首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronically hypoxic rats (exposed to 5000 m elevation for 3 weeks) develop pulmonary hypertension (PH) that is reversed upon return to normoxia and is blocked by bradykinin (BK) antagonist B9430 treatment (100 microg/kg s.c. three times per week). Treatment of rats with both the synthetic VEGF receptor-1/2 antagonist 3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-indolin-2-one (SU5416) (200 mg/kg, single s.c. injection) and hypoxia (3 weeks) causes irreversible severe PH characterized by marked elevation of pulmonary artery pressure (PAP), right ventricular hypertrophy, and obliteration of pulmonary arteries by proliferating endothelial cells (EC). Between weeks I and 2 of treatment, there is increased apoptotic EC death and caspase-3 activity. The combination of hypoxia with VEGFR-1 and -2 blockade appears to cause death of normal lung EC and proliferation of an apoptosis-resistant proliferating EC phenotype. Cotreatment with BK antagonist B9430 and (or) the broad caspase inhibitor Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp) (2 mg/kg three times per week) prevented development of severe PH and caused significant reduction of PAP: 39.7 +/- 4.6 mmHg in Z-Asp + SU5416, 37.1 +/- 1.2 mmHg in BK antagonist B9430 + SU5416, 27.2 +/- 0.7 mmHg in Z-Asp alone, and 36.6 +/- 3.0 mmHg in BK antagonist alone versus 48 +/- 1.7 mmHg in SU5416-treated rats and 32.8 +/-1.4 mmHg in vehicle-treated controls. The PAP correlated with the right ventricular mass. Pulmonary arteries of rats treated with Z-Asp and BK antagonist B9430 had a marked reduction of intravascular EC, yet there was still evidence of medial muscular hypertrophy, similar to that observed in chronically hypoxic rats not treated with SU5416. We conclude that EC death induced by VEGFR-2 blockade with SU5416 may trigger an EC selection process that allows for the expansion of apoptosis-resistant EC, possibly driven by mechanisms independent of VEGF and VEGFR-2.  相似文献   

2.
Severe pulmonary hypertension (SPH) is characterized by precapillary arteriolar lumen obliteration, dramatic right ventricular hypertrophy, and pericardial effusion. Our recently published rat model of SPH recapitulates major components of the human disease. We used this model to develop new treatment strategies for SPH. SPH in rats was induced using VEGF receptor blockade in combination with chronic hypoxia. A large variety of drugs used in this study, including anticancer drugs (cyclophosphamide and paclitaxel), the angiotensin-converting enzyme inhibitor lisinopril, the antiangiogenic agent thalidomide, and the peroxisome proliferator-actived receptor-gamma agonist PGJ2, failed to decrease mean pulmonary artery pressure (PAP) or right ventricular hypertrophy. In contrast, treatment of rats with established SPH with simvastatin markedly reduced mean PAP and right ventricular hypertrophy, and this reduction was associated with caspase-3 activation and pulmonary microvascular endothelial cell apoptosis. Simvastatin partially restored caveolin-1, caveolin-2, and phospho-caveolin expression in vessel walls. In rat primary pulmonary microvascular endothelial cells, simvastatin induced caspase 3 activation and Rac 1 expression while suppressing Rho A and attenuated levels of Akt and ERK phosphorylation. We conclude that simvastatin is effective in inducing apoptosis in hyperproliferative pulmonary vascular lesions and could be considered as a potential drug for treatment of human SPH.  相似文献   

3.
Malignant neuroblastomas are solid tumors in children. Available therapeutic agents are not highly effective for treatment of malignant neuroblastomas. Therefore, new treatment strategies are urgently needed. We tested the efficacy of combination of SU5416 (SU), an inhibitor of the vascular endothelial growth factor receptor-2 (VEGFR-2), and (−)-epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, for controlling growth of human malignant neuroblastoma SH-SY5Y and SK-N-BE2 cells. Combination of 20 μM SU and 50 μM EGCG synergistically inhibited cell survival, suppressed expression of VEGFR-2, inhibited cell migration, caused cell cycle arrest, and induced apoptosis. Combination of SU and EGCG effectively blocked angiogenic and survival pathways and modulated expression of cell cycle regulators. Apoptosis was induced by down regulation of Bcl-2, activation of caspase-3, and cleavage of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). Taken together, this combination of drugs can be a promising therapeutic strategy for controlling the growth of human malignant neuroblastoma cells.  相似文献   

4.
We have previously hypothesized that the development of severe angioproliferative pulmonary hypertension is associated with not only initial endothelial cell (EC) apoptosis followed by the emergence of apoptosis-resistant proliferating EC but also with proliferation of vascular smooth muscle cells (VSMC). We have demonstrated that EC death results in the selection of an apoptosis-resistant, proliferating, and phenotypically altered EC phenotype. We postulate here that the initial apoptosis of EC induces the release of mediators that cause VSMC proliferation. We cultured EC in an artificial capillary CellMax system designed to simulate the highly efficient functions of the human capillary system. We induced apoptosis of microvascular EC using shear stress and the combined VEGF receptor (VEGFR-1 and -2) inhibitor SU-5416. Flow cytometry for the proliferation marker bromodeoxyuridine showed that serum-free medium conditioned by apoptosed EC induced proliferation of VSMC, whereas serum-free medium conditioned by nonapoptosed EC did not. We also show that medium conditioned by apoptosed EC is characterized by increased concentrations of transforming growth factor (TGF)-beta1 and VEGF compared with medium conditioned by nonapoptosed EC and that TGF-beta1 blockade prevented the proliferation of cultured VSMC. In conclusion, EC death induced by high shear stress and VEGFR blockade leads to the production of factors, in particular TGF-beta1, that activate VSMC proliferation.  相似文献   

5.
SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS) inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416 against MPP+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.  相似文献   

6.
Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin’s actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin’s actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin’s effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.  相似文献   

7.
Patients with familial pulmonary arterial hypertension inherit heterozygous mutations of the type 2 bone morphogenetic protein (BMP) receptor BMPR2. To explore the cellular mechanisms of this disease, we evaluated the pulmonary vascular responses to chronic hypoxia in mice carrying heterozygous hypomorphic Bmpr2 mutations (Bmpr2 delta Ex2/+). These mice develop more severe pulmonary hypertension after prolonged exposure to hypoxia without an associated increase in pulmonary vascular remodeling or proliferation compared with wild-type mice. This is associated with defective endothelial-dependent vasodilatation and enhanced vasoconstriction in isolated intrapulmonary artery preparations. In addition, there is a selective decrease in hypoxia-induced, BMP-dependent, endothelial nitric oxide synthase expression and Smad signaling in the intact lungs and in cultured pulmonary microvascular endothelial cells from Bmpr2 delta Ex2/+ mutant mice. These findings indicate that the pulmonary endothelium is a target of abnormal BMP signaling in Bmpr2 delta Ex2/+ mutant mice and suggest that endothelial dysfunction contributes to their increased susceptibility to hypoxic pulmonary hypertension.  相似文献   

8.
Angiogenesis is critical for tumor development, growth and metastasis. The vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) and their tyrosine kinase receptors are major regulators of angiogenesis. Radiation induces the production of VEGF, FGF and PDGF in many tumor cells. We hypothesized that inhibition of the function of these growth factors could inhibit tumor angiogenesis and thereby enhance the efficacy of radiation therapy. To test this hypothesis, we used the small molecule inhibitors SU5416 (an inhibitor for Vegf receptor) and SU6668 (an inhibitor for Vegf, Fgf and Pdgf receptors) alone and in combination with fractionated irradiation to treat C3H mice bearing SCC VII carcinomas. The SCC VII tumors express Vegf, Fgf2 (also known as bFGF), Pdgf and their associated receptors. Animals were given either SU5416 or SU6668 daily before or after irradiation (2 Gy per fraction per day for 5 days). The results from these experiments demonstrate that administration of either SU5416 or SU6668 without radiation delayed tumor growth. Administration of SU5416 at a dose of 25 mg/kg per day (the maximum tolerated effective dose) inhibited tumor growth by 17.9% on day 7 (P < 0.05 compared to untreated control mice) and produced an average tumor growth delay time of 0.5-2.0 days. When combined with fractionated irradiation, administration of SU5416 increased the inhibition of tumor growth to 50-53% on day 7 and the tumor growth delay time to 5.7-6.5 days (P < 0.001 compared with SU5416 alone; P < or = 0.05 compared with radiation alone). SU6668 alone inhibited tumor growth in a dose-dependent manner. Administration of SU6668 at a dose of 75 mg/kg per day (a suboptimal dose) inhibited tumor growth by 36% on day 7 and produced an average tumor growth delay time of 3.3 +/- 1.4 days. The combination of SU6668 with fractionated radiation increased inhibition of tumor growth to 66-70% and the tumor growth delay time from 3.3 days to 11.9 days (P < or = 0.001 compared with either radiation alone or SU6668 alone). Administration of these agents before or after irradiation produced similar results (P = 0.40 for SU5416; P = 0.98 for SU6668). SU5416 or SU6668 alone or in combination with radiation was very well tolerated with little or no toxicity. These results suggest that inhibition of Vegf, Fgf and Pdgf receptor function by SU5416 and SU6668 can enhance the efficacy of irradiation. The targeting of multiple tyrosine kinase receptors by SU6668 is more effective than inhibition of the Vegf receptor alone by SU5416 for the enhancement of tumor cell killing by fractionated irradiation.  相似文献   

9.
In recent years, evidence has accumulated that many endogenous peptides play an important regulatory role in angiogenesis by modulating endothelial cell behavior. Adrenomedullin (AM), one such factor, was previously shown to exert a clearcut proangiogenic effect in vitro when tested on specialized human endothelial cells, such as HUVECs and immortalized endothelial cell lines. In the present study we used normal adult vascular endothelial cells isolated from human saphenous vein to analyze in vitro the role of AM, related to both early (increased cell proliferation) and late (differentiation and self-organization into capillary-like structures) angiogenic events and their relationship with the vascular endothelial growth factor (VEGF) signaling cascade. The results indicated that also in this endothelial cell phenotype AM promoted cell proliferation and differentiation into cord-like structures. These actions resulted specific and were mediated by the binding of AM to its AM1 (CRLR/RAMP2) receptor. Neither the administration of a VEGF receptor 2 (VEGFR-2) antagonist nor the downregulation of VEGF production by gene silencing were able to suppress the proangiogenic effect of AM. However, when the experiments were performed in the presence of SU5416 (a selective inhibitor of the VEGFR-2 receptor at the level of the intra-cellular tyrosine kinase domain) the proangiogenic effect of AM was abolished. This result suggests that in vascular endothelial cells the binding of AM to its AM1 receptor could trigger a transactivation of the VEGFR-2 receptor, leading to a signaling cascade inducing proangiogenic events in the cells.  相似文献   

10.
Angiogenesis and lymphangiogenesis are regulated by members of the vascular endothelial growth factor (VEGF) family of cytokines, which mediate their effects via tyrosine kinase VEGF receptors -1, -2, and -3. We have used wild-type and mutant forms of VEGFs -A, -B, and -C, a pan-VEGFR tyrosine kinase inhibitor (SU5416) as well as neutralizing anti-VEGFR-2 antibodies, to determine which VEGF receptor(s) are required for bovine endothelial cell invasion and tube formation in vitro. This was compared to the ability of these cytokines to induce expression of members of the plasminogen activator (PA)-plasmin system. We found that cytokines which bind VEGFR-2 (human VEGF-A, human VFM23A, human VEGF-C(deltaNdeltaC), and rat VEGF-C(152)) induced invasion, tube formation, urokinase-type-PA, tissue-type-PA, and PA inhibitor-1, invasion and tube formation as well as signaling via the MAP kinase pathway were efficiently blocked by SU5416 and anti-VEGFR-2 antibodies. In contrast, cytokines and mutants which exclusively bind VEGFR-1 (human VFM17 and human VEGF-B) had no effect on invasion and tube formation or on the regulation of gene expression. We were unable to identify cytokines which selectively stimulate bovine VEGFR-3 in our system. Taken together, these findings point to the central role of VEGFR-2 in the angiogenic signaling pathways induced by VEGF-C(deltaNdeltaC) and VEGF-A.  相似文献   

11.
Pulmonary hypertension (PH) is a progressive and fatal disease with no cure. Vascular remodeling in PH involves intraluminal growth of endothelial and smooth muscle cells, leading to obliterative vascular lesions. Cell growth in these lesions is quasi-neoplastic, with evidence of monoclonality, apoptosis resistance and cancer-like metabolic derangements. Herein we tested the effect of human interferon alpha 2b (IFNα), a pleiotropic cytokine and anti-cancer therapeutic, on the development and progression of PH in the rat SU5416/hypoxia (SUH) model and mouse hypoxia model of the disease. In both models IFNα attenuated the development of PH and reversed established PH as assessed by measuring right ventricular systolic pressure and right ventricular hypertrophy. The effect of IFNα was dependent on the type I interferon receptor (IFNAR) since mice lacking a subunit of the IFNAR were not protected by IFNα. Morphometric analysis of pulmonary aterioles from hypoxic mice or SUH rats showed that IFNα inhibited pulmonary vascular remodeling in both models and that IFNα reversed remodeling in SUH rats with established disease. Immunohistochemical staining revealed that IFNα decreased the number of PCNA and Tunel positive cells in the wall of pulmonary arterioles. In vitro, IFNα inhibited proliferation of human pulmonary artery smooth muscle cells and as well as human pulmonary artery endothelial cell proliferation and apoptosis. Together these findings demonstrate that IFNα reverses established experimental PH and provide a rationale for further exploration of the use of IFNα and other immunotherpies in PH.  相似文献   

12.
The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previously studied. We sought evidence for a role of 12-LO and 12(S)-HETE in the development of hypoxia-induced pulmonary hypertension. We found that 12-LO gene and protein expression is elevated in lung homogenates of rats exposed to chronic hypoxia. Immunohistochemical staining with a 12-LO antibody revealed intense staining in endothelial cells of large pulmonary arteries, SMCs (and possibly endothelial cells) of medium and small-size pulmonary arteries and in alveolar walls of hypoxic lungs. 12-LO protein expression was increased in hypoxic cultured rat pulmonary artery SMCs. 12(S)-HETE at concentrations as low as 10(-5) microM stimulated proliferation of pulmonary artery SMCs. 12(S)-HETE induced ERK 1/ERK 2 phosphorylation but had no effect on p38 kinase expression as assessed by Western blotting. 12(S)-HETE-stimulated SMC proliferation was blocked by the MEK inhibitor PD-98059, but not by the p38 MAPK inhibitor SB-202190. Hypoxia (3%)-stimulated pulmonary artery SMC proliferation was blocked by both U0126, a MEK inhibitor, and baicalein, an inhibitor of 12-LO. We conclude that 12-LO and its product, 12(S)-HETE, are important intermediates in hypoxia-induced pulmonary artery SMC proliferation and may participate in hypoxia-induced pulmonary hypertension.  相似文献   

13.
Information is rapidly emerging regarding the important role of the arterial vasa vasorum in a variety of systemic vascular diseases. In addition, increasing evidence suggests that progenitor cells of bone marrow (BM) origin may contribute to postnatal neovascularization and/or vascular wall thickening that is characteristic in some forms of systemic vascular disease. Little is known regarding postnatal vasa formation and the role of BM-derived progenitor cells in the setting of pulmonary hypertension (PH). We sought to determine the effects of chronic hypoxia on the density of vasa vasorum in the pulmonary artery and to evaluate if BM-derived progenitor cells contribute to the increased vessel wall mass in a bovine model of hypoxia-induced PH. Quantitative morphometric analyses of lung tissue from normoxic and hypoxic calves revealed that hypoxia results in a dramatic expansion of the pulmonary artery adventitial vasa vasorum. Flow cytometric analysis demonstrated that cells expressing the transmembrane tyrosine kinase receptor for stem cell factor, c-kit, are mobilized from the BM in the circulation in response to hypoxia. Immunohistochemistry revealed an increase in the expression of c-kit+ cells together with vascular endothelial growth factor, fibronectin, and thrombin in the hypoxia-induced remodeled pulmonary artery vessel wall. Circulating mononuclear cells isolated from neonatal calves exposed to hypoxia were found to differentiate into endothelial and smooth muscle cell phenotypes depending on culture conditions. From these observations, we suggest that the vasa vasorum and circulating progenitor cells could be involved in vessel wall thickening in the setting of hypoxia-induced PH.  相似文献   

14.
Nitric oxide (NO) attenuates hypoxia-induced endothelin (ET)-1 expression in cultured umbilical vein endothelial cells. We hypothesized that NO similarly attenuates hypoxia-induced increases in ET-1 expression in the lungs of intact animals and reasoned that potentially reduced ET-1 levels may contribute to the protective effects of NO against the development of pulmonary hypertension during chronic hypoxia. As expected, hypoxic exposure (24 h, 10% O(2)) increased rat lung ET-1 peptide and prepro-ET-1 mRNA levels. Contrary to our hypothesis, inhaled NO (iNO) did not attenuate hypoxia-induced increases in pulmonary ET-1 peptide or prepro-ET-1 mRNA levels. Because of this surprising finding, we also examined the effects of NO on hypoxia-induced increases in ET peptide levels in cultured cell experiments. Consistent with the results of iNO experiments, administration of the NO donor S-nitroso-N-acetyl-penicillamine to cultured bovine pulmonary endothelial cells did not attenuate increases in ET peptide levels resulting from hypoxic (24 h, 3% O(2)) exposure. In additional experiments, we examined the effects of NO on the activity of a cloned ET-1 promoter fragment containing a functional hypoxia inducible factor-1 binding site in reporter gene experiments. Whereas moderate hypoxia (24 h, 3% O(2)) had no effect on ET-1 promoter activity, activity was increased by severe hypoxic (24 h, 0.5% O(2)) exposure. ET-1 promoter activity after S-nitroso-N-acetyl-penicillamine administration during severe hypoxia was greater than that in normoxic controls, although activity was reduced compared with that in hypoxic controls. These findings suggest that hypoxia-induced pulmonary ET-1 expression is unaffected by NO.  相似文献   

15.
Summary The development of pulmonary hypertension in a wide variety of human disease states and experimental animal models characterized by chronic alveolar hypoxia is mediated by two pathologic vascular processes, a) vasoconstriction and b) vasoconstruction (structural remodeling). The anatomic changes seen within the pulmonary circulation include a) increased deposition of collagen and elastin in the adventitial layer and b) aberrant pulmonary vascular smooth muscle cell proliferation and maturation in the medial segments. Despite the demonstrated ability of pharmacologic manipulation in the experimental animal to ameliorate both the structural and hemodynamic changes, the actual etiologic mechanisms are only beginning to be explored. Using the cell culture technique of co-cultivation, we have investigated the potential role of bovine pulmonary arterial endothelial cell-derived factors in mediating abnormal bovine smooth muscle cell growth under conditions of reduced oxygen tension. We have demonstrated that these cultured endothelial cells exposed in vitro to reduced levels of atmospheric oxygen concentrations of 5.0% and 2.5% O2 for durations of 24 to 72 h produce and secrete soluble growth factor(s) which stimulate smooth muscle cell proliferation when compared to cells maintained under standard tissue culture oxygen conditions of 95% room air. This growth-stimulatory effect required the concomitant presence of serum factors (0.5% fetal bovine serum), was inhibited by heparin, was distinct from platelet-derived growth factor, and seemed to have a molecular weight greater than 14 000 Da. We conclude that reduced levels of oxygen tension in vitro can selectively induce pulmonary arterial endothelial cells to release mitogen(s) which can stimulate vascular smooth muscle replication. Furthermore, we speculate that this in vitro finding may be of importance as an etiologic mechanism to explain the accelerated smooth muscle cell growth characteristic of hypoxic pulmonary arteriopathy.  相似文献   

16.
17.
To determine whether disruption of vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR) signaling in the newborn has long-term effects on lung structure and function, we injected 1-day-old newborn rat pups with a single dose of Su-5416, a VEGFR inhibitor, or vehicle (controls). Lungs from infant (3-wk-old) and adult (3- to 4-mo-old) rats treated with Su-5416 as newborns showed reductions in arterial density (82 and 31%, respectively) and alveolar counts (45 and 29%) compared with controls. Neonatal treatment with Su-5416 increased right ventricle weight to body wt ratios (4.2-fold and 2.0-fold) and pulmonary arterial wall thickness measurements (2.7-fold and 1.6-fold) in infant and adult rats, respectively, indicating marked pulmonary hypertension. We conclude that treatment of newborn rats with the VEGFR inhibitor Su-5416 impaired pulmonary vascular growth and postnatal alveolarization and caused pulmonary hypertension and that these effects were long term, persisting well into adulthood.  相似文献   

18.
Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A–E), receptor types (VEGFR1–3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.  相似文献   

19.
Pulmonary arterial hypertension (PH) is a fatal disease marked by excessive pulmonary vascular cell proliferation. Patients with idiopathic PH express endothelin-1 (ET-1) at high levels in their lungs. As the activation of both types of ET-1 receptor (ETA and ETB) leads to increased generation of superoxide and hydrogen peroxide, this may contribute to the severe oxidative stress found in PH patients. As a number of pathways may induce oxidative stress, the particular role of ET-1 remains unclear. The aim of this study was to determine whether inhibition of ET-1 signaling could reduce pulmonary oxidative stress and attenuate the progression of disease in rats with occlusive-angioproliferative PH induced by a single dose of SU5416 (200 mg/kg) and subsequent exposure to hypoxia for 21 days. Using this regimen, animals developed severe PH as evidenced by a progressive increase in right-ventricle (RV) peak systolic pressure (RVPSP), severe RV hypertrophy, and pulmonary endothelial and smooth muscle cell proliferation, resulting in plexiform vasculopathy. PH rats also had increased oxidative stress, correlating with endothelial nitric oxide synthase uncoupling and NADPH oxidase activation, leading to enhanced protein nitration and increases in markers of vascular remodeling. Treatment with the combined ET receptor antagonist bosentan (250 mg/kg/day; day 10 to 21) prevented further increase in RVPSP and RV hypertrophy, decreased ETA/ETB protein levels, reduced oxidative stress and protein nitration, and resulted in marked attenuation of pulmonary vascular cell proliferation. We conclude that inhibition of ET-1 signaling significantly attenuates the oxidative and nitrosative stress associated with PH and prevents its progression.  相似文献   

20.
Parathyroid hormone-related protein (PTHrP) (107-139), in contrast to the N-terminal fragment PTHrP (1-36), has been shown to interact with the vascular endothelial growth factor (VEGF) system to modulate human osteoblast differentiation. In this study, we evaluated whether this interaction might affect human osteoblastic cell survival. Pre-incubation with PTHrP (107-139) for 1-24 h dose-dependently (0.1-100 nM) inhibited dexamethasone- or etoposide-induced cell death in human osteoblastic MG-63 cells and human osteoblast-like cells from trabecular bone. This effect, but not that elicited by PTHrP (1-36), was abolished by the VEGF receptor (VEGFR)-2 inhibitors SU5614 and SU1498 or VEGFR-2 siRNA transfection in these cells. PTHrP (107-139), but not PTHrP (1-36), at 100 nM, rapidly (within 2 min) increased VEGFR-2 tyrosine-phosphorylation in MG-63 cells; an effect unaffected by several inhibitors of metalloproteinases, neutralizing VEGF(165) or VEGFR-2 antibodies, or the VEGF binding inhibitor CBO-PP1. The latter two antagonists also failed to affect (125)I-[Tyr(116)] PTHrP (107-115) binding to these cells. Consistent with its effect on VEGFR-2 activation, PTHrP (107-139) rapidly induced extracellular signal-regulated kinase (ERK) 1/2 and Akt activaton, and both ERK and phosphatidylinsositol-3 kinase (PI3K) inhibitors abolished its pro-survival effect in human osteoblastic cells. In addition, SU5614 and the latter two types of inhibitors abrogated Runx2 activation by this peptide in MG-63 cells. Transfection with a dominant-negative Runx2 construct abolished the pro-survival effect of PTHrP (107-139), associated with a decrease in Bcl-2/Bax protein ratio. Our findings demonstrate that PTHrP (107-139) interacts with VEGFR-2 to promote human osteoblastic cell survival by a mechanism involving Runx2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号