首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
By hydrophobic interaction chromatography on octyl-Sepharose, lipopolysaccharide (LPS) of Escherichia coli Re mutant and of wild-type smooth-form (S-form) Salmonella typhimurium and Salmonella abortus equi is fractionated according to increasing amount of fatty acids. Thereby a fractionation of S-form LPS according to the length of the O-polysaccharide chain also occurs, because with increasing of fatty acids there is a decrease in the mean length of the O-polysaccharide chain from approximately 30 to 4 repeating units. Molecular species of Re-mutant LPS contain four 3-hydroxytetradecanoyl residues in addition to which dodecanoic, tetradecanoic and possibly hexadecanoic acid, appear in this sequence. Among the molecular species of S-form LPS, dodecanoic, tetradecanoic and hexadecanoic acids appear in the same order, but in contrast to Re-mutant LPS a significant fraction of S-form LPS contains less than four 3-hydroxytetradecanoyl residues. Hydrophobic interaction chromatography also proved an effective one-step purification procedure of LPS as was shown with a crude preparation from S-form S. typhimurium.  相似文献   

2.
The role of lipopolysaccharide (LPS) in the susceptibility of Escherichia coli and Salmonella typhimurium to non-immune human serum was investigated using serum-sensitive strains of both enterobacteria. LPS from serum-resistant strains of E. coli and S. typhimurium could activate and completely remove the serum bactericidal activity, and also showed dose-dependent anti-complement activity. These properties were mainly due to the high-molecular-mass LPS: the low-molecular-mass LPS from serum-resistant strains of E. coli and S. typhimurium had only a slight effect on the serum bactericidal activity, and showed only low anti-complement activity, even at high concentration. The results suggest that LPS composition, especially the O-antigen polysaccharide chains, contributes to the susceptibility of E. coli and S. typhimurium strains to complement-mediated serum bactericidal activity.  相似文献   

3.
Abstract Escherichia coli F-18, a normal human fecal isolate, and Salmonella typhimurium SL5319, an avirulent strain, are known to colonize the streptomycin-treated CD-1 mouse large intestine by utilizing nutrients present in intestinal mucus for growth. Moreover, previous experiments suggested the possibility that E. coli F-18 and S. typhimurium SL5319 utilized different mucus nutrients. Therefore, mouse cecal mucus was fractionated into high and low molecular weight components, and each fraction was inoculated either simultaneously or separately with E. coli F-18 and S. typhimurium SL5319. A 50 kd fraction was found in which the growth of S. typhimurium SL5319 suppressed growth of E. coli F-18. Evidence is presented that in this fraction S. typhimurium SL5319 utilizes peptides, presumably generated by mucus proteases, as a source of amino acids for growth. Furthermore, it is shown that S. typhimurium SL5319 grows in this 50 kd fraction with a generation time of 27 min in the presence of at most 7 μg of carbohydrate per ml and 2.2 μg of peptide per ml, and that S. typhimurium SL5319 suppresses E. coli F-18 growth in this fraction by sequestering iron. The data are discussed with respect to the role of peptide utilization and iron sequestration in the ability of S. typhimurium SL5319 to colonize the mouse large intestine.  相似文献   

4.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

5.
To investigate the effect of chromosomal mutation on the synthesis of rfe-dependent Escherichia coli O9 lipopolysaccharide (LPS), the cloned E. coli O9 rfb gene was introduced into Salmonella typhimurium strains defective in various genes involved in the synthesis of LPS. When E. coli O9 rfb was introduced into S. typhimurium strains possessing defects in rfb or rfc, they synthesized E. coli O9 LPS on their cell surfaces. The rfe-defective mutant of S. typhimurium synthesized only very small amounts of E. coli O9 LPS after the introduction of E. coli O9 rfb. These results confirmed the widely accepted idea that the biosynthesis of E. coli O9-specific polysaccharide does not require rfc but requires rfe. By using an rfbT mutant of the E. coli O9 rfb gene, the mechanism of transfer of the synthesized E. coli O9-specific polysaccharide from antigen carrier lipid to the R-core of S. typhimurium was investigated. The rfbT mutant of the E. coli O9 rfb gene failed to direct the synthesis of E. coli O9 LPS in the rfc mutant strain of S. typhimurium, in which rfaL and rfbT functions are intact, but directed the synthesis of the precursor. Because the intact E. coli O9 rfb gene directed the synthesis of E. coli O9 LPS in the same strain, it was suggested that the rfaL product of S. typhimurium and rfbT product of E. coli O9 cooperate to synthesize E. coli O9 LPS in S. typhimurium.  相似文献   

6.
We studied the reactivity of 66 anti-Escherichia coli B/r porin monoclonal antibodies (MAbs) with several E. coli and Salmonella typhimurium strains. Western immunoblots showed complete immunological cross-reactivity between E. coli B/r and K-12; among 34 MAbs which recognized porin in immunoblots of denatured outer membranes of E. coli B/r, all reacted with OmpF in denatured outer membranes of E. coli K-12. Extensive reactivity, although less than that for strain B/r (31 of 34 MAbs), occurred for porin from a wild-type isolate, E. coli O8:K27. Only one of the MAbs reacted with porin in denatured outer membranes of S. typhimurium. Even with immunochemical amplification of the Western immunoblot technique, only six MAbs recognized S. typhimurium porin (OmpD), demonstrating that there is significant immunological divergence between the porins of these species. Antibody binding to the bacterial surface, which was analyzed by cytofluorimetry, was strongly influenced by lipopolysaccharide (LPS) structure. An intact O antigen, as in E. coli O8:K27, blocked adsorption of all 20 MAbs in the test panel. rfa+ E. coli K-12, without an O antigen but with an intact LPS core, bound seven MAbs. When assayed against a series of rfa E. coli K-12 mutants, the number of MAbs that recognized porin surface epitopes increased sequentially as the LPS core became shorter. A total of 17 MAbs bound porin in a deep rough rfaD strain. Similar results were obtained with S. typhimurium. None of the anti-E. coli B/r porin MAbs adsorbed to a smooth strain, but three antibodies recognized porin on deep rough (rfaF, rfaE) mutants. These data define six distinct porin surface epitopes that are shielded by LPS from reaction with antibodies.  相似文献   

7.
Characterization of type 1 pili of Salmonella typhimurium LT2.   总被引:20,自引:8,他引:12       下载免费PDF全文
Type 1 pili from Salmonella typhimurium LT2 were purified and characterized. The pilus filaments were 6 nm in diameter and over 1 microns long. Estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of the pilin was 21,000. The isoelectric point of the filament was 4.1. Hydrophobic amino acids comprised 40.3% of the total amino acids of the pilin, which contained more proline, serine, and lysine than reported for the type 1 pilin of Escherichia coli. Purified pili agglutinated both horse and chicken erythrocytes and yeast cells but not bovine, sheep, or human erythrocytes. Horse erythrocyte agglutination was inhibited at lower concentrations by alpha-methyl-D-mannoside than by yeast mannane and D-fructose. Agglutination was not affected by D-galactose or sucrose. Results of the present study confirm the role of type 1 pili as Salmonella hemagglutinins and show chemical differences between the type 1 pili of S. typhimurium and E. coli.  相似文献   

8.
The sequence of the deoC gene of Escherichia coli K12 and the amino acid sequence of the corresponding protein, deoxyriboaldolase, has been established. The protein consists of 259 amino acids with a molecular weight of 27 737. The purified enzyme may exist both as a monomer and as a dimer. On the basis of amino acid composition, molecular weight and catalytic properties, the enzymes from E. coli and Salmonella typhimurium seem to be almost similar. They belong to the class I aldolases, which form Schiff base intermediates. Using data for the S. typhimurium enzyme, the lysine residue involved in the active site in the E. coli enzyme was tentatively identified.  相似文献   

9.
The araB and araC genes of Erwinia carotovora were expressed in Escherichia coli and Salmonella typhimurium. The araB and araC genes in E. coli, E. carotovora, and S. typhimurium were transcribed in divergent directions. In E. carotovora, the araB and araC genes were separated by 3.5 kilobase pairs, whereas in E. coli and S. typhimurium they were separated by 147 base pairs. The nucleotide sequence of the E. carotovora araC gene was determined. The predicted sequence of AraC protein of E. carotovora was 18 and 29 amino acids longer than that of AraC protein of E. coli and S. typhimurium, respectively. The DNA sequence of the araC gene of E. carotovora was 58% homologous to that of E. coli and 59% homologous to that of S. typhimurium, with respect to the common region they share. The predicted amino acid sequence of AraC protein was 57% homologous to that of E. coli and 58% homologous to that of S. typhimurium. The 5' noncoding regions of the araB and araC genes of E. carotovora had little homology to either of the other two species.  相似文献   

10.
Y F Li  A Sancar 《Nucleic acids research》1991,19(18):4885-4890
We have cloned the phr gene that encodes DNA photolyase from Salmonella typhimurium by in vivo complementation of Escherichia coli phr gene defect. The S.typhimurium phr gene is 1419 base pairs long and the deduced amino acid sequence has 80% identity with that of E. coli photolyase. We expressed the S.typhimurium phr gene in E.coli by ligating the E.coli trc promoter 5' to the gene, and purified the enzyme to near homogeneity. The apparent molecular weight of S.typhimurium photolyase is 54,000 dalton as determined by SDS-polyacrylamide gel electrophoresis, which is consistent with the calculated molecular weight of 53,932 dalton from the deduced phr gene product. S.typhimurium photolyase is purple-blue in color with near UV-visible absorption peaks at 384, 480, 580, and 625 nm and a fluorescence peak at 470 nm. From the characteristic absorption and fluorescence spectra and reconstitution experiments, S.typhimurium photolyase appears to contain flavin and methenyltetrahydrofolate as chromophore-cofactors as do the E.coli and yeast photolyases. Thus, S.typhimurium protein is the third folate class photolyase to be cloned and characterized to date. The binding constant of S.typhimurium photolyase to thymine dimer in DNA is kD = 1.6 x 10(-9) M, and the quantum yield of photorepair at 384 nm is 0.5.  相似文献   

11.
After irradiation, nearly equal amounts of deoxyribonucleic acid (DNA) are synthesized in radiation-sensitive Salmonella typhimurium and in resistant Escherichia coli B/r. However, the DNA synthesized in S. typhimurium is of low molecular weight, whereas that made in the E. coli B/r is like that synthesized in the unirradiated controls.  相似文献   

12.
We report the analysis of three open reading frames of Salmonella typhimurium LT2 which we identified as rfaF, the structural gene for ADP-heptose:LPS heptosyltransferase II; rfaD, the structural gene for ADP-L-glycero-D-manno-heptose-6-epimerase; and part of kbl, the structural gene for 2-amino-3-ketobutyrate CoA ligase. A plasmid carrying rfaF complements an rfaF mutant of S. typhimurium; rfaD and kbl are homologous to and in the same location as the equivalent genes in Escherichia coli K-12. The RfaF (heptosyl transferase II) protein shares regions of amino acid homology with RfaC (heptosyltransferase I), RfaQ (postulated to be heptosyltransferase III), and KdtA (ketodeoxyoctonate transferase), suggesting that these regions function in heptose binding. E. coli contains a block of DNA of about 1,200 bp between kbl and rfaD which is missing from S. typhimurium. This DNA includes yibB, which is an open reading frame of unknown function, and two promoters upstream of rfaD (P3, a heat-shock promoter, and P2). Both S. typhimurium and E. coli rfaD genes share a normal consensus promoter (P1). We postulate that the yibB segment is an insertion into the line leading to E. coli from the common ancestor of the two genera, though it could be a deletion from the line leading to S. typhimurium. The G+C content of the rfaLKZYJI genes of both S. typhimurium LT2 and E. coli K-12 is about 35%, much lower than the average of enteric bacteria; if this low G+C content is due to lateral transfer from a source of low G+C content, it must have occurred prior to evolutionary divergence of the two genera.  相似文献   

13.
H Y Qi  K Sankaran  K Gan    H C Wu 《Journal of bacteriology》1995,177(23):6820-6824
The structure-function relationship of bacterial prolipoprotein diacylgyceryl transferase (LGT) Has been investigated by a comparison of the primary structures of this enzyme in phylogenetically distant bacterial species, analysis of the sequences of mutant enzymes, and specific chemical modification of the Escherichia coli enzyme. A clone containing the gene for LGT, lgt, of the gram-positive species Staphylococcus aureus was isolated by complementation of the temperature-sensitive lgt mutant of E. coli (strain SK634) defective in LGT activity. In vivo and in vitro assays for prolipoprotein diacylglyceryl modification activity indicated that the complementing clone restored the prolipoprotein modification activity in the mutant strain. Sequence determination of the insert DNA revealed an open reading frame of 837 bp encoding a protein of 279 amino acids with a calculated molecular mass of 31.6 kDa. S. aureus LGT showed 24% identity and 47% similarity with E. coli, Salmonella typhimurium, and Haemophilus influenzae LGT.S. aureus LGT, while 12 amino acids shorter than the E. coli enzyme, had a hydropathic profile and a predicted pI (10.4) similar to those of the E. coli enzyme. Multiple sequence alignment among E. coli, S. typhimurium, H. influenzae, and S. aureus LGT proteins revealed regions of highly conserved amino acid sequences throughout the molecule. Three independent lgt mutant alleles from E. coli SK634, SK635, and SK636 and one lgt allele from S. typhimurium SE5221, all defective in LGT activity at the nonpermissive temperature, were cloned by PCR and sequenced. The mutant alleles were found to contain a single base alteration resulting in the substitution of a conserved amino acid. The longest set of identical amino acids without any gap was H-103-GGLIG-108 in LGT from these four microorganisms. In E. coli lgt mutant SK634, Gly-104 in this region was mutated to Ser, and the mutant organism was temperature sensitive in growth and exhibited low LGT activity in vitro. Diethylpyrocarbonate inactivated the E. coli LGT with a second-order rate constant of 18.6 M-1S-1, and the inactivation of LGT activity was reversed by hydroxylamine at pH 7. The inactivation kinetics were consistent with the modification of a single residue, His or Tyr, essential for LGT activity.  相似文献   

14.
The rfp gene of Shigella dysenteriae 1 and the rfa genes of Escherichia coli K-12 and Salmonella typhimurium LT2 have been studied to determine their relationship to lipopolysaccharide (LPS) core heterogeneity and their role in the attachment of O antigen to LPS. It has been inferred from the nucleotide sequence that the rfp gene encodes a protein of 41,864 Da which has a structure similar to that of RfaG protein. Expression of this gene in E. coli K-12 results in the loss of one of the three bands seen in gel analysis of the LPS and in the appearance of a new, more slowly migrating band. This is consistent with the hypothesis that Rfp is a sugar transferase which modifies a subset of core molecules so that they become substrates for attachment of S. dysenteriae O antigen. A shift in gel migration of the bands carrying S. dysenteriae O antigen and disappearance of the Rfp-modified band in strains producing O antigen suggest that the core may be trimmed or modified further before attachment of O antigen. Mutation of rfaL results in a loss of the rough LPS band which appears to be modified by Rfp and prevents the appearance of the Rfp-modified band. Thus, RfaL protein is involved in core modification and is more than just a component of the O-antigen ligase. The products of rfaK and rfaQ also appear to be involved in modification of the core prior to attachment of O antigen, and the sites of rfaK modification are different in E. coli K-12 and S. typhimurium. In contrast, mutations in rfaS and rfaZ result in changes in the LPS core but do not affect the attachment of O antigen. We propose that these genes are involved in an alternative pathway for the synthesis of rough LPS species which are similar to lipooligosaccharides of other species and which are not substrates for O-antigen attachment. All of these studies indicate that the apparent heterogeneity of E. coli K-12 LPS observed on gels is not an artifact but instead a reflection of functional differences among LPS species.  相似文献   

15.
A human isolate of Salmonella enteritidis which displayed strong pellicle formation during static broth culture and mannose-sensitive hemagglutination produced fimbriae which were morphologically indistinguishable from type 1 fimbriae of members of the family Enterobacteriaceae. Fimbrin was purified to homogeneity, and the apparent molecular weight (Mr, 14,400) was markedly lower than that reported for the type 1 fimbrin of Salmonella typhimurium (Mr, 22,100). This fimbrin contained 40% hydrophobic amino acids and lacked cysteine. The sequence of the N-terminal 64 amino acids was determined, and sequence alignment revealed that although the 18 N-terminal residues of the S. enteritidis molecule shared considerable homology with Escherichia coli and S. typhimurium type 1 fimbrins, the S. enteritidis fimbrin lacked a 6- to 9-residue terminal sequence present in the other type 1 fimbrins and, after residue 18, shared little homology with the E. coli sequence. Antibodies raised to the purified S. enteritidis fimbrin bound to surface-exposed conformational epitopes on the native fimbriae and displayed pronounced serospecificity. These antibodies were used in the isolation of a nonfimbriated Tn10 insertion mutant which was unable to hemagglutinate.  相似文献   

16.
Lipopolysaccharides (LPS) from two enteropathogenic strains of E. coli O142 and O158 were isolated by hot phenol-water extraction procedure. Polyacrylamide gel electrophoretic pattern of the LPS showed the typical ladder like pattern of smooth type of LPS. The LPS of E. coli O158 was found to contain L-rhamnose, D-glucose and N-acetyl-D-galactosamine as major constituents together with D-galactose, N-acetyl-D-glucosamine, L-glycero-D-manno-heptose and 2-keto-3-deoxy-D-manno-octulosonic acid (KDO) whereas LPS from E. coli O142 contained L-rhamnose, N-acetyl-D-glucosamine and N-acetyl-D-galactosamine as major constituents together with D-glucose, D-galactose, N-acetyl-D-glucosamine, L-glycero-D-mannoheptose and 2-keto-3-deoxy-D-manno-octulosonic acid (KDO). LPS was degraded by mild acid hydrolysis to yield a degraded polysaccharide fraction and an insoluble lipid-A fraction. The main fatty acids of the lipid-A fraction of the LPS were C12:O, C14:O, and 3-OH C14:O for O158 strain whereas E. coli O142 lipid-A consisted of C12:O, C14:O, 3-OH C14:O, and C16:O. The degraded polysaccharide fraction on gel permeation chromatography gave a high moleculer weight O-chain fraction and a core oligosaccharide and a fraction containing degraded sugars. The chemical composition of LPS and its fragmented products are reported in this communication.  相似文献   

17.
Hinton A  Hume ME 《Anaerobe》1995,1(2):121-127
A Veillonella species and Bacteroides fragilis were isolated from the cecal contents of adult chickens. When growth on an agar medium supplemented with 0.4% glucose and adjusted to pH 6.5, mixed cultures containing Veillonella and B. fragilis inhibited the growth of Salmonella typhimurium; Salmonella enteritidis, Escherichia coli 0157:H7 and Pseudomonas aeruginosa. Decreasing the glucose concentration of the agar decreased the inhibitory activity of the mixed culture. Mixed cultures grown on agar media supplemented with 0.5% glucose and adjusted to pH 6.5, 7.0 or 7.5 also inhibited the growth of S. typhimurium, S. enteritidis, E. coli 0157:H7 and P. aeruginosa. However, increasing the pH of the agar decreased the inhibitory activity of the mixed culture. Pure cultures of Veillonella or B. fragilis did not inhibit the growth of S. typhimurium, S. enteritidis, E. coli 0157:H7 or P. aeruginosa on any of the agar supplemented with different concentrations of glucose or on any of the agar adjusted to different pH levels. The inhibitory activity of the mixed culture was correlated with the concentration of volatile fatty acids that were formed as B. fragilis metabolized glucose to produce succinate and acetate and as the succinate produced by B. fragilis was decarboxylated by Veillonella to produce propionate.  相似文献   

18.
The gene coding aspartate racemase (EC 5.1.1.13) was cloned from the lactic acid bacteria Streptococcus thermophilus IAM10064 and expressed efficiently in Escherichia coli. The 2.1 kilobase pairs long full length clone had an open reading frame of 729 nucleotides coding for 243 amino acids. The calculated molecular weight of 27,945 agreed well with the apparent molecular weight of 28,000 found in sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis of the aspartate racemase purified from S. thermophilus. The N-terminal amino acid sequence from the purified protein exactly matches the derived sequence. In addition, the amino acid composition compiled from the derived sequence is very similar to that obtained from the purified recombinant protein. No significantly homologous proteins were found in a protein sequence data bank. Even the homology scores with alanine racemases of Salmonella typhimurium and Bacillus stearothermophilus were low. Aspartate racemase was overproduced in Escherichia coli NM522 with plasmid pAG6-2-7, which was constructed from two copies of the gene linked with a tac promoter and plasmid vector pUC18. The amount of aspartate racemase increases with the growth of E. coli and almost no degradation of the enzyme was observed. The maximum amount of the produced enzyme reached approx. 20% of the total protein of E. coli.  相似文献   

19.
20.
The existence of a free form of a specific lipoprotein of molecular weight 7,200 was examined in the envelopes of several gram-negative bacteria. When the envelope proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, distinct peaks were observed in Salmonella typhimurium, Serratia marcescens, and Pseudomonas aeruginosa at the same position as the free form of the lipoprotein of Escherichia coli. However, the peak was not observed in Proteus mirabilis. The protein at the peak in S. typhimurium was shown to contain little or no histidine as expected from the amino acid composition of the lipoprotein. Furthermore, antiserum against the highly purified lipoprotein from E. coli was shown to react with the proteins from S. typhimurium and S. marcescens and to form the specific immunoprecipitates. In contrast, the protein from P. aeruginosa did not react with the antiserum at all. Thus, it is concluded that S. typhimurium and S. marcescens have the free form of the lipoprotein in their envelopes as does E. coli. P. aeruginosa contains a protein of the same size as the lipoprotein, but it is not certain whether the protein is the same structural protein as the lipoprotein from E. coli. P. mirabilis may not have any free form of the lipoprotein, may have it in a very small amount, or may have a lipoprotein of different molecular weight serving the same function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号