首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In monogynous ants, the death of the queen generally implies the death of the colony. However, queen replacement by either unrelated or related queen has been described in few species. In queenless ants from the genus Diacamma, the single reproductive worker (gamergate) is replaced by one of her daughters (or occasionally by a sister). From a long-term genetic survey of nests of D. cyaneiventre, we estimated the rate of gamergate turnover as well as the lifespan of workers and gamergate tenure using a maximum likelihood model developed for this purpose. We specifically compared the genotypes of two cohorts of workers sampled at 2 and 16 months interval from the same nests, using five microsatellite markers. To improve the accuracy of the estimates, we also used in the model the nests from the same population sampled only once and analysed by André et al. (2001). The model indicates that the possibility of the same nest not sheltering the same colony at two different sampling dates (colony turnover) was not significantly different from zero in our sample. The likelihood of the model was maximal for a probability of gamergate change pγ = 0.005 per day (i.e. a gamergate tenure of 200 days) and a worker lifespan w=60 days, indicating that the gamergate ‘s tenure is about 3 times longer than workers’ expected lifespan in the population studied. Moreover, the genetic analysis of the gamergate and brood in three colonies excavated completely, reveals that colony fission can occur just after a gamergate replacement with the sister of the new gamergate reproducing in the new propagule. Received 12 October 2005; revised 7 December 2005; accepted 5 January 2006.  相似文献   

2.
This study was built on the assumption that mother (queen) and workers (nurses) distribute their genes either through swarms (female biomass) or through the drones (male biomass). The swarming mood of the bee colonies was suppressed by an exactly defined increase in drone rearing. We studied the efficiency of reproductive investments (on genetic and energetic levels) of the mother and workers to the next generations. The equalization of fitness of the mother and nurses was achieved by a deliberately induced change in numerically stable sex asymmetry of a bee colony. A swarm was compensated with its energy demand and a volume ratio of distributed genetic information. The newly introduced term “reproductive investment complex” (RIC) includes the reproductive potential of the mother and reproductive energy of workers into care for the mother and for the brood. The number of individuals of one sex was closely connected with the weight of individuals of the oppposite sex. The described method of suppression of swarming mood was successfully tested on 60 honey bee colonies over seven years (2003–2009). A number of beekeepers that were acquainted with this method confirmed the success.  相似文献   

3.
We investigated worker regulation of queen activity during reproductive swarming by examining the rates at which workers performed vibration signals and piping on queens during the different stages of the swarming process. Worker–queen interactions were first examined inside observation hives during the 2–3 wk that preceded the issue of the swarm (pre‐swarming period) and then inside the swarm clusters during the period that preceded liftoff and relocation to a new nest site (post‐swarming period). Queen court size did not differ between the pre‐ and post‐swarming periods, but workers fed the queens less inside the swarm clusters. Workers performed vibration signals on the queens at increasing rates throughout the pre‐swarming period inside the natal nest, but rarely or never vibrated the queen inside the swarm. Piping was performed on the queens during both the pre‐ and post‐swarming periods and always reached a peak immediately before queen flight. During the final 2–4 h before swarm liftoff, queens were increasingly contacted by waggle dancers for nest sites, some of which piped the queen. The vibration signal may operate in a modulatory manner to gradually prepare the queen for flight from the natal nest, and the cumulative effects of the signal during the pre‐swarming period may make further vibrations on the queen unnecessary when inside the swarm cluster. In contrast, worker piping may function in a more immediate manner to trigger queen takeoff during both the pre‐ and post‐swarming periods. Workers that vibrate and pipe the queen tend to be older, foraging‐age bees. The regulation of queen activity during colony reproduction may therefore be controlled largely by workers that normally have little contact with queens, but help to formulate colony reproductive and movement decisions.  相似文献   

4.
The roles of honey bee queen mandibular pheromone and colony congestion in the inhibition of swarming were investigated. Two colony siz.es were used: small, congested colonies and large, uncongested colonies. Both groups of colonies were treated with various dosages of the five-component, synthetic queen mandibular pheromone in the spring, and the extent and timing of swarming were followed. Most treatment groups received pheromone or a solvent blank (control) on a stationary slide; one group of the congested colonies received a pheromone treatment via an aerosol spray. The pheromone was not effective at delaying swarming in the congested colonies at any dosage applied on slides, but the aerosol spray-treated colonies swarmed significantly later in the season than the control colonies. The uncongested, pheromone-treated colonies exhibited a dose-dependent delay in swarming, with the highest dosage colonies swarming almost four weeks later than the control colonies. These results indicate an interaction between congestion and pheromone in the control of honey bee reproduction. While congestion may in itself be a factor stimulating swarming, these results are consistent with the interpretation that colony congestion reduces the transmission of queen pheromone within the nest, thereby removing the queen 's pheromone-based inhibition of queen rearing and subsequent swarming by workers.  相似文献   

5.
Summary. Potential conflict between the queen and workers over the production of males is expected in stingless bees as a result of the higher relatedness of workers with their sons than with their brothers. This conflict was studied in Melipona subnitida by observing how the queen and the workers share in male production. The oviposition of individual cells was observed in two colonies with individually marked workers for a period of 51 and 40 days respectively. The gender that developed from these cells was then determined. The results revealed that most male production was concentrated in a 2–3-week period, during which laying workers were present. During these weeks, the queens produced twice as many males as all laying workers together. Outside this distinct period, the queens produced an occasional male. A reproductive worker either oviposited before the queen did, in which case she immediately proceeded to close the cell and thus prevented the queen from oviposition, or oviposited and sealed the cell after the queen had laid an egg. When cell construction and oviposition occured on several combs simultaneously, the workers preferentially laid male eggs on the newest combs. We discuss the proximate mechanism and ultimate cause of the way in which queen-worker male production occurred. In conclusion, we argue that overt behavioural conflict, occasionally displayed by reproductive workers of this species, can be of great cost to the colony.Received 27 February 2004; revised 6 September 2004; accepted 1 October 2004.  相似文献   

6.
Social parasitism is widespread in the eusocial insects. Although social parasites often show a reduced worker caste, unmated workers can also parasitize colonies. Cape honeybee workers, Apis mellifera capensis, can establish themselves as social parasites in host colonies of other honeybee subspecies. However, it is unknown whether social parasitism by laying workers also occurs among Cape honeybee colonies. In order to address this question we genotyped worker offspring of six queenless A. m. capensis colonies and determined the maternity of the reproducing workers. We found that three non-nestmate workers dominated reproduction in a host colony and produced 62.5% of the progeny. Our results show that social parasitism by laying workers is a naturally occurring part of the biology of Cape honeybees. However, such social parasitism is not frequently found (6.41% of the total worker offspring) probably due to co-evolutionary processes among A. m. capensis resulting in an equilibrium between selection for reproductive dominance in workers, colony maintenance and queen adaptation. Received 28 July 2005; revised 19 September and 11 November 2005; accepted 16 November 2005.  相似文献   

7.
Winged queens are the most common reproductives in ants. They are morphologically specialized for independent colony foundation, with wings for long-range dispersal and metabolic reserves to raise the first brood. However independent foundation can sometimes be selected against and replaced by fission, featuring short-range dispersal on the ground and reproductives that are dependent on the wingless workers for all non-reproductive tasks. We investigated the evolutionary consequences of this transition on the morphology of the reproductives by collecting 30 colonies of Odontomachus coquereli from Madagascar, the only species in the genus where winged queens have never been found. Data about colony demography, morphometry, allometry and ovarian dissections showed that the winged queen caste has been replaced by a wingless reproductive caste with distinct body proportions relative to the workers or to congeneric winged queens. The 17 reproductives that we measured exhibited little size variability. A single wingless reproductive was found in each colony, corresponding to ‘ergatoids’ in literature. Several facts suggest that colonies reproduce by fission, notably the relatively constant colony size (19±11 workers). The developmental origins of wingless reproductive phenotypes need investigation; little genetic change may be involved, as seen when Odontomachus larvae are parasitized by nematodes. The sole function of wingless reproductives in O. coquereli is reproduction, and they contrast with multi-purpose wingless reproductives found in other ants, where numerous intermorphs occur in each colony and contribute to sterile tasks. Received 15 December 2006; revised 26 February 2007; accepted 1 March 2007.  相似文献   

8.
Platythyrea conradti is the only species in this genus with ergatoid (= permanently wingless) queens. Colonies lack gamergates (unlike other species in this genus), yet aggressive interactions among queen and workers define a hierarchy. A single fertile queen has the top rank and highranking workers do not lay eggs, except when the queen dies. Colonial reproduction by both alate queens (independent foundation) and gamergates (fission) seems the ancestral state in Platythyrea. Independent foundation can be selected against in some species, causing the loss of alate queens for economic reasons. Thus gamergates become the only reproductives, except in P. conradti in which queens became ergatoid. Gamergates and ergatoid queens are two mutually redundant reproductive phenotypes that allow colonial reproduction by fission. Received 1 July 2005; revised 10 November 2005; accepted 16 November 2005.  相似文献   

9.
Workers of the Florida harvester ant (Pogonomyrmex badius), the only North American Pogonomyrmex with a polymorphic worker caste, produce males when colonies are orphaned. In this study,we assessed the reproductive potential of workers of each caste group, minors and majors, in the presence and absence of the queen, and tested whether males produced in natural queen-right colonies are derived from workers. Worker size was positively correlated with ovariole number such that major workers had approximately double the number of ovarioles as minor workers. The number of vitellogenic oocytes, a measure of reproductive potential, was greater in major compared to minor workers and increased in both worker castes when queens were removed. Major workers have greater reproductive potential than minors although they represent a minority within the colony (~5% of workers are majors). Worker produced eggs were visible in colonies 28 – 35 days after queen removal. This time lag, from queen removal to egg production, is similar to other ants and bees. Though workers are capable of producing viable eggs, we found no evidence that they do so in queen-right colonies, suggesting that worker reproduction is controlled via some social mechanism (self restraint, policing, or inhibition). This result supports predictions of kin selection theory – that due to multiple mating by the queen workers are more related to queen-produced males than most worker-produced males and should thus favor reproduction by the queen and inhibit reproduction by other workers. Received 25 January 2007; revised 1 May 2007; accepted 21 May 2007.  相似文献   

10.
Summary. Ant colony mortality has not been sufficiently studied, even though it is crucial for understanding social insect population biology and can serve as an important model for general aging and mortality processes. Particularly, studies on proximate mechanisms on mortality and stress resistance of ant colonies are lacking. This study explores the long-term colony starvation resistance of the small myrmecine ant Temnothorax rugatulus. We report extraordinary starvation resistance in the 21 colonies investigated, as most survived the eight months of total starvation. Furthermore, we studied demographic and behavioral changes over the experimental period. Brood decline began first (after two months) and mortality was highest, worker decline was intermediate, and queen mortality started latest and remained lowest. We found brood (its relative change during the first four months and the level of brood relative to colony size) to be the only significant predictor of colony starvation resistance, but not the degree of polygyny. As expected, rates of trophallaxis increased during the starvation period while colony activity bouts occurred more frequently but were much shorter, leading to an overall decrease in activity levels. This study is the first to comprehensively study mechanisms of starvation resistance in ant colonies, linking demography and behavior.Received 10 January 2005; revised 16 February 2005; accepted 23 February 2005.  相似文献   

11.
Drywood termites of the family Kalotermitidae present a very flexible developmental pattern, in which pseudergates are totipotent and may become reproductives. In this study, three colonies of Cryptotermes brevis headed by neotenic reproductives were used: (i) colony A, with a primary king and a neotenic queen; (ii) colony B, with a primary queen and a neotenic king; and (iii) colony C, with neotenic king and queen. The primary king from colony A and the neotenic king from colony B presented well‐developed reproductive systems, with conspicuous testicular lobes and cysts containing spermatozoa also observed in the seminal vesicles. The neotenic queen of colony A and the primary queen of colony B had ovaries with several oocytes in early developmental stages with some of them already vitellogenic and terminal, which suggests egg‐laying activity. Both of these queens presented the spermathecae lumen filled with spermatozoa. The queen of colony C had vitellogenic oocytes; however, the oocytes were not terminal and the lumen of spermathecae was devoid of spermatozoa and secretions. The seminal vesicles of colony C neotenic king have no spermatozoa. This king displayed a previtellogenic oocyte among its testicular lobes, which suggested that this individual was an intersex.  相似文献   

12.
Experiments were conducted to determine the rôle of population density of queenright honey bee colonies, and that of the queen bee pheromonal secretions, on the induction and inhibition of swarming queen cup construction during swarming and non-swarming seasons. Construction of queen cups was induced experimentally in overcrowded queenright colonies, during winter, which is a non-swarming season. This construction was induced by high population density of bee workers: above a threshold of 2.3 bee workers/ml there was a relationship between the number of cups constructed and the colony density. During the swarming season a relationship was established between the free volume of a hive (population density) and the number of queen cups constructed: 1.5 cups in a colony that occupied 80,960 ml, compared with 77 cups in a colony hived within a volume of 20, 240 ml. Observations of the queen's movements upon combs in colonies of high and normal population densities showed that in an overcrowded colony the queen bee was almost absent from the bottom edges of the comb, where queen swarming cups and cells are constructed. The tarsal glands of queens are located in the fifth tarsomere and the glandular oily secretion is deposited by the foot-pads upon the combs surface. The rate of secretion by the queen's tarsal glands was about 13 times higher than by those of the workers. A bioassay for testing the inhibitory effects of the queen's glandular extracts on the construction of queen cups was developed. It was based on increasing worker bee population densities, and can be used effectively throughout the year in a subtropical climate.The application of tarsal and mandibular glands' secretion to comb bottom edges in overcrowded colonies (bioassay) caused the inhibition of queen cup construction. None of these two secretions affected construction of these cups when applied separately. We presume that due to colony overcrowding the queen bee is unable to deposit the non-volatile secretions from tarsal glands along the comb edges and that the deficiency of the foot-print pheromone triggers the construction of swarming cups along the non-inhibited areas.  相似文献   

13.
In insect societies, eggs laid by workers are frequently killed by other workers – a behaviour known as “worker policing”. The traditional explanation of worker policing is that it is a mechanism to resolve intracolony conflict, and maintain the reproductive monopoly of the queen. Recently, Pirk et al. (2004) proposed that worker policing instead is aimed at removing unviable worker-laid eggs and is ultimately just another example of hygienic behaviour. Here we test this hypothesis for the common wasp Vespula vulgaris, a species with highly effective worker policing. We show that worker-laid eggs from queenless colonies have a lower hatch rate (68%) than queen-laid eggs (82%). Analysis of egg laying rates of queens and workers, however, shows that the difference is not big enough to explain the apparent absence of adult worker-derived males in this species. Received 30 January 2006; revised 2 May 2006; accepted 5 May 2006.  相似文献   

14.
Abstract. 1. In eusocial insects, colony fission is a mode of dispersal by which a young queen leaves her nest with some workers to found a new colony. In these species, adult females (workers and the queen) should allocate most resources to increasing their colony size, which constrains the possibility of fission. In contrast, developing diploid larvae should have a preference for becoming a queen and having their own offspring, rather than becoming workers and rearing the offspring of other females. 2. In the ant Aphaenogaster senilis, queens are produced in very small numbers, suggesting that adult females control larval development. We used a 6‐year series of data on more than 300 nests to determine the annual cycle of worker and queen production. Although both overlapped, the latter mostly occurred in the second half of the summer, after a major peak of worker emergence. Young queens were also often produced in nests whose reproductive queen had died, thus allowing her replacement. Overall, we estimate that only 0.07% of diploid larvae actually develop into gynes. 3. Laboratory experiments indicated that brood is bipotent until the second larval instar. Diploid larval development into queen was favoured by the removal of the mother queen, but was not affected by rearing temperature. 4. Our data suggest that most diploid broods are forced by the adults to develop into workers rather than into gynes. However, when the queen is not present due to death or after a fission event, a few larvae are allowed to develop into gynes. One way for workers to limit the development of larvae might be by controlling the amount of food they receive.  相似文献   

15.
Summary. Workers of most eusocial Hymenoptera can produce sons after queen loss, which (posthumously) benefits the queen and increases worker inclusive fitness. However, the evolutionary loss of worker ovaries has occurred in several lineages, while workers in other taxa may be infertile despite having ovaries. Workers of Atta leafcutter ants only lay trophic eggs in queenright colonies. Although Atta colonies are commonly kept at universities, museums, and zoos, no reports of worker sons in orphaned colonies exist, suggesting that Atta workers are infertile. To explicitly test this, we created eleven orphaned laboratory nests of Atta cephalotes, A. sexdens, and A. colombica, and maintained them for 3–6 months after queen loss. Eight colonies did not produce any brood, but three nests produced 1–4 worker-derived male larvae and pupae. Microsatellite genotyping indicated that these were worker sons. However, all males were tiny (3.5–9 mm long) compared to normal queen sons (16 mm long), and would almost certainly be unable to mate. We also found reproductive eggs, but most of these had no yolk and were thus inviable. We conclude that Atta workers are not completely infertile, but that worker fertility is low compared to the sister genus Acromyrmex, where workers routinely produce normally-size males after queen loss in the laboratory. We hypothesize that worker reproduction in orphaned Atta field colonies is almost never successful because the last workers die before their sons can be raised to adulthood, but that the importance of worker-laid trophic eggs for queen feeding has precluded the evolutionary loss of worker ovaries. Received 17 January 2005; revised 12 September 2005; accepted 3 October 2005.  相似文献   

16.
The structure of noise generated by honey bee colonies in the course of preparation for sociotomy (swarming, i.e., separation of the young queen and some bees from the parental colony) was studied. Identification of statistically uniform fragments in the temporal structure of the hive noise can be used to determine reliably the readiness to colony fission. The probability of statistically uniform sound fragments being generated increases as the swarm emergence approaches. The role of sound in consolidation of colony members and synchronization of changes in their physiological state is discussed.  相似文献   

17.
According to kin selection theory, the colony kin structure of eusocial insects motivates workers' altruistic behaviors and therefore their sterility or restricted reproduction [1]. Indeed, theory and cross-species comparison confirm that workers engage in their own reproduction depending on relatedness among colony members [2, 3]. We show that in a honeybee colony, the workers switch from their typical altruistic role to a more selfish one if at their larval stage there are environmental cues of an upcoming decline in intracolony relatedness. This happens inevitably when a colony multiplies by swarming and replaces the mother queen with her daughter, because the mother queen's workers are faced with rearing the sister queen's offspring related to them half as much as between sisters. Workers developing from the mother queen's eggs immediately after swarming, in a temporarily queenless colony, had more ovarioles in their ovaries and less-developed hypopharyngeal glands producing brood food than control workers reared in queenright conditions. These "rebel" workers were more engaged in laying their own male-determined eggs than in rearing offspring, whether or not the sister queen was present in the colony. The finding of this previously unknown rebel strategy confirms that kin selection shapes both cooperation and conflict in honeybee societies.  相似文献   

18.
Summary: Ninety-eight nests of various growing stages of Provespa anomala were found in the lowlands of Sumatra, Indonesia, from August to January. Its colony cycle is considered to be annual, with nests built throughout the year. There were two types of early nests before the emergence of workers, one with a worker number of less than 63 and the other of more than 231. The former were new nests, each containing a new queen and were built by reproductive swarming, whereas each of the latter was possibly re-built by an old queen and an absconding swarm. Ten swarming colonies were attracted by an oil-lamp light; these consisted of a copulated queen with immature oocytes in the ovary and 55 workers on average. No males, or workers stylopized by Xenos provesparum were observed either in colonies before worker emergence or in swarms coming flying into the light. Differences between swarming in Provespa, polygyny and nest relocation in Vespa, and those in swarm-founding Polistinae are discussed.  相似文献   

19.
In many social insect species, colonies frequently emigrate to a new nest. This requires the coordination of many individuals, and it puts the queen at risks of being lost or predated. We experimentally studied colony emigration in the ant Aphaenogaster senilis, who emigrates frequently and obligatorily reproduces by colony fission. As in other species, colony emigration was characterised by a synchronised relocation of workers. Foragers found the new nest site and triggered the relocation of the “inside” workers, which built up following a sigmoid curve. Unlike in Temnothorax, where workers are transported to the new nest, most individuals relocated by walking. The brood was transported around the middle of colony relocation, mostly by “inside” workers because they represent most of the workforce. The queen walked to the new nest at the middle of colony relocation, when the flow of ants to the new nest was maximal. Overall, this temporal dynamic of colony emigration is similar to that observed in other species. However, we argue that species-specific traits, such as whether workers are transported to the new nest or relocate by themselves, may affect parts of the process of colony emigration.  相似文献   

20.
In social insects which reproduce by colony fission there is often only one queen in each swarm (e.g. honeybees, army ants) and the number of males greatly exceeds the number of new queens produced at swarming time. This seems to contradict Fisher's principle that there should be equal investment in male and female reproductives. Hamilton 1975 has suggested that the principle can be saved by counting the investment in the swarm as part of the investment in female reproductives. Craig 1980, on the other hand, argues that few queens are produced because any further investment in queens would be wasted since a queen without a swarm is valueless; on this view the sex ratio is male-biased because of local competition between queens for swarms. The present paper investigates from first principles how many males should be produced by a species which reproduces by colony fission and how the workers should divide themselves between the new colonies. The results of the analysis do not support Hamilton's conjecture but show that a number of factors are involved in the evolution of male production, including kin selection and the relationship between the “fitness” of a colony and the number of workers in it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号