首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of thrombin stimulation on megakaryocytopoiesis and pulmonary-platelet interactions were investigated before and after administration of the compound to 15 mongrel dogs. Each dog served as its own control. Thrombin was given to encourage the traffic of megakaryocytes into the lung and to study the thrombin-stimulated effects on megakaryocytopoiesis in the bone marrow. Our results showed that thrombin increased the numbers of bone marrow cells in general and megakaryocytes (MK) in particular. In addition, the maturation cycle of megakaryocytes was accelerated and the number of MK migrating into the central venous circulation was nearly doubled. Most of the circulating MK ultimately became sequestered in pulmonary capillaries, where platelets were shed into the arterial circulation. We conclude that thrombin has a major stimulatory effect on megakaryocytopoiesis in the bone marrow and that the lung plays an important role as a vascular filter and regulator of circulating platelet count.  相似文献   

2.
Effect of insulin on murine megakaryocytopoiesis in a liquid culture system   总被引:2,自引:0,他引:2  
To examine the influence of insulin on megakaryocytopoiesis, we tested its effect on murine bone marrow cultures in a liquid culture system. In the presence of pokeweed mitogen-stimulated spleen cell conditioned medium in culture, insulin markedly enhanced megakaryocyte colony formation and increased the number and size of free megakaryocytes seen after 7 days. Many of the cells in cultures with insulin, however, were classified as immature, since they had a basophilic cytoplasm, a low cytoplasmic/nuclear ratio and low acetylcholinesterase activity. It is suggested that insulin potentiates murine marrow megakaryocytopoiesis in vitro, but that this is not accompanied by differentiation of the cells from the immature to mature state.  相似文献   

3.
The in vitro cloning technique for detecting megakaryocyte precursor cells was employed to compare stimuli known to influence megakaryocytopoiesis. Preparations of thrombopoietic stimulating factor (TSF) did not directly stimulate the growth of megakaryocyte colonies (CFU-m) but increased the frequency of CFU-m when TSF was added to the cultures with a constant amount of megakaryocyte colony stimulating factor. Platelets or platelet homogenates did not influence the frequency of CFU-m or the size of individual colonies. Analysis of cell surface properties of megakaryocytes obtained either by isolation from bone marrow or from in vitro colonies revealed species differences. The possibility that megakaryocytopoiesis and platelet release are regulated both within the marrow as well as by humoral factors is discussed.  相似文献   

4.
P A de Alarcon 《Blood cells》1989,15(1):173-185
Megakaryocyte colony-stimulating activity (Mk-CSA) is required for in vitro megakaryocyte colony formation. Its in vivo significance in megakaryocytopoiesis is unknown. We studied 12 patients undergoing bone marrow transplantation (BMT) at our institution. The bone marrow megakaryocyte progenitor cells (CFU-Mk), the serum level of Mk-CSA, and the platelet count on the 28th day after BMT were studied. Patients with elevated Mk-CSA levels had less CFU-Mk in their bone marrow than did patients with a normal or decreased Mk-CSA (p less than 0.01). Animal experiments using murine models have documented that several purified molecules including erythropoietin, multi-CSF and GM-CSF possess Mk-CSA. The in vitro Mk-CSF of WEHI-3-conditioned medium is multi-CSF. The in vivo significance for megakaryocytopoiesis of these factors is not clear. In the human system, Mk-CSA is increased in conditions with decreased bone marrow megakaryocytes. Recombinant human or primate CSFs have in vitro Mk-CSA utilizing both human and murine cells as targets. However, the presence of these activities does not fully explain the Mk-CSA in human serum rich in Mk-CSA. The precise regulation of human blood cell levels and the studies discussed suggest that there is a specific Mk-CSF that responds to in vivo changes in megakaryocyte numbers. Proof of its physiologic role awaits the isolation of a pure factor.  相似文献   

5.
By means of heterotopic transplantation of the bone marrow interrelations of the stromal and hemopoietic tissues of the mice bone marrow have been studied at administration of dipiridamol. Effect of the drug to the hemopoiesis is realized via stem stromal cells of the bone marrow. Under the influence of dipiridamol a focus of heterotopic hemopoiesis the osteogenic component in it is present only in 30% of cases in comparison with the control. Inhibition of the stromal component proliferation is accompanied with increasing mitotic activity of the hemopoietic elements against the background of the bone marrow cellularity decrease both in the femoral bone and in the focus of heterotopic hemopoiesis. At administration of dipiridamol a phenomenon of noneffective megakaryocytopoiesis with the intrabone marrow destruction of megakaryocytes, resulting in local release of thrombocyte growth factor, which has a compensatory character.  相似文献   

6.
The effect of cyclophosphamide (CY) on megakaryocytopoiesis in mice was examined with assays of megakaryocyte colony-forming cells (Meg-CFC) in bone marrow and spleen and simultaneous determinations of peripheral blood counts, after a single intraperitoneal dose (200 mg/kg) of CY. Significant rebound thrombocytosis (170% of normal) occurred at day 11 after injection with CY, although only modest preceding thrombocytopenia (70% of normal) was observed. After an initial 3–5-day period of suppression, total megakaryocyte colony-forming cells (Meg-CFC) in both bone marrow and spleen of CY-treated mice demonstrated rebound increases at 5 and 7 days, respectively, after administration of the drug. Granulocyte-macrophage colony-forming cells (GM-CFC) exhibited alterations which were similar to those of Meg-CFC, suggesting similar sensitivities of Meg-CFC and GM-CFC to CY. The increase in Meg-CFC in both bone marrow and spleen preceded development of thrombocytosis by 4–6 days. This suggests that increased platelet counts in CY-treated mice are attributable, at least in part, to alterations in feedback mechanisms which control megakaryocytopoiesis, with resultant stimulation of the megakaryocyte progenitor compartment.  相似文献   

7.
Role of the stromal microenvironment in regulation of bone marrow hemopoiesis at the administration of the thrombocyte disaggregant curantyl was studied by the method of heterotopic transplantation of the mice bone marrow. It is shown that the action of curantyl on hemopoiesis is realised through the stem stromal cells of the bone marrow. It is noted that the inhibitory action of the preparation on proliferation of osteogenic precursor-cells is followed by activation of bone resorption processes in regenerating ectopic hemopoietic organ. Under the action of curantyl at low bone marrow cellularity in the focus of heterotopic hemopoiesis and femur an increase of mitotic activity in hemopoietic elements is noted. It is revealed that a phenomenon of ineffective megakaryocytopoiesis with intramedullary destruction of megakaryocytes leads to the local excretion of the thrombocyte released growth factor (TRGF) which has a compensatory character.  相似文献   

8.
The effect of dipyridamole on megakaryocytopoiesis in regenerating and stationary populations of mouse bone marrow cells has been studied by heterotopic transplantation of the bone marrow using histological, electron microscopic and biochemical techniques. It is shown that drug administration induced destruction of megakaryocytes. In megakaryocytic cytoplasm giant lipid granules were found whose growth and number increase resulted in megakaryocytes kill. Gas-liquid chromatography was used to evaluate the effect of dipyridamole on distribution of lipid fatty acids of the stationary and regenerating populations of the bone marrow cells. A marked increase of the percentage of docosahexaenoic acid was found in lipids of the stationary population. Chronic dipyridamole administration caused an increase of percentage of myristic, palmitic oleic acids, and decrease of percentage of arachidonic and eicosapentaenoic acids in lipids of regenerating bone marrow cells population.  相似文献   

9.
Multiple levels of regulation of megakaryocytopoiesis   总被引:3,自引:0,他引:3  
A working hypothesis for the regulation of megakaryocytopoiesis is described on the basis of current data. The hypothesis proposes that in vivo megakaryocytes are generated by 1) the expansion of clonable progenitor cells into immature megakaryocytes by locally produced (and regulated) interleukin-3 (IL-3) and 2) the development and maturation of immature megakaryocytes by a dual system; by a lineage specific mechanism involving thrombopoietic stimuli in the steady state and thrombocytopenic conditions, and by a lineage nonspecific mechanism via IL-3 in damaged or reconstituting marrow. The hypothesis predicts that if IL-3 is a significant in vivo regulator of megakaryocyte formation and development, receptor for IL-3 should be present on megakaryocytes and may be vestigially on platelets. Small but significant levels of 125I IL-3 were found to bind to platelets from normal mice. The level of binding on platelets was found to be enhanced sevenfold from mice that had received high levels of irradiation followed by bone marrow transplantation. This contrasted with a twofold increase in the level of binding to platelets from mice made acutely thrombocytopenic with antiplatelet serum. The data suggest that IL-3 may be involved in the in vivo regulation of murine megakaryocytopoiesis and may be a significant factor in rebound thrombopoiesis following bone marrow damage.  相似文献   

10.
It is apparent that multiple cellular stages and biologic processes can be identified during megakaryocytopoiesis that are potentially subject to control by hematopoietic growth factors and marrow accessory cell populations. Two classes of megakaryocyte progenitor cells, the colony forming unit-megakaryocyte (CFU-MK) and the burst forming unit-megakaryocyte (BFU-MK), have now been detected in normal human bone marrow cells. The BFU-MK by virtue of the greater cellular content of its resultant colonies and the delayed time of appearance of these colonies appears to be a more primitive progenitor cell with a greater proliferative potential than the CFU-MK. A number of hematopoietic growth factors including megakaryocyte colony stimulating factor, (MK-CSF), recombinant erythropoietin (EPO) and granulocyte macrophage colony stimulating factor (GM-CSF) are each capable of increasing cloning efficiency of human megakaryocyte progenitor cells. It is presently unknown whether these factors act directly on the CFU-MK or whether they stimulate marrow accessory cells to elaborate growth factors that influence CFU-MK proliferation. In order to answer this question, the effect of these growth factors on the cloning efficiency of a human megakaryocytic cell line, EST-IU, was examined. Each of these factors was capable of increasing leukemia cell colony formation. One can conclude from these studies that MK-CSF, EPO, and GM-CSF act directly on cells of the megakaryocytic lineage. The physiologic significance of the lineage nonspecific effects of EPO and GM-CSF on megakaryocytopoiesis is yet to be determined. On the basis of these observations, a model of human megakaryocytopoiesis was suggested. Several factors appear able to influence multiple steps in megakaryocytic development, whereas others influence only specific stages or cellular events occurring during megakaryocytopoiesis.  相似文献   

11.
The ACHE and BCHE genes, encoding the acetylcholine hydrolysing enzymes acetylcholinesterase (ACHE) and butyrylcholinesterase (BCHE), co-amplify with several oncogenes in leukemic patients with platelet deficiency (thrombocytopenia). This and other experiments implicated ACHE and BCHE in the development of bone marrow megakaryocytes, the progenitors of platelets. Therefore, we wished to find out whether cholinesterase gene amplification would also occur in non-cancerous platelet disorders and, if so, whether oncogenes would amplify in such cases as well. The autoimmune disease systemic lupus erythematosus (SLE) presents an appropriate model system for this issue, since patients with SLE may suffer from thrombocytopenia resistant to most treatment modalities. Here, we report a 40-80-fold amplification of genomic sequences from the ACHE and BCHE genes as well as the C-raf, V-sis and C-fes/fps oncogenes in peripheral blood cells from an SLE patient with severe thrombocytopenia. PvuII restriction analysis and DNA blot hybridization of the amplified ACHE and BCHE sequences demonstrated apparent aberrations in both genes, suggesting that malfunctioning of modified, partially amplified cholinesterase genes may be involved in the etiology of thrombocytopenia associated with SLE. These observations imply that cholinergic mechanisms regulate megakaryocytopoiesis, shed new light on the diverse hematologic findings characteristic of SLE, and may become valuable as diagnostic, treatment and prognostic tools in the follow-up of patients suffering from thrombocytopenia associated with SLE. Furthermore, these findings reinforce the notion that cholinesterase gene amplifications are causally related with platelet abnormalities in multiple hemopoietic disorders.  相似文献   

12.
A method has been developed to quantitate megakaryocytopoiesis in culture by measuring acetylcholinesterase synthesized in vitro. Murine marrow cells, treated with diisopropylfluorosphosphate (DFP) to inactivate initial acetylcholinesterase (AchE) present in megakaryocytes and contaminating blood, were set up in Iscove's medium supplemented with 15% DFP-treated horse serum +/- pokeweed mitogen-stimulated spleen cell conditioned medium (PWM-SCM) in 96-well microplates. Following the culture period, Triton X-100, dithiobisnitrobenzoic acid (DTNB), and acetylthiocholine iodide were added to each well. AchE synthesized in culture cleaved acetylthiocholine to thiocholine, which stochiometrically reduced the colorless indicator DTNB to a highly colored product. Thirty minutes following the addition of substrate, the plates were assayed for activity with a vertical recording photometer. When platelets, freshly prepared bone marrow cells, or cultured marrow were assayed by this method, a linear relationship was observed between optical density (OD) and the number of cells assayed. Moreover, a linear relationship between the number of AchE-positive megakaryocytes determined histochemically and AchE activity determined spectrophotometrically was observed. Red cells exhibited no activity. Inhibitor studies demonstrated that the activity measured was true AchE. Separation of marrow by density gradient centrifugation showed that the megakaryocyte enriched fraction contained all the AchE while the megakaryocyte depleted fraction contained none. From the data we conclude that this rapid, semiautomated method quantitates megakaryocytic AchE synthesis in culture, and that this method will be a useful assay system for the detection of factors that influence megakaryocytopoiesis.  相似文献   

13.
A morphometric analysis of bone marrow trephine biopsies has been performed to study the frequency and planimetric characteristics of so-called atypical micromegakaryocytes in chronic myeloid leukemia (CML) and myelodysplastic syndromes (MDS). In addition, an attempt was made to discriminate this particular cell population from small immature elements of megakaryocytopoiesis, such as promegakaryoblasts and megakaryoblasts. The staining reactions employed included periodic acid-Schiff (PAS), alpha-naphthyl acetate esterase (ANAE) and immunohistochemistry with a monoclonal antibody against platelet glycoprotein IIIa (Y2/51-CD61). Comparison of the various staining reactions applied to the different megakaryocytic elements together with morphometric measurements resulted in a clearcut identification of promegakaryoblasts. These were defined as the earliest immature and exclusively CD61-positive precursors. Atypical micromegakaryocytes were characterized by their dysplastic features and strong ANAE reactivity in addition to their positive CD61 staining. When stringent diagnostic criteria (diameter ranging between 10 to 15 microns, mean size about 12 microns) were applied, this abnormal cell population comprised less than 10% of total megakaryocytopoiesis in CML and MDS. It may be assumed that dysmegakaryocytic features in the latter disorders are partially generated by small to medium-sized megakaryocytes (diameter less than 30 microns). In conclusion, the relative frequency of promegakaryoblasts in the normal bone marrow (range 6-8%) is confirmed by evaluation of the immunohistochemical and cytochemical staining methods (CD61 and ANAE). Furthermore, the ANAE reaction facilitates the recognition of atypical micromegakaryocytes as well as small megakaryocytes. Thus cytochemistry provides a better insight into alterations of these cell lineages in various pathological conditions.  相似文献   

14.
Analysis of the earlier obtained data on the effect of hydroxyurea on megakaryocytopoiesis by a simulation model has shown that differentiation of proliferating precursors of the megakaryocytes depends on their amount in bone marrow; the time of their involvement in the proliferating pool increases if the number of proliferating cells decreases. Within 24 h after the treatment with hydroxyurea (900 mg/kg), the transit time for the mouse megakaryocytes is reduced by about 14 h due to acceleration of the latest developmental stages. A hypothesis is put forward which accounts for correlation between the duration of proliferative period and the volume and maturation time of megakaryocytes.  相似文献   

15.
K Ogata  K Dan  S Kuriya  T Nomura 《Blut》1990,60(3):202-205
Anti-thoracic duct lymphocyte globulin (ALG) therapy is effective in patients with aplastic anemia. We examined the effect of ALG on human megakaryocyte progenitor cells (colony-forming unit-megakaryocyte, CFU-Meg) in vitro. Normal human bone marrow mononuclear cells (MNC) were cultured in plasma clots with varying concentrations of ALG or non-immunized horse IgG. After 12 days of culture, significant megakaryocyte colony formation was observed in cultures containing ALG but not in cultures containing non-immunized horse IgG. The peak stimulatory effect seemed to occur with 10-25 micrograms/ml of ALG. When marrow MNC, depleted of adherent and T cells, were cultured in plasma clots with ALG, its stimulatory effect on megakaryocytopoiesis decreased markedly. Finally, it was demonstrated that ALG stimulated marrow MNC to produce a factor stimulatory for CFU-Meg. The in vitro megakaryocytopoietic stimulatory effect of ALG may be related to its clinical efficacy in some patients with aplastic anemia.  相似文献   

16.
It has been demonstrated that stromal cell precursors exist in human umbilical cord blood. After being cultured in vitro, these cells are called human umbilical cord blood-derived stromal cells (hUCBDSCs). However, the role of hUCBDSCs in hematopoiesis is still unclear. We have previously shown that hUCBDSCs are superior to human bone marrow stromal cells (hBMSCs) at enhancing the expansion of megakaryocyte colony forming units (CFU-Meg). Based on this observation, we postulated that hUCBDSCs might promote megakaryocytopoiesis. To test this hypothesis, we developed a megakaryocyte/hUCBDSC co-culture model and a hematopoietic microenvironment injury model in nude mice. We explored the ability and mechanisms by which hUCBDSCs promoted the proliferation of megakaryocytes in vitro, and we also explored their capacity to restore the hematopoietic microenvironment in vivo. As expected, hUCBDSCs were more effective than hBMSCs at enhancing the proliferation of megakaryocyte lines from HEL cells and restoring megakaryocytopoiesis in a hematopoietic microenvironment injury model in nude mice. Thrombopoietin (TPO) and stromal cell derived factor-1 (SDF-1) are two of the key factors underlying this capacity. We also found that gap junction intercellular communication (GJIC) between HEL cells and hUCBDSCs might be partially absent. Our data provide the first evidence that hUCBDSCs play a regulatory role during megakaryocytopoiesis, which might be important for designing treatments for patients with megakaryocytic injury.  相似文献   

17.
A morphometric analysis of bone marrow trephine biopsies has been performed to study the frequency and planimetric characteristics of so-called atypical micromegakaryocytes in chronic myeloid leukemia (CML) and myelodysplastic syndromes (MDS). In addition, an attempt was made to discriminate this particular cell population from small immature elements of megakaryocytopoiesis, such as promegakaryoblasts and megakaryoblasts. The staining reactions employed included periodic acid-Schiff (PAS), alpha-naphthyl acetate esterase (ANAE) and immunohistochemistry with a monoclonal antibody against platelet glycoprotein IIIa (Y2/ 51-CD61). Comparison of the various staining reactions applied to the different megakaryocytic elements together with morphometric measurements resulted in a clearcut identification of promegakaryoblasts. These were defined as the earliest immature and exclusively CD61-positive precursors. Atypical micromegakaryocytes were characterized by their dysplastic features and strong ANAE reactivity in addition to their positive CD61 staining. When stringent diagnostic criteria (diameter ranging between 10 to 15 μm, mean size about 12 urn) were applied, this abnormal cell population comprised less than 10% of total megakaryocytopoiesis in CML and MDS. It may be assumed that dysmegakaryocytic features in the latter disorders are partially generated by small to medium-sized megakaryocytes (diameter less than 30 μm). In conclusion, the relative frequency of promegakaryoblasts in the normal bone marrow (range 6–8%) is confirmed by evaluation of the immunohistochemical and cytochemical staining methods (CD61 and ANAE). Furthermore, the ANAE reaction facilitates the recognition of atypical micromegakaryocytes as well as small megakaryocytes. Thus cytochemistry provides a better insight into alterations of these cell lineages in various pathological conditions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG-Th 390/1–2)  相似文献   

18.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

19.
Megakaryocytopoiesis in culture: modulation by cholinergic mechanisms   总被引:3,自引:0,他引:3  
Treatment of murine bone marrow cultures with the cholinergic agonist carbamylcholine enhanced megakaryocytic colony growth by as much as 65%. In contrast, adrenergic agonists had no such effect. Addition to cultures of dibutyryl cyclic GMP (db-cGMP) also enhanced megakaryocytic colonies up to 50%, whereas dibutyryl cyclic AMP (db-cAMP) had no effect. Sodium nitroprusside and sodium nitrite, putative guanyl cyclase activators, also enhanced colony numbers, as did imidazole, a postulated cGMP phosphodiesterase inhibitor. Preincubation of marrow for two hours with carbamylcholine resulted both an increase in colony numbers (58%) and percent of progenitors in DNA synthesis (48%, compared to 14% for controls) as determined by tritiated thymidine suicide studies. Treatment of mice with the acetylcholinesterase inhibitor neostigmine resulted in an increase in CFU-M/humerus (62%) and percent in DNA synthesis (45%). These data indicate that 1) cholinergic, but not adrenergic, agonists modulate megakaryocytopoiesis in culture; 2) this effect may be mediated by cyclic GMP; and 3) only a brief period of exposure of marrow cells to agonist results in enhancement of megakaryocytic colonies.  相似文献   

20.
Summary 1. To investigate the possibility that cholinesterase inhibitors may cause adverse hematopoietic effects, we employed antisense oligodeoxynucleotides selectively inhibiting butyrylcholinesterase gene expression (AS-BCHE). Complementary sense (S) oligonucleotides served as controls.2. In primary bone marrow cell cultures grown with interleukin 3 (IL-3), AS-BCHE but not S-BCHE reduced growth of megakaryocyte colony-forming units (CFU-MK) in a dose-dependent manner at the micromolar range.3. In cultures grown with IL-3, transferrin, and erythropoietin (Epo), cell counts increased up to twofold, yet colony counts (CFU-GEMM) remained unchanged under AS-BCHE treatment.4. Electrophoretic measurements of DNA ladder as an apoptotic index revealed that the above oligonucleotide effects were not due to nonspecific induction of programmed cell death.5. Differential cell counts demonstrated increased myeloidogenesis and reduced levels of early megakaryocytes in CFU-GEMM under AS-BCHE, suggesting requirement of the BuChE protein for megakaryopoiesis.6.In vivo injection of AS-BCHE reduced BCHE mRNA levels in both young and mature megakaryocytes for as long as 20 days, as shown byin situ hybridization.7.Ex vivo growth of primary bone marrow cells revealed a twofold reduction in CFU-MK colonies grown from the AS-BCHE- but not the S-BCHE-injected mice, 15 days posttreatment.8. These findings demonstrate that deficient butyrylcholinesterase expression, and hence interference with this enzyme's activity through treatment with or exposure to cholinesterase inhibitors, may cause hematopoietic differences in treated patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号