首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), by in vitro heat shock (41 degrees C), and during incubation of lung slices with the Cu chelator diethyldithiocarbamate, which decreased the activity of Cu,Zn superoxide dismutase. The heat shock-induced increase in Cu,Zn superoxide dismutase developed 2 h later than the induction of heat shock proteins and was not blocked by actinomycin D. The rates of synthesis of both superoxide dismutases were decreased 50% by hypoxia and failed to increase during reoxygenation. During hypoxia the activity of Cu,Zn superoxide dismutase decreased about 50%, but the activity of Mn superoxide dismutase remained unchanged. We conclude that hyperthermia increases the synthesis of Cu,Zn superoxide dismutase, the synthesis of Cu,Zn superoxide dismutase and Mn superoxide dismutase are not coordinately regulated by hyperthermia or by the oxidant stress produced by lowering the activity of Cu,Zn superoxide dismutase, and the synthesis of heat shock proteins and Cu,Zn superoxide dismutase are regulated at different levels of gene expression.  相似文献   

2.
The cellular heat shock response leads to the enhanced synthesis of a family of heat shock proteins and the development of thermotolerance. In CHO cells, however, heat shock also leads to enhanced synthesis of a 50 kD glycoprotein and elevated activity of N-acetylgalactosaminyltransferase (GalNAcT). In this study we showed increased GalNAcT activity during thermotolerance expression in all of five mammalian cell lines included in the study. However, there was no simple correlation between cellular heat sensitivity of unheated control cells and basal levels of GalNAcT activity, measured toward the same exogenous acceptor apomucin. Although GalNAcT was elevated in thermotolerant cells, GalNAcT activity itself did not exhibit thermotolerance in terms of reduced sensitivity to heat inactivation. The increase in GalNAcT activity after heating was similar in exponentially growing and plateau-phase cultures and was inhibited neither by cycloheximide nor actinomycin D. However, the inhibitors by themselves also increased GalNAcT activity in unheated control cells. Chemical inducers of thermotolerance (arsenite and diamide) increased GalNAcT activity, but the increase was modest when compared to that following hyperthermia. In addition to GalNAcT, two other glycosyltransferases with specificity for O-glycans, alpha 1,2-fucosyltransferase and alpha 2,6-sialyltransferase, also showed increased activity after hyperthermia and during thermotolerance development. Together with previously published data, these results support the hypothesis that heat-induced activation of O-glycan-specific glycosyltransferases plays a physiological role in the cellular heat shock response and in thermotolerance development.  相似文献   

3.
4.
Agents which induce heat shock protein synthesis in cultured monolayers of Hela cells such as hyperthermia, ethanol and sodium arsenite can also cause increases in the levels of lipid peroxidation as determined by the formation of TBA-products. The heat induced increases may be diminished by addition to the medium of mannitol or EGTA. These compounds are known to depress heat shock protein synthesis.

Following hyperthermia there is also a decrease in protein synthesis. In vitro studies indicate possible damage to ribosomes, and since the heat induced loss of protein synthetic capacity can be increased by superoxide dismutase inhibitors, and prevented by mannitol, such effects may be linked to the increases observed in lipid peroxidation. It is suggested that a connection exists between lipid peroxidation and heat shock protein gene activation.  相似文献   

5.
《Free radical research》2013,47(1-5):129-139
Agents which induce heat shock protein synthesis in cultured monolayers of Hela cells such as hyperthermia, ethanol and sodium arsenite can also cause increases in the levels of lipid peroxidation as determined by the formation of TBA-products. The heat induced increases may be diminished by addition to the medium of mannitol or EGTA. These compounds are known to depress heat shock protein synthesis.

Following hyperthermia there is also a decrease in protein synthesis. In vitro studies indicate possible damage to ribosomes, and since the heat induced loss of protein synthetic capacity can be increased by superoxide dismutase inhibitors, and prevented by mannitol, such effects may be linked to the increases observed in lipid peroxidation. It is suggested that a connection exists between lipid peroxidation and heat shock protein gene activation.  相似文献   

6.
7.
Abstract: An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of d -lysergic acid diethylamide (LSD) to rabbits induced a transient inhibition of translation following a brief stimulatory period. Subfractionation of the brain cell-free system into postribosomal supernatant (PRS) and microsome fractions demonstrated that LSD in vivo induced alterations in both of these fractions. In addition to the overall inhibition of translation in the cell-free system, differential effects were noted, i.e., greater than average relative decreases in in vitro labeling of certain brain proteins and relative increases in others. The brain proteins of molecular weights 7SK and 95K, which were increased in relative labeling under conditions of LSD-induced hyperthermia, are similar in molecular weight to two of the major "heat shock" proteins reported in tissue culture systems. Injection of LSD to rabbits at 4°C prevented LSD-induced hyperthermia but behavioral effects of the drug were still apparent. The overall decrease in cell-free translation was still observed but the differential labeling effects were not. LSD appeared to influence cell-free translation in the brain at two dissociable levels: (a) an overall decrease in translation that was observed even in the absence of LSD-induced hyperthermia and (b) differential labeling effects on particular proteins that were dependent on LSD-induced hyperthermia.  相似文献   

8.
A number of studies have demonstrated increased synthesis of heat shock proteins in brain following hyperthermia or transient ischemia. In the present experiments we have characterized the time course of heat shock RNA induction in gerbil brain after ischemia, and in several mouse tissues after hyperthermia, using probes for RNAs of the 70-kilodalton heat shock protein (hsp70) family, as well as ubiquitin. A synthetic oligonucleotide selective for inducible hsp70 sequences proved to be the most sensitive indicator of the stress response whereas a related rat cDNA detected both induced RNAs and constitutively expressed sequences that were not strongly inducible in brain. Considerable polymorphism of ubiquitin sequences was evident in the outbred mouse and gerbil strains used in these studies when probed with a chicken ubiquitin cDNA. Brief hyperthermic exposure resulted in striking induction of hsp70 and several-fold increases in ubiquitin RNAs in mouse liver and kidney peaking 3 h after return to room temperature. The oligonucleotide selective for hsp70 showed equivalent induction in brain that was more rapid and transient than observed in liver, whereas minimal induction was seen with the ubiquitin and hsp70-related cDNA probes. Transient ischemia resulted in 5- to 10-fold increases in hsp70 sequences in gerbil brain which peaked at 6 h recirculation and remained above control levels at 24 h, whereas a modest 70% increase in ubiquitin sequences was noted at 6 h. These results demonstrate significant temporal and quantitative differences in heat shock RNA expression between brain and other tissues following hyperthermia in vivo, and indicate that hsp70 provides a more sensitive index of the stress response in brain than does ubiquitin after both hyperthermia and ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In vivo stress preconditioning   总被引:3,自引:0,他引:3  
The heat shock or stress protein response is a highly conserved defense mechanism. Activation of the stress protein response by mild hyperthermia or by pharmacological agents allows cells to withstand a subsequent metabolic insult that would otherwise be lethal, a phenomenon referred as "thermotolerance" or "preconditioning." Heat shock response is characterized by increased expression of stress proteins that provide cellular protection, e.g., via increased chaperoning activity in all organisms, from bacteria to animals and humans. Indeed, there is experimental evidence that overexpression of specific heat shock proteins or heat shock factors produce protective effects similar to those observed after stress preconditioning. The purpose of this review is first to discuss the methods used to induce in vivo thermotolerance with mild hyperthermia or pharmacological agents. Then, as an example of the organ protection provided by in vivo stress preconditioning, the second part of this paper will examine how the induction of thermotolerance modulates the lung inflammatory response associated with acute lung injury, thus providing broad organ and tissue protection against oxidative stress associated this syndrome.  相似文献   

10.
11.
P M Kelley  M J Schlesinger 《Cell》1978,15(4):1277-1286
The addition of certain amino acid analogues (canavanine, hydroxynorvaline, o-methylthreonine) or a mild heat shock at 45 degrees C caused chicken embryo fibroblasts to increase rapidly the synthesis of three proteins (molecular weights 22,000, 76,000 and 95,000 daltons) to levels which dominate the cells biosynthetic capacity and exceed the level of synthesis of the major cell structural proteins. Actinomycin D blocked the increased synthesis of p22, p76 and p95 in both analogue and heat shock-treated cells, while cycloheximide addition during the "induction" period blocked formation of these proteins only in analoguetreated cells. The elevated levels of synthesis for this set of proteins began to decrease shortly after restoration of the normal amino acid or normal temperature, and the normal pattern of cell protein synthesis was found 8 hr later. Induction of a similar set of proteins was detected in mouse L cells and baby hamster kidney cells after treatment with amino acid analogues or heat shock. Several laboratories have reported synthesis of proteins with similar molecular weights in cells subjected to conditions that alter glucose metabolism, and we speculate that these proteins may be associated with a hexose transport system.  相似文献   

12.
13.
Stress induces an increased hexose uptake in cultured cells   总被引:1,自引:0,他引:1  
Temperature-sensitive mutants have revealed a region of the herpes simplex virus 1 genome that affects both the uptake of hexose and the synthesis of heat shock proteins. Other inducers of heat-shock proteins, namely heat shock itself and arsenite, likewise induce an increased uptake of hexose. The increased uptake, like that induced by insulin, is insensitive to the presence of actinomycin D or cycloheximide. It is concluded that an increased hexose uptake, reflecting an activation or relocation of existing hexose transport protein, is a general biochemical response of stressed cells.  相似文献   

14.
15.
16.
17.
In an attempt to question the toxic effect of heat shock and related stress, we have studied the activity of reporter enzymes during stress. Escherichia coli beta-galactosidase and Photinus pyralis luciferase were synthesized in mouse and Drosophila cells after transfection of the corresponding genes. Both enzymes are rapidly inactivated during hyperthermia. The corresponding polypeptides are not degraded but become insoluble even in the presence of non-ionic detergents. The heat inactivation is more dramatic in vivo within the living cell than in vitro, in a detergent-free crude cell lysate. The extent of enzyme inactivation at a given temperature depends on the cell type in which the enzyme is expressed. Luciferase is inactivated at lower temperatures within Drosophila cells than within mouse cells, whereas beta-galactosidase is inactivated at higher temperatures in E. coli than in mouse cells. A "priming" heat shock confers a transient increased resistance (thermotolerance) of cells against a second "challenging" heat shock. Enzyme inactivation during heat shock or exposure of the cells to ethanol is attenuated in heat shock-primed cells. A comparable thermoprotection is raised by a priming heat shock for both luciferase activity and protein synthesis. Thus, the study of reporter enzyme inactivation is a promising tool for understanding the molecular basis of the toxicity of heat shock and related stress as well as the mechanisms leading to thermotolerance.  相似文献   

18.
19.
The hepatic ornithine decarboxylase (ODC) activity of normal rats was stimulated more than 7-fold 3 hours after a single intraperitoneal injection of dibutyryl cyclic adenosine 3′,5′-monophosphate (dibu-cAMP). The 3-hour ODC activity was also stimulated by single injections of either theophylline or dexamethasone (10- and 21-fold, respectively). The simultaneous administration of actinomycin D with either dibu-cAMP, theophylline or dexamethasone reduced the 3-hour ODC activity by 91, 62 and 58 percent, respectively. When actinomycin D was given one hour after dibu-cAMP, no inhibition of ODC activity was observed.  相似文献   

20.
《The Journal of cell biology》1984,99(4):1316-1323
We have found that chicken reticulocytes respond to elevated temperatures by the induction of only one heat shock protein, HSP70, whereas lymphocytes induce the synthesis of all four heat shock proteins (89,000 mol wt, HSP89; 70,000 mol wt, HSP70; 23,000 mol wt, HSP23; and 22,000 mol wt, HSP22). The synthesis of HSP70 in lymphocytes was rapidly induced by small increases in temperature (2 degrees-3 degrees C) and blocked by preincubation with actinomycin D. Proteins normally translated at control temperatures in reticulocytes or lymphocytes were not efficiently translated after incubation at elevated temperatures. The preferential translation of mRNAs that encode the heat shock proteins paralleled a block in the translation of other cellular proteins. This effect was most prominently observed in reticulocytes where heat shock almost completely repressed alpha- and beta-globin synthesis. HSP70 is one of the major nonglobin proteins in chicken reticulocytes, present in the non-heat-shocked cell at approximately 3 X 10(6) molecules per cell. We compared HSP70 from normal and heat-shocked reticulocytes by two-dimensional gel electrophoresis and by digestion with Staphylococcus aureus V8 protease and found no detectable differences to suggest that the P70 in the normal cell is different from the heat shock-induced protein, HSP70. P70 separated by isoelectric focusing gel electrophoresis into two major protein spots, an acidic P70A (apparent pl = 5.95) and a basic P70B (apparent pl = 6.2). We observed a tissue-specific expression of P70A and P70B in lymphocytes and reticulocytes. In lymphocytes, P70A is the major 70,000-mol-wt protein synthesized at normal temperatures whereas only P70B is synthesized at normal temperatures in reticulocytes. Following incubation at elevated temperatures, the synthesis of both HSP70A and HSP70B was rapidly induced in lymphocytes, but synthesis of only HSP70B was induced in reticulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号