首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpin telomeres. Hairpin telomeres present an uninterrupted DNA chain to the replication machinery overcoming the ‘end-replication problem’ for the linear replicons. Hairpin telomeres are formed from inverted repeat replicated telomere junctions by the telomere resolvase, ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. We report here that ResT also possesses single-strand annealing activity and a limited ability to promote DNA strand exchange reactions on partial duplex substrates. This combination of activities suggests ResT is a nexus between the seemingly distinct processes of telomere resolution and homologous recombination. Implications for hairpin telomere replication and linear plasmid recombination, including antigenic variation, are discussed.  相似文献   

2.
The Borrelia telomere resolvase, ResT, forms the unusual hairpin telomeres of the linear Borrelia replicons in a process referred to as telomere resolution. Telomere resolution is a DNA cleavage and rejoining reaction that proceeds from a replicated telomere intermediate in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases. Previous reports have implicated the hairpin-binding module, at the end of the N-terminal domain of ResT, in distorting the DNA between the scissile phosphates so as to promote DNA cleavage and hairpin formation by the catalytic domain. We report that unwinding the DNA between the scissile phosphates, prior to DNA cleavage, is a key cold-sensitive step in telomere resolution. Through the analysis of ResT mutants, rescued by substrate modifications that mimic DNA unwinding between the cleavage sites, we show that formation and/or stabilization of an underwound pre-cleavage intermediate depends upon cooperation of the hairpin-binding module and catalytic domain. The phenotype of the mutants argues that the pre-cleavage intermediate promotes strand ejection to favor the forward reaction and that subsequent hairpin capture is a reversible reaction step. These reaction features are proposed to promote hairpin formation over strand resealing while allowing reversal back to substrate of aborted reactions.  相似文献   

3.
The ResT telomere resolvase is responsible for maintaining the hairpin telomeres that cap the linear chromosome and minichromosomes of Borrelia burgdorferi. This enzyme acts at the tandem telomere junctions present within circular dimers resulting from DNA replication. ResT mediates the transesterification steps of resolution using a constellation of active site residues similar to that found in tyrosine recombinases and type IB topoisomerases. By combining this reaction mechanism with a hairpin binding module in its N-terminal domain, ResT reduces a fused telomere dimer into two hairpin monomers. ResT displays a split DNA binding specificity, with the N- and C-terminal domains targeting distinct regions of the telomere. This bi-specificity in binding is likely to be important in protein delivery, substrate selection and regulation of enzyme activity.  相似文献   

4.
Borrelia burgdorferi, a causative agent of Lyme disease, has a highly unusual segmented genome composed of both circular molecules and linear DNA replicons terminated by covalently closed hairpin ends or telomeres. Replication intermediates of the linear molecules are processed into hairpin telomeres via the activity of ResT, a telomere resolvase. We report here the results of limited proteolysis and mass spectroscopy to identify two main structural domains in ResT, separated by a chymotrypsin cleavage site between residues 163 and 164 of the 449 amino acid protein. The two domains have been overexpressed and purified. DNA electrophoretic mobility shift assays revealed that the C-terminal domain (ResT(164-449)) displays sequence-specific DNA binding to the box 3,4,5 region of the telomere, while the N-terminal domain (ResT(1-163)) exhibits sequence-independent DNA binding activity. Further analysis by DNase I footprinting supports a model for telomere resolution in which the hairpin binding module of the N-terminal domain is delivered to the box 1,2 region of the telomere through its tethering to ResT(164-449). Conversely, ResT(1-164) may play an important regulatory role by modulating both sequence-specific DNA binding activity and catalysis by the C-terminal domain.  相似文献   

5.
Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.  相似文献   

6.
Linear DNA molecules with covalently closed hairpin ends (telomeres) exist in a wide variety of organisms. Telomere resolution, a DNA breakage and reunion reaction in which replicated telomeres are processed into hairpin ends, is now known to be a common theme in poxviruses, Borrelia burgdorferi and Escherichia coli phage N15. Candidate proteins that may perform this reaction have recently been identified in poxviruses. Moreover, the first purification and definitive identification of a telomere resolvase has been reported for phage N15. This protein is the prototype for a new class of DNA enzyme that performs a unique reaction. Advances in the study of telomere resolution in poxviruses, B. burgdorferi and E. coli phage N15 are discussed.  相似文献   

7.
The stability of mammalian telomeres depends upon TRF2, which prevents inappropriate repair and checkpoint activation. By using a plasmid integration assay in yeasts carrying humanized telomeres, we demonstrated that TRF2 possesses the intrinsic property to both stimulate initial homologous recombination events and to prevent their resolution via its basic N-terminal domain. In human cells, we further showed that this TRF2 domain prevents telomere shortening mediated by the resolvase-associated protein SLX4 as well as GEN1 and MUS81, 2 different types of endonucleases with resolvase activities. We propose that various types of resolvase activities are kept in check by the basic N-terminal domain of TRF2 in order to favor an accurate repair of the stalled forks that occur during telomere replication.  相似文献   

8.
9.
The genus Borrelia includes the causative agents of Lyme disease and relapsing fever. An unusual feature of these bacteria is a segmented genome consisting mostly of a number of linear DNA molecules with covalently closed hairpin ends or telomeres. In this study we show that the BBB03 locus encodes the B. burgdorferi telomere resolvase, ResT. The purified protein catalyzes telomere resolution in vitro through a unique reaction: breakage of two phosphodiester bonds in a single DNA duplex (one on each strand) and joining of each end with the opposite DNA strand to form covalently closed hairpin telomeres. Telomere resolution by ResT occurs through a two-step transesterification reaction involving the formation of a covalent protein-DNA intermediate at a position three nucleotides from the axis of symmetry in each strand of the substrate.  相似文献   

10.
Yoo HH  Chung IK 《Aging cell》2011,10(4):557-571
Human chromosome ends associate with shelterin, a six-protein complex that protects telomeric DNA from being recognized as sites of DNA damage. The shelterin subunit TRF2 has been implicated in the protection of chromosome ends by facilitating their organization into the protective capping structure and by associating with several accessory proteins involved in various DNA transactions. Here we describe the characterization of DDX39 DEAD-box RNA helicase as a novel TRF2-interacting protein. DDX39 directly interacts with the telomeric repeat binding factor homology domain of TRF2 via the FXLXP motif (where X is any amino acid). DDX39 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT but has no effect on telomerase activity. Whereas overexpression of DDX39 in telomerase-positive human cancer cells led to progressive telomere elongation, depletion of endogenous DDX39 by small hairpin RNA (shRNA) resulted in telomere shortening. Furthermore, depletion of DDX39 induced DNA-damage response foci at internal genome as well as telomeres as evidenced by telomere dysfunction-induced foci. Some of the metaphase chromosomes showed no telomeric signal at chromatid ends, suggesting an aberrant telomere structure. Our findings suggest that DDX39, in addition to its role in mRNA splicing and nuclear export, is required for global genome integrity as well as telomere protection and represents a new pathway for telomere maintenance by modulating telomere length homeostasis.  相似文献   

11.
Spirochetes of the genus Borrelia include the causative agents of Lyme disease and relapsing fever. These bacteria have a highly segmented genome where most replicons are linear molecules terminated by covalently closed hairpin telomeres. Moreover, these genomes appear to be in a state of flux with extensive and ongoing DNA rearrangements by unknown mechanisms. The B. burgdorferi telomere resolvase ResT generates the hairpin telomeres from replication intermediates in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases and tyrosine recombinases. We report here the unexpected ability of ResT to catalyze the fusion of hairpin telomeres in a reversal of the telomere resolution reaction. We propose that stabilized ResT-mediated telomere fusions are an underlying force for maintaining the B. burgdorferi genome in a state of flux.  相似文献   

12.
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpins. Hairpin telomeres are formed from inverted repeat replicated telomere junctions (rTels) by the telomere resolvase ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. ResT can catalyze three distinct reactions: telomere resolution, telomere fusion, and Holliday junction (HJ) formation. HJ formation is known to occur only in the context of a synapsed pair of rTels. To test whether telomere resolution was synapsis-dependent, we performed experiments with rTel substrates immobilized on streptavidin-coated beads. We report that telomere resolution by ResT is synapsis-independent, indicating that alternative complexes are formed for telomere resolution and HJ formation. We also present evidence that dual hairpin telomere formation precedes product release. This mechanism of telomere resolution prevents the appearance of broken telomeres. We compare and contrast this mechanism with that proposed for TelK, the telomere resolvase of φKO2.  相似文献   

13.
An unusual feature of bacteria in the genus Borrelia (causative agents of Lyme disease and relapsing fever) is a segmented genome consisting of multiple linear DNA molecules with covalently closed hairpin ends, known as telomeres. The hairpin telomeres are generated by a DNA breakage and reunion process (telomere resolution) promoted by ResT, an enzyme using an active site related to that of tyrosine recombinases and type IB topoisomerases. In this study, we define the minimal sequence requirements for a functional telomere and identify specific basepairs that appear to be important for telomere resolution. In addition, we show that the two naturally occurring and distinct telomere spacings found in B. burgdorferi can both be efficiently processed by ResT. This flexibility for substrate utilization by ResT supports the argument for a single telomere resolvase in Borrelia. Furthermore, although telomere recognition requires sequence specificity in part of the substrate, DNA cleavage is instead position dependent and occurs at a fixed distance from the axis of symmetry and the conserved sequence of box 3 in the different replicated telomere substrates. This positional dependence for DNA cleavage has not been observed previously for a tyrosine recombinase.  相似文献   

14.
The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DNA replication. We characterized the N15 replicon and found that replication of circular N15 miniplasmids requires only the repA gene, which encodes a multidomain protein homologous to replication proteins of bacterial plasmids replicated by a theta-mechanism. Replication of a linear N15 miniplasmid also requires the protelomerase gene and telomere regions. N15 prophage replication is initiated at an internal ori site located within repA and proceeds bidirectionally. Electron microscopy data suggest that after duplication of the left telomere, protelomerase cuts this site generating Y-shaped molecules. Full replication of the molecule and subsequent resolution of the right telomere then results in two linear plasmid molecules. N15 prophage replication thus appears to follow a mechanism that is distinct from that employed by eukaryotic replicons with this type of telomere and suggests the possibility of evolutionarily independent appearances of prokaryotic and eukaryotic replicons with covalently closed telomeres.  相似文献   

15.
The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is detectable throughout cell culture and appears to act on both short and long telomeres, we also discovered that signatures of a recombinogenic activity are omnipresent, including telomere-sister chromatid exchanges, formation of alternative lengthening of telomeres (ALT)-associated PML-like bodies, production of telomere circles, and a high frequency of telomeres carrying marks of a DNA damage response. Our results suggest that recombination participates in the maintenance of the very long telomeres in normal S. granarius fibroblasts. We discuss the possible interplay between the interspersed telomere and rDNA repeats in the stabilization of the very long telomeres in this organism.  相似文献   

16.
17.
Telomeres are obligatory chromosomal landmarks that demarcate the ends of linear chromosomes to distinguish them from broken ends and can also serve to organize the genome. In both budding and fission yeast, they cluster at the periphery of the nucleus, potentially to establish a compartment of silent chromatin. To gain insight into telomere organization in higher organisms, we investigated their distribution in interphase nuclei of Drosophila melanogaster. We focused on the syncytial blastoderm, an excellent developmental stage for live imaging due to the synchronous division of the nuclei at this time. We followed the EGFP-labeled telomeric protein HOAP in vivo and found that the 16 telomeres yield four to six foci per nucleus, indicative of clustering. Furthermore, we confirmed clustering in other somatic tissues. Importantly, we observed that HOAP signal intensity in the clusters increases in interphase, potentially due to loading of HOAP to newly replicated telomeres. To determine the rules governing clustering, we used in vivo imaging and fluorescence in situ hybridization to test several predictions. First, we inspected mutant embryos that develop as haploids and found that clustering is not mediated by associations between homologs. Second, we probed specifically for a telomere of novel sequence and found strong evidence against DNA sequence identity and homology as critical factors. Third, we ruled out predominance of intrachromosomal interactions by marking both ends of a chromosome. Based on these results, we propose that clustering is independent of sequence and is likely maintained by an as yet undetermined factor.  相似文献   

18.
BackgroundRenal failure aggravates pathological cardiac remodelling induced by myocardial infarction (MI). Cardiac remodelling is associated with telomere shortening, a marker for biological ageing. We investigated whether mild and severe renal failure shorten cardiac telomeres and excessively shorten telomeres after MI. MethodsRats were subjected to sham, unilateral (UNX) or 5/6th nephrectomy (5/6NX) to induce none, mild or severe renal failure. MI was induced by left coronary artery ligation. Renal function parameters and blood pressure were measured. DNA was isolated from non-infarcted cardiac tissue. Telomere length was assessed by quantitative polymerase chain reaction (PCR). ResultsProteinuria was unchanged in UNX and MI compared with control, but strongly increased in 5/6NX, UNX+MI and 5/6NX+MI. Serum creatinine levels were increased fourfold in 5/6NX and tenfold in 5/6NX+MI. 5/6NX and groups with both renal failure and MI showed an approximate 20% reduction of telomere length, similar to the MI group. No excess telomere shortening was observed in hearts from rats with renal ablation after MI. ConclusionSevere renal failure, but not mild renal failure, leads to shortening of cardiac telomeres to a similar extent as found after MI. Renal failure did not induce excessive telomere shortening after MI. (Neth Heart J 2009;17:190–4.)  相似文献   

19.
The telomeres of poxviral chromosomes comprise covalently closed hairpin structures bearing mismatched bases. These hairpins are formed as concatemeric replication intermediates and are processed into mature, unit-length genomes. The structural transitions and enzymes involved in telomere resolution are poorly understood. Here we show that the type I topoisomerase of Shope fibroma virus (SFV) can promote a recombination reaction which converts cloned SFV replication intermediates into hairpin-ended molecules resembling mature poxviral telomeres. Recombinant SFV topoisomerase linearised a palindromic plasmid bearing 1.5 kb of DNA encoding the SFV concatemer junction, at a site near the centre of inverted-repeat symmetry. Most of these linear reaction products bore hairpin tips as judged by denaturing gel electrophoresis. The resolution reaction required palindromic SFV DNA sequences and was inhibited by compounds which block branch migration (MgCl2) or poxviral topoisomerases. The resolution reaction was also slow, needed substantial quantities of topoisomerase, and required that the palindrome be extruded in a cruciform configuration. DNA cleavage experiments identified a pair of suitably oriented topoisomerase recognition sites, 90 bases from the centre of the cloned SFV terminal inverted repeat, which may mark the resolution site. These data suggest a resolution scheme in which branch migration of a Holliday junction through a site occupied by covalently bound topoisomerase molecules, could lead to telomere resolution.  相似文献   

20.
Telomeres consist of repetitive DNA and associated proteins that protect chromosome ends from illicit DNA repair. It is well known that telomeric DNA is progressively eroded during cell division, until telomeres become too short and the cell stops dividing. There is a second mode of telomere shortening, however, which is a regulated form of telomere rapid deletion (TRD) termed telomere trimming that is reviewed here. Telomere trimming appears to involve resolution of recombination intermediate structures, which shortens the telomere by release of extrachromosomal telomeric DNA. This has been detected in human and in mouse cells and occurs both in somatic and germline cells, where it sets an upper limit on telomere length and contributes to a length equilibrium set-point in cells that have a telomere elongation mechanism. Telomere trimming thus represents an additional mechanism of telomere length control that contributes to normal telomere dynamics and cell proliferative potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号