首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
BACKGROUND: Glutamine modulates cytokine production in various tissues but its effects on the production of other inflammatory mediators such as eicosanoids and nitric oxide have not been investigated in human gut. AIM: To evaluate the influence of glutamine on interleukin (IL)-8, IL-6, nitric oxide and prostaglandin E(2) production by human gut. METHODS: Ten fasted volunteers received either enteral glutamine or isonitrogenous amino acids over 6 h in a cross-over design. Series of duodenal biopsies were frozen or cultured for 24 h with 0.5 or 5 mM of glutamine or amino acids. IL-6, IL-8 and PGE(2) were measured in culture media by ELISA and nitrites by Griess assay. mRNA levels for IL-6, IL-8, Cyclooxygenase-2 and NO synthase-2 were assessed in biopsies by RT-PCR. Results in percent, (median [range]) were compared by Wilcoxon test. RESULTS: Glutamine decreased IL-8 and IL-6 in-vitro production: 63 [2-173] vs 100 [19-177] and 37 [5-489] vs 100 [33-431], both P<0.05. IL-8 mRNA level also decreased in biopsies cultured with 5 mM glutamine: 26 [13-142] vs 92 [34-215], P<0.05. Nitrites and PGE(2) concentrations were not significantly affected by glutamine. CONCLUSION: Glutamine has a specific inhibitory effect on pro-inflammatory cytokine production in the gut and may contribution to the modulation of intestinal inflammation.  相似文献   

2.
Effects of glutamine on whole body and intestinal protein synthesis and on intestinal proteolysis were assessed in humans. Two groups of healthy volunteers received in a random order enteral glutamine (0.8 mmol.kg body wt(-1)x h(-1)) compared either to saline or isonitrogenous amino acids. Intravenous [2H5]phenylalanine and [13C]leucine were simultaneously infused. After gas chromatography-mass spectrometry analysis, whole body protein turnover was estimated from traced plasma amino acid fluxes and the fractional synthesis rate (FSR) of gut mucosal protein was calculated from protein and intracellular phenylalanine and leucine enrichments in duodenal biopsies. mRNA levels for ubiquitin, cathepsin D, and m-calpain were analyzed in biopsies by RT-PCR. Glutamine significantly increased mucosal protein FSR compared with saline. Glutamine and amino acids had similar effects on FSR. The mRNA level for ubiquitin was significantly decreased after glutamine infusion compared with saline and amino acids, whereas cathepsin D and m-calpain mRNA levels were not affected. Enteral glutamine stimulates mucosal protein synthesis and may attenuate ubiquitin-dependent proteolysis and thus improve protein balance in human gut.  相似文献   

3.
Intestinal intraepithelial lymphocytes (IELs) are major effector cells in the gut mucosal immune system, and are phenotypically distinct from thymic and peripheral T cells. Although nutritional supplementation with glutamine affects the intestinal immune response, it remains unclear whether this is a direct effect via the IEL-derived cytokines. This study examined changes in IEL-derived cytokine production following treatment with glutamine in vitro. Murine IELs were purified and activated with PMA plus ionomycin, and then cultured in the presence of various glutamine concentrations. IEL-derived cytokines were measured using a cytometric bead array (CBA) system, and IEL subsets were analyzed by flow cytometry. Treatment with glutamine increased the production of IL-2 and IFN-gamma from IELs in the presence of PMA plus ionomycin, but had no effect on TNFalpha, IL-4, or IL-5 production. Treatment with alanine or glucose had no regulatory effect on IEL-derived cytokines. Glutamine therefore had a direct effect on the production of selected IEL-derived Th1-cytokines, and enteral supplementation with glutamine may influence the intestinal immune responses mediated by IELs.  相似文献   

4.
Huang Y  Li N  Liboni K  Neu J 《Cytokine》2003,22(3-4):77-83
Glutamine (Gln) supplementation has been shown to decrease production of pro-inflammatory cytokines by the human intestinal mucosa. The mechanism of this is poorly understood. We hypothesize that Gln down-regulates lipopolysaccharide (LPS)-stimulated pro-inflammatory cytokine production in Caco-2 cells by nuclear factor-kappa B (NF-kappaB). Caco-2 cells were incubated with different concentrations of Gln with or without methionine sulfoximine (MS, an inhibitor of glutamine synthetase) before stimulation with LPS. IL-6, IL-8, IL-10 and TNF-alpha protein and mRNA level were determined. NF-kappaB translocation was determined using an ELISA-based kit. IL-8 was the only detectable cytokine/chemokine. The largest amount of IL-8 was secreted by cells in the presence of MS with no Gln in the medium after exposure to LPS. LPS increased IL-8 production, peaking 10h after LPS administration. The addition of Gln (0.5 or 5.0mM) decreased IL-8 peptide and mRNA expression. LPS increased NF-kappaB nuclear translocation in the presence or absence of MS. Neither Gln nor MS altered NF-kappaB nuclear translocation. These results indicate that the lack of glutamine increases IL-8 production by Caco-2 cells after LPS stimulation. However, the glutamine-mediated decrease in LPS-stimulated IL-8 production is not associated with NF-kappaB p50 nuclear binding.  相似文献   

5.
Celiac disease (CD) results from a permanent intolerance to dietary gluten and is due to a massive T cell-mediated immune response to gliadin, the main component of gluten. In this disease, the regulation of immune responses to dietary gliadin is altered. Herein, we investigated whether IL-10 could modulate anti-gliadin immune responses and whether gliadin-specific type 1 regulatory T (Tr1) cells could be isolated from the intestinal mucosa of CD patients in remission. Short-term T cell lines were generated from jejunal biopsies, either freshly processed or cultured ex vivo with gliadin in the presence or absence of IL-10. Ex vivo stimulation of CD biopsies with gliadin in the presence of IL-10 resulted in suppression of Ag-specific proliferation and cytokine production, indicating that pathogenic T cells are susceptible to IL-10-mediated immune regulation. T cell clones generated from intestinal T cell lines were tested for gliadin specificity by cytokine production and proliferative responses. The majority of gliadin-specific T cell clones had a Th0 cytokine production profile with secretion of IL-2, IL-4, IFN-gamma, and IL-10 and proliferated in response to gliadin. Tr1 cell clones were also isolated. These Tr1 cells were anergic, restricted by DQ2 (a CD-associated HLA), and produced IL-10 and IFN-gamma, but little or no IL-2 or IL-4 upon activation with gliadin or polyclonal stimuli. Importantly, gliadin-specific Tr1 cell clones suppressed proliferation of pathogenic Th0 cells. In conclusion, dietary Ag-specific Tr1 cells are present in the human intestinal mucosa, and strategies to boost their numbers and/or function may offer new therapeutic opportunities to restore gut homeostasis.  相似文献   

6.
Glutamine is required for the proliferation of lymphocytes, but quantitative effects on discrete steps of activation remain unknown to date. Therefore the influence of glutamine (range: 0 mM–1 mM) on the in vitro response of human peripheral blood mononuclear cells (PBMC) to a mitogenic anti-CD3 monoclonal antibody (mAb) was investigated. Expression of surface activation markers by flow cytometry, presence of mRNA of cytokine genes by polymerase chain reaction, release of cytokines by ELISA, and entering into the cell cycle by flow cytometry were sequentially analyzed. Proliferation was measured by a 3H-thymidine incorporation assay. mRNA coding for IL-2, IL-2 receptor, IL-4, IL-5, GM-CSF, and IFN-γ was detectable independently from exogenous glutamine provision; expression of the cell surface activation marker CD69 was also glutamine independent. In contrast, later activation events including the expression of the surface activation markers CD25, CD45RO, and CD71 as well as the production of IFN-γ were found to require exogenous glutamine supply. In contrast, production of TNF-α could be observed in the absence of glutamine and was increased to a limited extent by exogenous glutamine. The overall lymphocyte response as reflected by entering into the cell cycle and proliferation was directly correlated with the glutamine concentration of the culture medium. Efficient progression through the cell cycle was found to require at least 0.5 mM glutamine and an increase in glutamine concentration from 0.1 mM to 1 mM enhanced proliferation by 50%. These results were supported by data obtained following anti-CD3 stimulation of a CD4+ T cell clone. Altogether, these data underline that a complete cellular immune response depends on an exogenous glutamine supply. Regarding glutamine requirements, they define early, glutamine-independent and late, glutamine-dependent lymphocyte activation stages.  相似文献   

7.
In vitro organ culture (IVOC) represents a gold standard model to study enteropathogenic E. coli (EPEC) infection of human intestinal mucosa. However, the optimal examination of the bacterial–host cell interaction requires a directional epithelial exposure, without serosal or cut surface stimulation. A polarized IVOC system (pIVOC) was developed in order to overcome such limitations: apical EPEC infection produced negligible bacterial leakage via biopsy edges, resulted in enhanced colonization compared with standard IVOC, and showed evidence of bacterial detachment, as in natural rabbit EPEC infections. Examination of mucosal innate immune responses in pIVOC showed both interleukin (IL)-8 mRNA and protein levels were significantly increased after apical EPEC infection. Increased IL-8 levels mainly depended on flagellin expression as fliC -negative EPEC did not elicit a significant IL-8 response despite increased mucosal colonization compared with wild-type EPEC. In addition, apical application of purified flagella significantly increased IL-8 protein levels over non-infected controls. Immunofluorescence staining of EPEC-infected small intestinal biopsies revealed apical and basolateral distribution of Toll-like receptor (TLR) 5 on epithelium, suggesting that EPEC can trigger mucosal IL-8 responses by apical flagellin/TLR5 interaction ex vivo and does not require access to the basolateral membrane as postulated in cell culture models.  相似文献   

8.
Yassad A  Husson A  Bion A  Lavoinne A 《Cytokine》2000,12(8):1288-1291
Synthesis and secretion of IL-1beta and IL-6 were compared in LPS-stimulated rat peritoneal macrophages, and the effect of glutamine studied. LPS induced a parallel increase in mRNA and synthesis of IL-1beta and IL-6. IL-1beta accumulated mainly in the cytosol and IL-6 in the culture medium. Glutamine addition increased the synthesis of both cytokines, but the overall production (intra-+extracellular) of IL-1beta increased two-fold, although that of IL-6 increased only 1.3-fold. The influence of glutamine is discussed.  相似文献   

9.
Glutamine plays a key role in intestinal growth and maintenance of gut function, and as we have shown protects the postischemic gut (Kozar RA, Scultz SG, Bick RJ, Poindexter BJ, Desoigne R, Weisbrodt NW, Haber MM, Moore FA. Shock 21: 433-437, 2004). However, the precise mechanisms of the gut protective effects of glutamine have not been well elucidated. In the present study, RNA microarray was performed to obtain differentially expressed genes in intestinal epithelial IEC-6 cells following either 2 mM or 10 mM glutamine. The result demonstrated that specificity protein 3 (Sp3) mRNA expression was downregulated 3.1-fold. PCR and Western blot confirmed that Sp3 expression was decreased by glutamine in a time- and dose-dependent fashion. To investigate the role of Sp3, Sp3 gene siRNA silencing was performed and apoptosis was assessed. Silencing of Sp3 demonstrated a significant increase in Bcl-2 and decrease in Bax protein expression, as well as a decrease in caspase-3, -8, and -9 protein expression and activity. The protein expression of apoptosis-related proteins after hypoxia/reoxygenation was similar to that of normoxia and correlated with a decrease in DNA fragmentation. Importantly, the addition of glutamine to Sp3-silenced cells did not further lessen apoptosis, suggesting that Sp3 plays a major role in the inhibitory effect of glutamine on apoptosis. This novel finding may explain in part the gut-protective effects of glutamine.  相似文献   

10.
Background: Glutamine is routinely added to most cell cultures. Glutamine has been found to be the preferential nutrient to the rapidly replicating intestinal mucosa, but whether this is a metabolic effect or due to other properties of this amino acid is not determined. To study the importance of glutamine on the growth of two enterocyte-like cell lines, the effects of depriving the media or supplementing it with glutamine were assessed in media with different serum and energy supplements. Methods: CaCo-2 and HT-29 cells were grown in serum-free medium, with fetal bovine or synthetic serum, and with or without glucose or galactose. The glutamine content was varied between 0 and 4 mM. All growth assays were performed in triplicate by counting in a hemocytometer. Results: Both cell lines were dependent of serum factors for growth, but displayed distinct requirements on glutamine supplementation. Glutamine was an obligate supplement with dose-dependent correlation to growth (r=0.87, p<0.01) for CaCo-2 cells cultured in synthetic, but not in fetal bovine serum. In HT-29 cells, the correlation between glutamine and growth was significant (r=0,68, p<0,05) only in fetal bovine serum in the absence of galactose. Conclusion: This study shows that glutamine has different growth stimulating effects on two enterocyte-like cell lines studied. This could reflect different modes of action of glutamine on proliferation and differentiation in an enterocyte cell population.  相似文献   

11.
The metabolism of glutamine, the main respiratory fuel of enterocytes, is governed by the activity of glutaminase and glutamine synthetase. Because starvation induces intestinal atrophy, it might alter the rate of intestinal glutamine utilization. This study examined the effect of starvation on the activity, level of mRNA, and distribution of mRNA of glutaminase and glutamine synthetase in the rat intestine. Rats were randomized into groups and were either: (1) fed for 2 days with rat food ad libitum or (2) starved for 2 days. Standardized segments of jejunum and ileum were removed for the estimation of enzyme activity, level of mRNA, and in situ hybridization analysis. The jejunum of the fed rats had a greater activity of both enzymes per centimeter of intestine (P < 0.01), a greater glutaminase specific activity (1.97 +/- 0.45 vs. 1.09 +/- 0.34 micromol/hr/mg protein, P < 0.01), and a lower level of glutaminase and glutamine synthetase mRNA. The ileum of the fed rats had a greater activity of glutamine synthetase per centimeter of intestine (162.9 +/- 50.6 vs. 91.0 +/- 23.1 nmol/hr/cm bowel, P < 0.01), a lower level of glutaminase mRNA, and a greater level of glutamine synthetase mRNA. In situ hybridization analysis showed that starvation does not alter the distribution of glutaminase and glutamine synthetase mRNA in the intestinal mucosa. This study confirms that starvation decreases the total intestinal activity per centimeter of both glutaminase and glutamine synthetase. More importantly, the results indicate that the intestine adapts to starvation by accumulating glutaminase mRNA. This process prepares the intestine for a restoration of intake.  相似文献   

12.
Using an in vitro autologous human system, the immunomodulatory function of colonic intraepithelial lymphocytes (IEL) on cytokine production by lamina propria mononuclear cells (LPMNC) has been investigated. In contrast to LPMNC, colonic IEL produced only low amounts of IL-10, interferon-gamma and interleukin-2. However, co-culture experiments (IEL + LPMNC) have shown that IEL can enhance the PHA-induced synthesis of IL-2 and interferon-gamma, but not IL-10 by LPMNC. Using a transwell filter culture system apparatus, this effect was shown not to require a cell-to-cell interaction. Thus, IEL in vitro may modulate the cytokine synthesis of LPMNC, through the production of soluble factors. This may prove highly relevant in the in vivo immune activation of the gastrointestinal mucosa.  相似文献   

13.
14.
In hemorrhagic shock (HS), increased cytokine production contributes to tissue inflammation and injury through the recruitment of neutrophils [polymorphonuclear cells (PMN)]. HS stimulates the early expression of inducible nitric oxide synthase (iNOS) that modulates proinflammatory activation after hemorrhage. Experiments were performed to determine the contribution of iNOS to gut inflammation and dysmotility after HS. Rats subjected to HS (mean arterial pressure 40 mmHg for 2.5 h followed by resuscitation and death at 4 h) demonstrated histological signs of mucosal injury, impairment of intestinal smooth muscle contractility, extravasation of PMN, and increased gut mRNA levels of ICAM-1, IL-6, and granulocyte colony-stimulating factor (G-CSF). In addition, DNA binding activity of NF-kappaB and Stat3, an IL-6 signaling intermediate, was significantly increased. In shocked rats treated with the selective iNOS inhibitor l-N(6)-(1-iminoethyl)lysine at the time of resuscitation, histological signs of intestinal injury and PMN infiltration were reduced and muscle contractility was almost completely restored. Selective iNOS inhibition in shocked animals reduced the binding activity of NF-kappaB and Stat3 and reduced mRNA levels of ICAM-1, IL-6, and G-CSF. The results of studies using iNOS knockout mice subjected to HS were similar. We propose that early upregulation of iNOS contributes to the inflammatory response in the gut wall and participates in the activation of signaling cascades and cytokine expression that regulate intestinal injury, PMN recruitment, and impaired gut motility.  相似文献   

15.
It has been demonstrated that the neonatal suckling rat is more susceptible to endotoxin [lipopolysaccharide (LPS)]-induced colonic damage compared with weaned littermates. There is evidence to suggest that differences in the production of certain cytokines, including interleukin (IL)-4, IL-6, and IL-10, are associated with intestinal inflammation in children. We have examined the production, localization, and mRNA detection of these cytokines in suckling and weaned rat colons after bacterial LPS challenge. Suckling (10 day old) and weaned (25 day old) rats were injected with LPS (3 mg/kg ip). Colon samples were taken up to 4 h after treatment, and cytokines were measured by ELISA. LPS-induced cytokine levels were significantly different in suckling rats compared with weaned rats. Cytokine localization to the colonic mucosa was evident in suckling rats up to 4 h after LPS administration but was not consistently seen in weaned rats. The mRNA for cytokines examined were detected by RT-PCR in suckling but not in weaned rat colons after LPS treatment. Induction of neutropenia via anti-neutrophil serum (ANS) administration did not affect cytokine mRNA detection in neonates after LPS treatment. Weaned animals displayed positive detection of all cytokines examined after ANS. Therefore, we have shown that the suckling rat displays a different production and expression of colonic IL-4, IL-6, and IL-10 compared with weaned littermates after LPS challenge. Furthermore, neutrophils may be implicated in colonic cytokine expression after LPS challenge in rats.  相似文献   

16.
To determine whether glutamine affects glutathione (GSH, gamma-glutamyl-cysteinyl-glycine) metabolism, seven healthy beagle dogs received 6-h infusions of [(15)N]glutamate and [(13)C]leucine after a 3-day fast. Isotope infusions were performed during oral feeding with an elemental regimen, supplemented with either l-glutamine or an isonitrogenous amino acid mixture, on two separate days and in randomized order. Timed blood samples were obtained, and a surgical duodenal biopsy was performed after 6 h of isotope infusion. GSH fractional synthesis rate (FSR) was assessed from [(15)N]glutamate incorporation into blood and gut GSH, and duodenal protein synthesis from [(13)C]leucine incorporation into gut protein. Glutamine supplementation failed to alter erythrocyte GSH concentration (2189+/-86 vs. 1994+/-102 micromol L(-1) for glutamine vs. control; ns) or FSR (64+/-17% vs. 74+/-20% day(-1); ns). In the duodenum, glutamine supplementation was associated with a 92% rise in reduced/oxidized GSH ratio (P=.024) and with a 44% decline in GSH FSR (96+/-15% day(-1) vs. 170+/-18% day(-1); P=.005), whereas total GSH concentration remained unchanged (808+/-154 vs. 740+/-127 micromol kg(-1); P=.779). We conclude that, in dogs receiving enteral nutrition after a 3-day fast: (1) glutamine availability does not affect blood GSH, and, (2) in contrast, in the duodenum, the preserved GSH pool, along with a decreased synthesis rate, suggests that glutamine may maintain GSH pool and intestinal redox status by acutely decreasing GSH utilization.  相似文献   

17.
Mice deficient in the G-protein alpha subunit G(i)alpha(2) spontaneously develop colitis and colon cancer. IL-11 is a pleiotropic cytokine known to protect the intestinal epithelium from injury in animal models of colitis and is produced by subepithelial myofibroblasts in response to inflammatory mediators including TGF-beta, IL-1beta, and PGE(2). Arachidonic acid release and subsequent PGE(2) production is significantly decreased in the colonic mucosa of G(i)alpha(2)-/- mice, and we hypothesized that this would affect mucosal IL-11 production. Mucosal levels of IL-11 were found to be significantly decreased in G(i)alpha(2)-/- mice despite the presence of mild colitis. Primary cultures of G(i)alpha(2)-/- intestinal and colonic myofibroblasts (IMF and CMF, respectively) produced less basal and TGF-beta or IL-1beta-stimulated IL-11 mRNA and protein than wild-type cells. Inhibitors of ERK or p38 MAPK activation dose dependently inhibited IMF and CMF IL-11 production in response to TGF-beta stimulation, whereas 16,16 dimethyl-PGE(2) and prostanoid receptor subtype-selective agonists induced IL-11 production. Treatment of animals with the EP4-specific agonist ONO-AE1-329 resulted in enhanced mucosal levels of IL-11, and increased IL-11 production by ex vivo cultured CMF. Modulation of cAMP levels produced diverging results, with enhancement of TGF-beta-induced IL-11 release in IMF pretreated with 8-Br-cAMP and inhibition in cells treated either with pertussis toxin or the PKA inhibitor H-89. These data suggest a physiological role for prostaglandins, MAPK signaling, and cAMP signaling for the production of myofibroblast-derived IL-11 in the mouse intestinal mucosa.  相似文献   

18.
Zhou X  Wu X  Yin Y  Zhang C  He L 《Amino acids》2012,43(2):813-821
The objective of this study was to evaluate the effect of oral supplementation with a combination of arginine and glutamine on the intestinal mucosa and inflammatory cytokines of lipopolysaccharide (LPS)-induced adult rats. Fifty Sprague-Dawley rats (average weight of 185 ± 15 g) were randomly divided into five groups: control group A (CA) and control group B (CB), both orally supplemented with 0.9% saline; group Arg, supplemented with 300 mg/kg day(-1) arginine; group Gln, supplemented with 300 mg/kg day(-1) glutamine; group AG, supplemented with 150 mg/kg day(-1) arginine and 150 mg/kg day(-1) glutamine. The experiment lasted for 2 weeks. Food intake and body weight were measured during the experiment. At 10.00 h of day 15, animals were injected with 4 mg/kg LPS (group CB, Arg, Gln, and AG) or sterile saline (group CA) after supplementation. Then at 14.00 h, all animals were killed and blood and tissue collected. The results showed that compared with group CB, arginine concentration tended to be increased (P > 0.05) in group Arg and AG, while there was no significant difference in glutamine concentration among the groups challenged with LPS. Oral supplementation with arginine or/and glutamine mitigated morphology impairment (lower villus height, P < 0.05) in the jejunum and ileum induced by LPS challenge. LPS administration resulted in a significant increase in TNF-α, IL-1β, IL-6 and IL-10 mRNA abundance. Arginine only significantly decreased TNF-α mRNA abundance in the ileum, while glutamine significantly decreased both TNF-α and IL-10 mRNA in the ileum. A combination of arginine and glutamine significantly decreased TNF-α and IL-1β mRNA abundance in both the jejunum and ileum, while they also significantly decreased anti-inflammatory IL-10 in the ileum. These results revealed that an oral supply of combined arginine and glutamine had more favorable effects on the intestinal mucosa and inflammatory cytokines than a supply of arginine or glutamine alone.  相似文献   

19.
We have biologically characterized two new members of the IL-17 cytokine family: IL-17F and IL-25. In contrast to conventional in vitro screening approaches, we have characterized the activity of these new molecules by direct in vivo analysis and have compared their function to that of other IL-17 family members. Intranasal administration of adenovirus expressing IL-17, IL-17C, or IL-17F resulted in bronchoalveolar lavage neutrophilia and inflammatory gene expression in the lung. In contrast, intranasal administration of IL-25-expressing adenovirus or IL-25 protein resulted in the production of IL-4, IL-5, IL-13, and eotaxin mRNA in the lung and marked eosinophilia in the bronchoalveolar lavage and lung tissue. Mice given intranasal IL-25 also developed epithelial cell hyperplasia, increased mucus secretion, and airway hyperreactivity. IL-25 gene expression was detected following Aspergillus and Nippostrongylus infection in the lung and gut, respectively. IL-25-induced eosinophilia required IL-5 and IL-13, but not IL-4 or T cells. Following IL-25 administration, the IL-5(+) staining cells were CD45R/B220(+), Thy-1(+/-), but were NK1.1-, Ly-6G(GR-1)-, CD4-, CD3-, and c-kit-negative. gamma-common knockout mice did not develop eosinophilia in response to IL-25, nor were IL-5(+) cells detected. These findings suggest the existence of a previously unrecognized cell population that may initiate Th2-like responses by responding to IL-25 in vivo. Further, these data demonstrate the heterogeneity of function within the IL-17 cytokine family and suggest that IL-25 may be an important mediator of allergic disease via production of IL-4, IL-5, IL-13, and eotaxin.  相似文献   

20.
In hypercatabolic patients, the beneficial effects of glutamine on gut mucosa could be partly due to a stimulation of protein synthesis. The fractional synthesis rate (FSR) of gut mucosal protein was measured in four groups of healthy volunteers treated with glucocorticoids for 2 days. Two groups were studied in the postabsorptive state while receiving glutamine or a nitrogen equivalent (control) and two groups in the fed state with or without glutamine, using a 5-h intravenous infusion of [(13)C]leucine, [(2)H(5)]phenylalanine, and cortisone. After nutrient and tracer infusion, duodenal biopsies were taken. In the postabsorptive state, FSR of gut mucosal protein were 87 and 76%/day in the control group and 130% (P = 0.058 vs. control) and 104% (P = 0.17 vs. control)/day in the glutamine group, with leucine and phenylalanine as tracers, respectively. During feeding, FSR did not increase and no significant difference was observed between glutamine and control groups. Overall, FSR of the four groups were two- to threefold higher than those obtained previously in healthy humans, suggesting that glucocorticoids may increase gut mucosal protein synthesis. However, in this situation, a moderate enteral glutamine supply failed to demonstrate a significant effect on gut mucosal protein synthesis in the postabsorptive state and during feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号