carbons from the soluble metabolite 2,3-cyclopyrophosphoglycerate (CPP), a novel compound found in high concentrations exclusively in methanobacteria and methanobrevibacter, into carbohydrate-containing material has been deduced by solid-state 13C NMR spectroscopy which strongly argues for a role in gluconeogenesis for this unique metabolite. The turnover rates, but not the steady-state levels, of CPP labeled by 13CO2 or [13C]acetate depend dramatically on cell growth conditions. When the demand for carbohydrate synthesis is reduced (i.e. in stationary phase), the rates of CPP biosynthesis and degradation decrease 10-fold, and the disaccharide alpha, alpha-trehalose accumulates. Valinomycin, a metabolic inhibitor of Methanobacterium thermoautotrophicum growth, does not affect steady-state levels of CPP, but does decrease 13C uptake into the CPP pool. The effects of these different conditions on CPP labeling suggest stringent regulation of CPP linked to cellular metabolism. Labeling of CPP by [6-(13)C]glucose, which does not serve as an energy or carbon source for this organism, provides strong evidence that glucose is cleaved by the reverse of the gluconeogenesis pathway. This metabolic pathway linking glucose with triose phosphate type precursors and an analysis of the 13C NMR spectrum of CPP labeled by incubating cells with [U-13C]glucose have established that in vivo phosphoenolpyruvate synthetase must be reversible.  相似文献   

18.
An incorporation study of [1-13C] and [1,2-13C2] labeled sodium acetates into sorbicillinol 1 established a ring closure system between C-1 and C-6 and the positions that were oxidized and/or methylated on a hexaketide chain. Subsequent investigations, using 13C-labeled 1 prepared from [1-13C] labeled sodium acetate, clearly demonstrated that both bisorbicillinol 2 and sorbicillin 6 incorporated 13C-labeled 1 into their carbon skeletons. 13C-labeled bisorbicillinols 2 derived from [1-13C]- and [2-13C]-labeled sodium acetates clearly indicate that these were on the biosynthetic route from 1 to bisorbibutenolide (bislongiquinolide) 3 and bisorbicillinolide 4 via 2 as a branching point in the fungus.  相似文献   

19.
Two Pathways of Glutamate Fermentation by Anaerobic Bacteria   总被引:12,自引:6,他引:6  
Two pathways are involved in the fermentation of glutamate to acetate, butyrate, carbon dioxide, and ammonia-the methylaspartate and the hydroxyglutarate pathways which are used by Clostridium tetanomorphum and Peptococcus aerogenes, respectively. Although these pathways give rise to the same products, they are easily distinguished by different labeling patterns of the butyrate when [4-(14)C]glutamate is used as substrate. Schmidt degradation of the radioactive butyrate from C. tetanomorphum yielded equally labeled propionate and carbon dioxide, whereas nearly all the radioactivity of the butyrate from P. aerogenes was recovered in the corresponding propionate. This procedure was used as a test for the pathway of glutamate fermentation by 15 strains (9 species) of anaerobic bacteria. The labeling patterns of the butyrate indicate that glutamate is fermented via the methylaspartate pathway by C. tetani, C. cochlearium, and C. saccarobutyricum, and via the hydroxyglutarate pathway by Acidaminococcus fermentans, C. microsporum, Fusobacterium nucleatum, and F. fusiformis. Enzymes specific for each pathway were assayed in crude extracts of the above organisms. 3-Methylaspartase was found only in clostridia which use the methylaspartate pathway, including Clostridium SB4 and C. sticklandii, which probably degrade glutamate to acetate and carbon dioxide by using a second amino acid as hydrogen acceptor. High levels of 2-hydroxyglutarate dehydrogenase were found exclusively in organisms that use the hydroxyglutarate pathway. The data indicate that only two pathways are involved in the fermentation of glutamate by the bacteria analyzed. The methylaspartate pathway appears to be used only by species of Clostridium, whereas the hydroxyglutarate pathway is used by representatives of several genera.  相似文献   

20.
Pathways of Propionate Degradation by Enriched Methanogenic Cultures   总被引:11,自引:10,他引:1       下载免费PDF全文
A mixed methanogenic culture was highly enriched in a growth medium containing propionate as the sole organic carbon and energy source. With this culture, the pathways of propionate degradation were studied by use of 14C-radiotracers. Propionate was first metabolized to acetate, carbon dioxide, and hydrogen by nonmethanogenic organisms. Formate was not excreted. The carbon dioxide originated exclusively from the carboxyl group of propionate, whereas both [2-14C]- and [3-14C]propionate lead to the production of radioactive acetate. The methyl and carboxyl groups of the acetate produced were equally labeled, regardless of whether [2-14C]- or [3-14C]propionate was used. These observations suggest that in the culture, propionate was degraded through a randomizing pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号