首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tobacco was transformed with three different alleles (L2, L6, and L10) of the flax rust resistance gene L, a member of the toll interleukin-1 receptor, nucleotide-binding site, leucine-rich repeat (TIR-NBS-LRR) class of plant disease resistance genes. L6 transgenics had a stunted phenotype, expressed several defense response genes constitutively, and had increased resistance to the fungus Cercospora nicotianae and the oomycete Phytophthora parasitica pv. nicotianae. L2 and L10 transgenics, with one exception for L10, did not express these phenotypes, indicating that the activation of tobacco defense responses is L6 allele-specific. The phenotype of the exceptional L10 transgenic plant was associated with the presence of a truncated L10 gene resulting from an aberrant T-DNA integration. The truncated gene consisted of the promoter, the complete TIR region, and 39 codons of the NBS domain fused inframe to a tobacco retrotransposon-like sequence. A similar truncated L10 gene, constructed in vitro, was transiently expressed in tobacco leaves and gave rise to a strong localized necrotic reaction. Together, these results suggest that defense signaling properties of resistance genes can be expressed in an allele-specific and pathogen-independent manner when transferred between plant genera.  相似文献   

3.
Triggering receptors expressed on myeloid cell (TREM) proteins are a family of cell surface receptors that participate in diverse cellular processes such as inflammation, coagulation, and bone homeostasis. TREM-1, in particular, is expressed on neutrophils and monocytes and is a potent amplifier of inflammatory responses. LPS and other microbial products induce up-regulation of cell surface-localized TREM-1 and the release of its soluble form, sTREM-1. Two hypotheses have been advanced to explain the origin of sTREM-1: alternative splicing of TREM-1 mRNA and proteolytic cleavage(s) of mature, membrane-anchored TREM-1. In this report, we present conclusive evidence in favor of the proteolytic mechanism of sTREM-1 generation. No alternative splicing forms of TREM-1 were detected in monocytes/macrophages. Besides, metalloproteinase inhibitors increased the stability of TREM-1 at the cell surface while significantly reducing sTREM-1 release in cultures of LPS-challenged human monocytes and neutrophils. We conclude that metalloproteinases are responsible for shedding of the TREM-1 ectodomain through proteolytic cleavage of its long juxtamembrane linker.  相似文献   

4.
Although the basis for the high mortality rate for patients with mixed bacterial infections is likely to be multifactorial, there is evidence for a synergistic effect of muramyldipeptide (MDP) with lipopolysaccharide (LPS) on the synthesis of proinflammatory cytokines by mononuclear phagocytes. In this study, co-incubation of human Mono Mac 6 cells with MDP and either LPS or peptidoglycan (PGN) resulted in an apparent synergistic effect on tumor necrosis factor-alpha (TNF-alpha) secretion. Although incubation of cells with MDP alone produced minimal TNF-alpha, it caused significant expression of TNF-alpha mRNA. These findings suggest that the majority of TNF-alpha mRNA induced by MDP alone is not translated into protein. Furthermore, simultaneous incubation of cells with MDP and either LPS or PGN resulted in TNF-alpha mRNA expression that approximated the sum of the amounts expressed in response to MDP, LPS, and PGN individually. These findings indicate that the apparent synergistic effect of MDP on TNF-alpha production induced by either LPS or PGN is due to removal of a block in translation of the mRNA expressed in response to MDP. In subsequent studies, the effects of MDP alone and its effect on the production of TNF-alpha by LPS and PGN were determined to be independent of CD14, Toll-like receptor 2, and Toll-like receptor 4. These findings indicate that MDP acts through receptor(s) other than those primarily responsible for transducing the effects of LPS and PGN. Successful treatment of patients having mixed bacterial infections is likely to require interventions that address the mechanisms involved in responses induced by a variety of bacterial cell wall components.  相似文献   

5.
6.
7.
慢性粒细胞白血病(chronic myeloid leukemia,CML)是造血干细胞(hematopoietic stem cells,HSC)恶性克隆性增殖引起的一种血液系统疾病。动物模型是研究CML发病机制及药物靶向治疗的重要载体和工具。研究表明,CML小鼠模型可以通过逆转录病毒介导、转基因和白血病细胞移植的方法建立。三种方法建立的CML小鼠模型均可用于CML发病机制及药物疗效评估研究。实验动物模型进一步通过血常规、血涂片和骨髓涂片、免疫学、分子生物学及病理学等检测手段,判断模型是否建立成功。本文就近年来CML小鼠模型的建立、鉴定及研究应用进展进行综述。  相似文献   

8.
Fanconi anemia (FA) is a genetic syndrome predisposing to hematopoietic failure. Little is known about the pathophysiology of FA, except that tumor necrosis factor-alpha (TNF-alpha) is overexpressed in patients. FA group C (Fac) gene knockout mice have been developed in order to model the human disease, but the mice do not spontaneously exhibit aplasia. To investigate secondary influences on hematopoiesis in the Fac-null mice, we studied the sensitivity of hematopoietic progenitor cells (HPC) to death receptor triggering by TNF-alpha and Fas receptor (CD95) ligation. Previously we had found that overexpression of a human FAC transgene protects hematopoietic progenitors from Fas-mediated apoptosis (Wang et al., 1998, Cancer Res 58:3538-3541). In the present experiments with Fac-null mice, growth of erythroid burst-forming units (BFU-E) was significantly inhibited by TNF-alpha and CD95 ligation. Flow cytometric analysis revealed that CD95 was induced more readily in the Fac-null CD34+ cell fraction. Apoptosis induced by TNF-alpha alone or with CD95 ligation also occurred more frequently in null mouse HPC. We then bred null mice against transgenic mice overexpressing TNF-alpha (at serum levels in the range of 100 pg/ml). Resultant Fac-null mice that overexpressed TNF-alpha not only yielded decreased numbers of BFU-E but also expressed higher levels of CD95 in the CD34+ fraction. We conclude that mutation in the Fac protein induces heightened sensitivity to TNF-alpha and Fas receptor ligation, results that may explain the mechanism of anemia in FA-C patients.  相似文献   

9.
It is widely accepted that developing T cells can undergo clonal deletion in the thymus in response to a high affinity self-Ag. This is largely based on studies of TCR transgenics. However, encounter with high affinity self-Ag can also result in receptor editing in TCR transgenic models. Because all TCR transgenics display ectopic receptor expression, the tolerance mechanism that predominates in normal mice remains an open question. When self-Ag drives receptor editing during T cell development, one expects to find in-frame, self-reactive TCRalpha joins on TCR excision circles (TRECs), which are the products of secondary V/J recombination in the TCRalpha locus. Such joins are not expected if clonal deletion occurs, because the progenitor cell would be eliminated by apoptosis. To test the relative utilization of receptor editing vs clonal deletion, we determined the frequency of in-frame, male-specific joins on TRECs in male and female HYbeta transgenic mice. In comparison with female HYbeta transgenic mice, our analysis showed a lower frequency of TRECs with male-reactive V17J57 joins in male mice. Thus, it would appear that receptor editing is not a predominant tolerance mechanism for this self-Ag.  相似文献   

10.
We have identified new activating receptors of the Ig superfamily expressed on human myeloid cells, called TREM (triggering receptor expressed on myeloid cells). TREM-1 is selectively expressed on blood neutrophils and a subset of monocytes and is up-regulated by bacterial LPS. Engagement of TREM-1 triggers secretion of IL-8, monocyte chemotactic protein-1, and TNF-alpha and induces neutrophil degranulation. Intracellularly, TREM-1 induces Ca2+ mobilization and tyrosine phosphorylation of extracellular signal-related kinase 1 (ERK1), ERK2 and phospholipase C-gamma. To mediate activation, TREM-1 associates with the transmembrane adapter molecule DAP12. Thus, TREM-1 mediates activation of neutrophil and monocytes, and may have a predominant role in inflammatory responses.  相似文献   

11.
12.
Mer tyrosine kinase (MerTK) is an integral membrane protein that is preferentially expressed by phagocytic cells, where it promotes efferocytosis and inhibits inflammatory signaling. Proteolytic cleavage of MerTK at an unidentified site leads to shedding of its soluble ectodomain (soluble MER; sMER), which can inhibit thrombosis in mice and efferocytosis in vitro. Herein, we show that MerTK is cleaved at proline 485 in murine macrophages. Site-directed deletion of 6 amino acids spanning proline 485 rendered MerTK resistant to proteolysis and suppression of efferocytosis by cleavage-inducing stimuli. LPS is a known inducer of MerTK cleavage, and the intracellular signaling pathways required for this action are unknown. LPS/TLR4-mediated generation of sMER required disintegrin and metalloproteinase ADAM17 and was independent of Myd88, instead requiring TRIF adaptor signaling. LPS-induced cleavage was suppressed by deficiency of NADPH oxidase 2 (Nox2) and PKCδ. The addition of the antioxidant N-acetyl cysteine inhibited PKCδ, and silencing of PKCδ inhibited MAPK p38, which was also required. In a mouse model of endotoxemia, we discovered that LPS induced plasma sMER, and this was suppressed by Adam17 deficiency. Thus, a TRIF-mediated pattern recognition receptor signaling cascade requires NADPH oxidase to activate PKCδ and then p38, culminating in ADAM17-mediated proteolysis of MerTK. These findings link innate pattern recognition receptor signaling to proteolytic inactivation of MerTK and generation of sMER and uncover targets to test how MerTK cleavage affects efferocytosis efficiency and inflammation resolution in vivo.  相似文献   

13.
Lipopolysaccharide is a pathogen that causes inflammatory bone loss. Monocytes and macrophages produce proinflammatory cytokines such as IL-1, TNF-alpha, and IL-6 in response to LPS. We examined the effects of LPS on the function of osteoclasts formed in vitro in comparison with its effect on bone marrow macrophages, osteoclast precursors. Both osteoclasts and bone marrow macrophages expressed mRNA of Toll-like receptor 4 (TLR4) and CD14, components of the LPS receptor system. LPS induced rapid degradation of I-kappaB in osteoclasts, and stimulated the survival of osteoclasts. LPS failed to support the survival of osteoclasts derived from C3H/HeJ mice, which possess a missense mutation in the TLR4 gene. The LPS-promoted survival of osteoclasts was not mediated by any of the cytokines known to prolong the survival of osteoclasts, such as IL-1beta, TNF-alpha, and receptor activator of NF-kappaB ligand. LPS stimulated the production of proinflammatory cytokines such as IL-1beta, TNF-alpha, and IL-6 in bone marrow macrophages and peritoneal macrophages, but not in osteoclasts. These results indicate that osteoclasts respond to LPS through TLR4, but the characteristics of osteoclasts are quite different from those of their precursors, macrophages, in terms of proinflammatory cytokine production in response to LPS.  相似文献   

14.
The inducible costimulator receptor (ICOS) is a third member of the CD28 receptor family that regulates T cell activation and function. ICOS binds to a newly identified ligand on antigen presenting cells different from the CD152 ligands CD80 and CD86. We used soluble ICOSIg and a newly developed murine anti-human ICOS ligand (ICOSL) monoclonal antibody to further characterize the ICOSL during ontogeny of antigen presenting cells. In a previous study, we found that ICOSL is expressed on monocytes, dendritic cells, and B cells. To define when ICOSL is first expressed on myeloid antigen presenting cells, we examined ICOSL expression on CD34(+) cells in bone marrow. We found that CD34(bright) cells regardless of their myeloid commitment were ICOSL(-), whereas ICOSL was first expressed when CD34 expression diminished and the myeloid marker CD33 appeared. However, acute myeloid leukemia cells were ICOSL-negative, whereas among B-cell malignancies only some cases of the most mature tumors such as prolymphocytic leukemia and hairy cell leukemia were positive. Next, we investigated purified CD34(+) hematopoietic progenitor cells that did not constitutively express ICOSL but were induced to express ICOSL within 12 h after granulocyte/macrophage colony-stimulating factor/tumor necrosis factor alpha (TNF-alpha) stimulation. Interestingly, ICOSL was induced prior to CD80/CD86 induction on CD34(+) cells so that ICOSL was expressed in the absence of CD80/CD86. This suggests that ICOSL is an early differentiation marker along the monocytic/dendritic maturation pathway. Induction of ICOSL was dependent on TNF-alpha and was regulated via NF-kappa B as revealed by use of inhibitors specific for I kappa B alpha phosphorylation such as BAY 11-7082 and BAY 11-7085. The antigen presenting capacity of TNF-alpha stimulated CD34(+) cells was strongly inhibited by ICOSIg fusion proteins or by NF-kappa B inhibition. Thus, TNF-alpha-induced ICOSL expression seemed to be functionally important for the costimulatory capacity of CD34(+) hematopoietic progenitor cells.  相似文献   

15.
Since NPY increases endothelial cell (EC) stickiness for leukocytes, we studied the effects of LPS, TNF-alpha and IFN-gamma on its expression and action in HUVEC. Cytokines raised NPY and pro-NPY intracellular content and dipeptidyl peptidase IV (DPP IV) activity. Y1 and Y2 receptors were expressed in basal conditions, and LPS, TNF-alpha and IFN-gamma induced Y5 receptor expression with a concomitant extinction of Y2 receptor expression. NPY induced an intracellular calcium increase mainly mediated by Y2 and Y5 receptors in basal conditions. After stimulation with LPS, TNF-alpha and IFN-gamma, calcium increase was mainly caused by Y5 receptor. The modulation of the NPY system by LPS, TNF-alpha and IFN-gamma, and the NPY-induced calcium signaling suggest a role for NPY during the inflammatory response.  相似文献   

16.
17.
Leukocyte mono-Ig-like receptor 5 (LMIR5, also called CD300b) is an activating receptor expressed in myeloid cells. We have previously demonstrated that T cell Ig mucin 1 works as a ligand for LMIR5 in mouse ischemia/reperfusion injury of the kidneys. In this article, we show that LMIR5 is implicated in LPS-induced sepsis in mice. Notably, neutrophils constitutively released a soluble form of LMIR5 (sLMIR5) through proteolytic cleavage of surface LMIR5. Stimulation with TLR agonists augmented the release of sLMIR5. LPS administration or peritonitis induction increased serum levels of sLMIR5 in mice, which was substantially inhibited by neutrophil depletion. Thus, neutrophils were the main source of LPS-induced sLMIR5 in vivo. On the other hand, i.p. administration of LMIR5-Fc, a surrogate of sLMIR5, bound to resident macrophages (M) and stimulated transient inflammation in mice. Consistently, LMIR5-Fc induced in vitro cytokine production of peritoneal M via its unknown ligand. Interestingly, LMIR5 deficiency profoundly reduced systemic cytokine production and septic mortality in LPS-administered mice, although it did not affect in vitro cytokine production of LPS-stimulated peritoneal M. Importantly, the resistance of LMIR5-deficient mice to LPS- or peritonitis-induced septic death was decreased by LMIR5-Fc administration, implicating sLMIR5 in LPS responses in vivo. Collectively, neutrophil-derived sLMIR5 amplifies LPS-induced lethal inflammation.  相似文献   

18.
Dendritic cells (DC) regulate NK cell functions, but the signals required for the DC-mediated NK cell activation, i.e., DC-activated NK cell (DAK) activity, remain poorly understood. Upon acute inflammation mimicked by LPS or TNF-alpha, DC undergo a maturation process allowing T and NK cell activation in vitro. Chronic inflammation is controlled in part by Th2 cytokines. In this study, we show that IL-4 selectively confers to DC NK but not T cell stimulatory capacity. IL-4 is mandatory for mouse bone marrow-derived DC grown in GM-CSF (DC(GM/IL-4)) to promote NK cell activation in the draining lymph nodes. IL-4-mediated DAK activity depends on the KARAP/DAP12-triggering receptor expressed on myeloid cell 2 signaling pathway because: 1) gene targeting of the adaptor molecule KARAP/DAP12, a transmembrane polypeptide with an intracytoplasmic immunoreceptor tyrosine-based activation motif, suppresses the DC(GM/IL-4) capacity to activate NK cells, and 2) IL-4-mediated DAK activity is significantly blocked by soluble triggering receptor expressed on myeloid cell 2 Fc molecules. These data outline a novel role for Th2 cytokines in the regulation of innate immune responses through triggering receptors expressed on myeloid cells.  相似文献   

19.
Efficient clearance of apoptotic cells (AC) by professional phagocytes is crucial for tissue homeostasis and resolution of inflammation. Macrophages respond to AC with an increase in antiinflammatory cytokine production but a diminished release of proinflammatory mediators. Mechanisms to explain attenuated proinflammatory cytokine formation remain elusive. We provide evidence that peroxisome proliferator-activated receptor gamma (PPARgamma) coordinates antiinflammatory responses following its activation by AC. Exposing murine RAW264.7 macrophages to AC before LPS stimulation reduced NF-kappaB transactivation and lowered target gene expression of, that is, TNF-alpha and IL-6 compared with controls. In macrophages overexpressing a dominant negative mutant of PPARgamma, NF-kappaB transactivation in response to LPS was restored, while macrophages from myeloid lineage-specific conditional PPARgamma knockout mice proved that PPARgamma transmitted an antiinflammatory response, which was delivered by AC. Expressing a PPARgamma-Delta aa32-250 deletion mutant, we observed no inhibition of NF-kappaB. Analyzing the PPARgamma domain structures within aa 32-250, we anticipated PPARgamma sumoylation in mediating the antiinflammatory effect in response to AC. Interfering with sumoylation of PPARgamma by mutating the predicted sumoylation site (K77R), or knockdown of the small ubiquitin-like modifier (SUMO) E3 ligase PIAS1 (protein inhibitor of activated STAT1), eliminated the ability of AC to suppress NF-kappaB. Chromatin immunoprecipitation analysis demonstrated that AC prevented the LPS-induced removal of nuclear receptor corepressor (NCoR) from the kappaB site within the TNF-alpha promoter. We conclude that AC induce PPARgamma sumoylation to attenuate the removal of NCoR, thereby blocking transactivation of NF-kappaB. This contributes to an antiinflammatory phenotype shift in macrophages responding to AC by lowering proinflammatory cytokine production.  相似文献   

20.
McHale NA  Koning RE 《The Plant cell》2004,16(5):1251-1262
Initiation and growth of leaf blades is oriented by an adaxial/abaxial axis aligned with the original axis of polarity in the leaf primordium. To investigate mechanisms regulating this process, we cloned the Nicotiana tabacum ortholog of PHANTASTICA (NTPHAN) and generated a series of antisense transgenics in N. sylvestris. We show that NSPHAN is expressed throughout emerging blade primordia in the wild type and becomes localized to the middle mesophyll in the expanding lamina. Antisense NSPHAN leaves show ectopic expression of NTH20, a class I KNOX gene. Juvenile transgenic leaves have normal adaxial/abaxial polarity and generate leaf blades in the normal position, but the adaxial mesophyll shows disorganized patterns of cell division, delayed maturation of palisade, and ectopic reinitiation of blade primordia along the midrib. Reversal of the phenotype with exogenous gibberellic acid suggests that NSPHAN, acting via KNOX repression, maintains determinacy in the expanding lamina and sustains the patterns of cell proliferation critical to palisade development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号