首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A modified Wachstein-Meisel lead salt method using glucose-6-phosphate or 2-deoxyglucose-6-phosphate as substrates was employed at the light microscopic level to map the rat brain for glucose-6-phosphatase (G-6-Pase). As has been described, most of the activity of the enzyme resided in neuronal cell bodies and dendritic stems. No differences were found between the results obtained with the two substrates. Two categories of brain structures with heavy and with moderate staining could be distinguished while the majority of brain regions contained only barely discernible neurons. Structures displaying very high enzyme activity included nuclei of cranial nerves, nuclei of the reticular formation, Purkinje cells, and some parts of the limbic system, e.g., CA 3 and CA 4 pyramidal fields of the hippocampus. It is pointed out that accurate biochemical determinations of G-6-Pase activity will critically depend on pains-taking microdissection of nuclei and cell layers. The histochemical results may be pertinent to the interpretation of the 2-deoxyglucose method for assessment of regional glucose utilization rates in brain. The present observations make it unlikely that regional variations in G-6-Pase activity account for differences in uptake and retention of radioactivity from (1-14C)glucose and (14C)2-deoxyglucose reported previously by our group.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

2.
Phenylketonuria is a recessive autosomal disorder that is caused by a deficiency in the activity of phenylalanine-4-hydroxylase, which converts phenylalanine to tyrosine, leading to the accumulation of phenylalanine and its metabolites phenyllactic acid, phenylacetic acid, and phenylpyruvic acid in the blood and tissues of patients. Phenylketonuria is characterized by severe neurological symptoms, but the mechanisms underlying brain damage have not been clarified. Recent studies have shown the involvement of oxidative stress in the neuropathology of hyperphenylalaninemia. Glucose-6-phosphate dehydrogenase plays an important role in antioxidant defense because it is the main source of reduced nicotinamide adenine dinucleotide phosphate (NADPH), providing a reducing power that is essential in protecting cells against oxidative stress. Therefore, the present study investigated the in vitro effect of phenylalanine (0.5, 1, 2.5, and 5?mM) and its metabolites phenyllactic acid, phenylacetic acid, and phenylpyruvic acid (0.2, 0.6, and 1.2?mM) on the activity of enzymes of the pentose phosphate pathway, which is involved in the oxidative phase in rat brain homogenates. 6-Phosphogluconate dehydrogenase activity was not altered by any of the substances tested. Phenylalanine, phenyllactic acid, and phenylacetic acid had no effect on glucose-6-phosphate dehydrogenase activity. Phenylpyruvic acid significantly reduced glucose-6-phosphate dehydrogenase activity without pre-incubation and after 1?h of pre-incubation with the homogenates. The inhibition of glucose-6-phosphate dehydrogenase activity caused by phenylpyruvic acid could elicit an impairment of NADPH production and might eventually alter the cellular redox status. The role of phenylpyruvic acid in the pathophysiological mechanisms of phenylketonuria remains unknown.  相似文献   

3.
The glucose transport inhibitor phloretin shows besides the inhibition of 2-deoxyglucose influx an additional effect on intracellular ATP levels. A rapid decline in ATP levels was shown which is associated with dephosphorylation and efflux of deoxyglucose.  相似文献   

4.
We examined the histochemical distribution of glucose-6-phosphate dehydrogenase (G6PD) activity in neural tissue using different diffusion barriers. Although polyvinyl alcohol and agar overlays permitted regional localization of G6PD, a semipermeable membrane revealed cellular differences in G6PD activity within populations of neurons. Distribution of G6PD activity in selected regions of the nervous system was examined using the membrane technique. White matter usually exhibited strong G6PD activity. The neuronal somata of the dorsal root ganglia (L4-L6) and anterior horns of the spinal lumbar enlargement demonstrated a variation in activity which was independent of somal size. Satellite cells showed intense activity when the membrane technique was used. Hippocampal pyramidal and granular cells of the dentate gyrus exhibited moderate, uniform G6PD activity, but only weak activity was seen in hippocampal and dentate molecular layers. High levels of activity were observed in the vascular endothelial cells of the brain, spinal cord, and choroid plexus, and in the ependymal cells of the spinal central canal and ventricles of the brain. The superior vestibular nucleus appeared to have little G6PD activity in either the neuron cell bodies or the surrounding parenchyma. The use of a semipermeable membrane for localization of G6PD activity in neural tissues permits enhanced resolution of neuron elements and may provide a more accurate assessment of G6PD activity in histological preparations.  相似文献   

5.
6.
Partial lipid removal of rat brain microsomes by acetone-butanol extraction resulted in 32% loss of activity of glucose-6-phosphate phosphohydrolase (G-6-Pase) and an increase in Km and energy of activation (Ea) of the enzyme while the Vmax was lowered. The activity was restored by supplementation of microsomal total phospholipid (PL) and phosphatidylcholine (PC) in sonicated dispersions but not with neutral lipids, phosphatidyl ethanolamine, sphingomyelin, phosphatidylglycerol and cholesterol. In both intact and delipidated membranes, the activity was decreased by sodium deoxycholate and enhanced by dimethylsulfoxide. Egg yolk PC and asolectin influenced the activity to the extent of that produced by microsomal PC. PC increased the Km of the enzymatic reaction in intact microsomes but decreased the same in disrupted membrane while the Vmax was not affected in both the membranes. Addition of PC into the assay system lowered Ea of the reaction in both the membrane systems. However, there was no break observed in the Arrhenius plot. Ability of liver nonspecific lipid transfer proteins to introduce alien PL into brain microsomes was used to study lipid dependence of G-6-Pase and investigation of membrane-enzyme interrelationship. Protein catalyzed transfer of egg PC from a donor PC-cholesterol unilamellar liposomes resulted in substantial increase in microsomal membrane PC and total PL and a net reduction in the enzyme activity was observed in intact and delipidated membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The electrophoretic difference between normal glucose-6-phosphate dehydrogenase (G6PD) and two common variants (G6PD A and G6PD A-) has made the G6PD enzyme system very useful for genetic studies and for investigation on the clonal origin of tumors. This approach has not been possible for another common variant, G6PD mediterranean, which has a normal electrophoretic pattern. The different utilization of 2-deoxy-glucose-6-phosphate (2dG6P), an analog of the normal substrate, by the normal enzyme and the Mediterranean variant, allows a convenient determination of the degree of mosaicism in mononuclear cells from heterozygotes.  相似文献   

8.
Previously, we developed a microplate assay to quantitate 2-deoxyglucose (2DG) and 2-deoxyglucose-6-phosphate in samples for in vitro and in vivo use. In this assay system, four different reaction mixtures were used, and the difference in the reactivity of the two types of glucose-6-phosphate dehydrogenase (G6PDH) variants was used. Because G6PDH from tolura yeast was no longer available, we modified our assay system for the use of G6PDH from Leuconostoc. Using this improved assay system, concentrations of glucose, 2DG, glucose-6-phosphate, and 2-deoxyglucose-6-phosphate were easily measured. This assay may be useful for measuring uptake of 2DG without the use of radioisotopes.  相似文献   

9.
10.
Using techniques of microdissection and microassay as well as qualitative histochemistry the activity and intra-acinar distribution of G6PDH and ME were studied on selected days of pregnancy in the rat. Both enzymes show distinct fluctuations during the course of pregnancy in keeping with changes in hepatic lipogenesis. Marked increases in activity are seen as early as the 4th day, while highest values are attained on day 20, with a predominant perivenous induction. On day 22, just before parturition a sharp decrease of both enzyme activities with a flattening of the periportal/perivenous gradient was detected. G6PDH shows proportionally considerably larger increases and more distinct changes in zonation. The perivenous fluctuations in G6PDH activity of late gestation are supposed to be caused primarily by insulin. Although estrogen is known to induce both enzymes, the temporal changes in enzyme activity in pregnancy cannot be related to the action of estrogen alone. The changes in enzyme activity, however, correspond well to those of progesterone, and although no direct action of progesterone on these enzymes has yet been proposed, further work on its effects on enzyme activity and distribution is indicated.  相似文献   

11.
Summary Using techniques of microdissection and microassay as well as qualitative histochemistry the activity and intra-acinar distribution of G6PDH and ME were studied on selected days of pregnancy in the rat. Both enzymes show distinct fluctuations during the course of pregnancy in keeping with changes in hepatic lipogenesis. Marked increases in activity are seen as early as the 4th day, while highest values are attained on day 20, with a predominant perivenous induction. On day 22, just before parturition a sharp decrease of both enzyme activities with a flattening of the periportal/perivenous gradient was detected. G6PDH shows proportionally considerably larger increases and more distinct changes in zonation. The perivenous fluctuations in G6PDH activity of late gestation are supposed to be caused primarily by insulin. Although estrogen is known to induce both enzymes, the temporal changes in enzyme activity in pregnancy cannot be related to the action of estrogen alone. The changes in enzyme activity, however, correspond well to those of progesterone, and although no direct action of progesterone on these enzymes has yet been proposed, further work on its effects on enzyme activity and distribution is indicated.  相似文献   

12.
13.
14.
15.
16.
The steady state kinetics of pig liver glucose-6-phosphate dehydrogenase is consistent with an ordered, sequential mechanism in which NADP is bound first and NADPH released last. Kia is 9.0 muM, Ka is 4.8 muM, and Kb is 36 muM. Glucosamine 6-phosphate, a substrate analogue and competitive inhibitor, is used to help rule out a possible random mechanism. ADP is seen to form a complex with the free form of the enzyme whereas ATP forms a complex with both the free and E-NADP forms of the enzyme. The KI for the E-ADP complex is 1.9 mM, while the Ki values for the E-ATP and E-NADP-ATP complexes are 7.2 and 4.5 mM, respectively.  相似文献   

17.
Crystals of D-glucose-6-phosphate: NADP+ oxidoreductase were obtained with the hanging drop, vapor diffusion and batch methods from ammonium sulfate-containing solutions. X-ray diffraction photographs indicate that the crystals belong to the orthorhombic space groups I222 or I2(1)2(1)2(1) with unit cell dimensions of a = 66.0 A, b = 140.8 A and c = 177.8 A. These data, together with results from sodium dodecyl sulfate/polyacrylamide gel electrophoresis and crystal density experiments, indicate that there is one 116,000 Mr dimer per asymmetric unit. The crystals diffract to at least 2.2 A and are suitable for X-ray crystallographic structure determination.  相似文献   

18.
1. Glucose-6-phosphate dehydrogenase (G6PDH) has been purified to homogeneity from rat and chick brain by affinity chromatography with Sepharose bound 2',5' ADP. 2. Some properties of the two enzymes are studied and the effects of hydrogen ion concentration, Mg2+ ions, temperature and urea on the initial rate of enzyme are described. 3. G6PDH from chick brain differs from the rat enzyme in affinity for 2',5' ADP Sepharose, in pH optimum, in heat stability and it is differently affected by Mg2+ ions. No effect is detectable after urea treatment on enzymes from both sources.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号