首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigated the role of acetylcholine (ACh) in physiological regulation of amylase secretion in avian exocrine pancreas. In the isolated duck pancreatic acini, ACh dose dependently stimulated amylase secretion, with a maximal effective concentration at 10 μM. The cAMP-mobilizing compounds forskolin, vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 had no effect on the dose–response curve. ACh dose dependently induced increases in cytosolic Ca2+ concentration ([Ca2+] c ), with increasing concentrations transforming oscillations into plateau increases. Forskolin (10 μM), PACAP-38 (1 nM), PACAP-27 (1 nM), or VIP (10 nM) alone did not stimulate [Ca2+] c increase; neither did they modulate ACh-induced oscillations, nor made ACh low concentration effective. These data indicate that ACh-stimulated zymogen secretion in duck pancreatic acinar cells is not subject to modulation from the cAMP signaling pathway; whereas it has been widely reported in the rodents that ACh-stimulated exocrine pancreatic secretion is significantly enhanced by cAMP-mobilizing agents. This makes the duck exocrine pancreas unique in that cholinergic stimulus-secretion coupling is not subject to cAMP regulation.  相似文献   

2.
Two sets of wide-field neurons extend neurites into the fly's optic lamina, where monopolar cells receive photoreceptor input. They exhibit immunoreactivity to antibodies raised against either 5-hydroxytryptamine or the crustacean peptide PDH, respectively. Both are proposed whole-field neuromodulators of vision, apparently regulating a circadian rhythm of monopolar cell size. Seeking functional correlates, we have re-examined the electroretinogram for circadian rhythmicity, and for responses to locally injected 5-hydroxytryptamine and peptide. Long-term electroretinogram recordings from Calliphora entrained to a light/dark cycle and then transferred to constant darkness, uncovered a gradual, modest increase during the subjective night in the electroretinogram's ON- and OFF-transients, from the lamina's monopolar cells. Five to twenty nl of 5-hydroxytryptamine (10−3 mol · 1−1) injected into the head haemolymph strongly enhanced the electroretinogram transients, an action reversed by 5-hydroxytryptamine antagonists. Injected into the eye, 5-hydroxytryptamine (10−4 mol · 1−1) had the opposite effect; the rapid onset there suggests direct action, whilst the opposing effect from haemolymph injection suggests a different receptor site. Pigment-dispersing hormone (2.2 × 10−5 mol · 1−1) injected into the haemolymph increased the electroretinogram transients along a biphasic course, with a slow partial recovery; injected into the eye, it lacked effect. Accepted: 30 May 1999  相似文献   

3.
The vertebrate renin-angiotensin system controls cardiovascular, renal and osmoregulatory functions. Angiotensin II (ANG II) is the most potent hormone of the RAS but in some vertebrate animals angiotensin III (Val4-ANG III) may be a hormone. We studied the effects of some angiotensins and mammalian ANG II receptor antagonists on nasal salt gland function and arterial blood pressure in conscious white Pekin ducks. Nasal salt gland fluid secretion (NFS) was induced by a 10 ml · kg−1 bw i.v. injection of a NaCl solution (1000 mosmol · kg−1 H2O) and maintained by a continuous i.v. infusion of the same solution at a rate of 0.97 ml · min−1. There was a positive linear correlation between nasal fluid [Na+] and osmolality, between [Na+] and [K+], and also between the rate of NFS and [Na+] and [K+]. [Asp1,Val5]-ANG II (1 nmol · kg−1 i.v.) inhibited NFS but did not change ionic concentrations. Val4-ANG III (1 or 5 nmol · kg−1) and ANG I (1-7) (20 nmol · kg−1) had no effect on NFS. [Sar1, Ile8]-ANG II (SARILE) acted as an ANG II receptor agonist and resulted in a prolonged and complete inhibition of NFS. The AT1 receptor antagonist, losartan (DuP 753) and the AT2 receptor antagonist, PD 123319 both failed to block the inhibitory effect of [Asp1, Val5]-ANG II on the nasal salt glands. [Asp1,Val5]-ANG II (2 nmol · kg−1 i.v.) increased mean arterial blood pressure (MABP), whereas the same dose of [Asn1,Val5]-ANG II (teleost) had only 30% of the pressor potency of the avian ANG II. Neither 1 nor 5 nmol · kg−1 of Val4-ANG III i.v. nor 20 nmol · kg−1 of ANG I (1-7) had any measurable effect on MABP. SARILE blocked completely the pressor response to [Asp1,Val5]-ANG II but the AT1 antagonists losartan and CGP 48933 and the AT2 antagonist PD 123319 all failed to block the pressor response to [Asp1,Val5]-ANG II. These results have substantiated an important role of the nasal salt gland in potassium regulation and highlighted a pharmacological dimorphism of saralasin, namely agonist and antagonist to angiotensin II-mediated inhibition of nasal salt gland function and pressor response, respectively. Using specific nonpeptidergic angiotensin II receptor antagonists, we have confirmed the distinct pharmacology of the avian angiotensin II receptors in a nongallinaceous species and the absence of significant angiotensin I (1-7) and angiotensin II effects on the cardiovascular system and nasal salt gland. Accepted: 6 November 1997  相似文献   

4.
A laboratory study investigated the metabolic physiology, and response to variable periods of water and sodium supply, of two arid-zone rodents, the house mouse (Mus domesticus) and the Lakeland Downs short-tailed mouse (Leggadina lakedownensis) under controlled conditions. Fractional water fluxes for M. domesticus (24 ± 0.8%) were significantly higher than those of L. lakedownensis (17 ± 0.7%) when provided with food ad libitum. In addition, the amount of water produced by M. domesticus and by L. lakedownensis from metabolic processes (1.3 ± 0.4 ml · day−1 and 1.2 ± 0.4 ml · day−1, respectively) was insufficient to provide them with their minimum water requirement (1.4 ± 0.2 ml · day−1 and 2.0 ± 0.3 ml · day−1, respectively). For both species of rodent, evaporative water loss was lowest at 25 °C, but remained significantly higher in M. domesticus (1.1 ± 0.1 mg H2O · g−0.122 · h−1) than in L. lakedownensis (0.6 ± 0.1 mg H2O · g−0.122 · h−1). When deprived of drinking water, mice of both species initially lost body mass, but regained it within 18 days following an increase in the amount of seed consumed. Both species were capable of drinking water of variable saline concentrations up to 1 mol · l−1, and compensated for the increased sodium in the water by excreting more urine to remove the sodium. Basal metabolic rate was significantly higher in M. domesticus (3.3 ± 0.2 mg O2 · g−0.75 · h−1) than in L. lakedownensis (2.5 ± 0.1 mg O2 · g−0.75 · h−1). The study provides good evidence that water flux differences between M. domesticus and L. lakedownensis in the field are due to a requirement for more water in M. domesticus to meet their physiological and metabolic demands. Sodium fluxes were lower than those observed in free-ranging mice, whose relatively high sodium fluxes may reflect sodium associated with available food. Accepted: 16 August 1999  相似文献   

5.
The aim of this study was to investigate hypothalamic-pituitary-adrenal (HPAA) and -gonadal (HPGA) axis responses to post-exercise (30 min at 65% O2max) combined corticotrophin, luteinizing hormone and thyrotrophin releasing hormone challenge (0.7 μg/kg body mass) in elderly distance runners (DR; age: 68.9 ± 4.2 year) and sedentary individuals (SI; age: 69.1 ± 2.6 year). Plasma cortisol, growth hormone, prolactin, luteinizing hormone, follicle stimulating hormone and total testosterone (T) concentrations pre- and post-exercise as well as in response to stimulation did not differ between DR and SI. Plasma adrenocorticotropic hormone returned to pre-exercise level in DR 60 min and in SI 90 min post-stimulation. Free T was lower in DR at all time points. Our results do not support the notion of altered releasing hormone-stimulable HPAA and HPGA synthesis-secretion capacity in elderly males after endurance training. Accepted: 18 November 1997  相似文献   

6.
 − 1  s − 1 at 25 °C and pH 7.4 in Tris.HCl buffer and 0.1 M KCl. At 25 °C, Zn7-metallothionein also exchanged metal ions with Cd-carbonic anhydrase with a rate constant of 0.33 ± 0.02 M − 1 s − 1 to reconstitute enzymatically active protein. Cd-carbonic anhydrase reacted within the time of mixing with the peptide sequence 49–61 of rabbit metallothionein 2 which contains four cysteinyl residues, leading to the exchange of most of the Cd2+ into the peptide. At pH 7.4 and 25 °C, Cd2+ has higher affinity for apometallothionein than for the apo-peptide. Received: 25 February 1999 / Accepted: 17 September 1999  相似文献   

7.
 Fourier transform infrared (FTIR) spectroscopy is used to compare the thermally induced conformational changes in horse, bovine and tuna ferricytochromes c in 50 mM phosphate/0.2 M KCl. Thermal titration in D2O at pD 7.0 of the amide II intensity of the buried peptide NH protons reveals tertiary structural transitions at 54  °C in horse and at 57  °C in bovine c. These transitions, which occur well before loss of secondary structure, are associated with the alkaline isomerization involving Met80 heme-ligand exchange. In tuna c, the amide-II-monitored alkaline isomerization occurs at 35  °C, followed by a second amide II transition at 50  °C revealing a hitherto unreported conformational change in this cytochrome. Amide II transitions at 50  °C (tuna) and 54  °C (horse) are also observed during the thermal titration of the CN-ligated cytochromes (where CN displaces the Met80 ligand), but a well-defined 35  °C amide II transition is absent from the titration curve of the CNadduct of tuna c. The different mechanisms suggested by the FTIR data for the alkaline isomerization of tuna and the mammalian cytochromes c are discussed. After the alkaline isomerization, loss of secondary structure and protein aggregation occur within a 5  °C range with T m values at 74  °C (bovine c), 70  °C (horse c) and 65  °C (tuna c), as monitored by changes in the amide I′ bands. The FTIR spectra were also used to compare the secondary structures of the ferricytochromes c at 25  °C. Curve fitting of the amide I (H2O) and amide I′ (D2O) bands reveals essentially identical secondary structure in horse and bovine c, whereas splitting of the α-helical absorption of tuna c indicates the presence of less-stable helical structures. CN adduct formation results in no FTIR-detectable changes in the secondary structures of either tuna or horse c, indicating that Met80 ligation does not influence the secondary structural elements in these cytochromes. The data provided here demonstrate for the first time that the selective thermal titration of the amide II intensity of buried peptide NH protons in D2O is a powerful tool in protein conformational analysis. Received: 1 April 1999 / Accepted: 24 August 1999  相似文献   

8.
We used tritium-labeled water to measure total body water, water influx (which approximated oxidative water production) and water efflux in free-flying tippler pigeons (Columba livia) during flights that lasted on average 4.2 h. At experimental air temperatures ranging from 18 to 27 °C, mean water efflux by evaporation and excretion [6.3 ± 1.3 (SD) ml · h−1, n = 14] exceeded water influx from oxidative water and inspired air (1.4 ± 0.7 ml · h−1, n = 14), and the birds dehydrated at 4.9 ± 0.9 ml · h−1. This was not significantly different from gravimetrically measured mass loss of 6.2 ± 2.1 g · h−1 (t = 1.902, n = 14, P>0.05). This flight-induced dehydration resulted in an increase in plasma osmolality of 4.3 ± 3.0 mosmol · kg−1 · h−1 during flights of 3–4 h. At 27 °C, the increase in plasma osmolality above pre-flight levels (ΔP osm = 7.6±4.29 mosmol · kg−1 · h−1, n = 6) was significantly higher than that at 18 °C (ΔP osm = 0.83±2.23 mosmol · kg−1 · h−1, (t = 3.43, n = 6, P < 0.05). Post-flight haematocrit values were on average 1.1% lower than pre-flight levels, suggesting plasma expansion. Water efflux values during free flight were within 9% of those in the one published field study (Gessaman et al. 1991), and within the range of values for net water loss determined from mass balance during wind tunnel experiments (Biesel and Nachtigall 1987). Our net water loss rates were substantially higher than those estimated by a simulation model (Carmi et al. 1992) suggesting some re-evaluation of the model assumptions is required. Accepted: 8 April 1997  相似文献   

9.
Isolated perfused gills of stenohaline crabs Cancer pagurus adapted to seawater, brackish water-adapted euryhaline shore crabs Carcinus maenas and freshwater-adapted extremely euryhaline Chinese crabs Eriocheir sinensis were tested for their capacity to excrete ammonia. Gills were perfused with haemolymph-like salines and bathed with salines equal in adaptation osmolality. Applying 100 μmol · l−1 NH4Cl in the perfusion saline and concentrations of NH4Cl in the bath that were stepwise increased from 0 to 4000 μmol · l−1 allowed us to measure transbranchial fluxes of ammonia along an outwardly as well as various inwardly directed gradients. The gills of all three crab species were capable – to different extents – of active excretion of ammonia against an inwardly directed gradient. Of the three crab species, the gills of Cancer pagurus revealed the highest capacity for active excretion of ammonia, being able to excrete it from the haemolymph (100 μmol · l−1 NH+ 4) through the gill epithelium against ambient concentrations of up to 800 μmol · l−1, i.e. against an eightfold gradient. Carcinus maenas and E. sinensis were able to actively excrete ammonia against approximately fourfold gradients. Within the three crab species, the gills of E. sinensis exhibited the greatest capacity to resist influx at very high external concentrations of up to 4000 μmol · l−1. We consider the observed capacities for excretion of ammonia against the gradient as ecologically meaningful. These benthic crustaceans protect themselves by burying themselves in the sediment, where, in contrast to the water column, concentrations of ammonia have previously been reported that greatly increase haemolymph levels. Electrophysiological results indicate that the permeabilities of the gill epithelia are a clue to understanding the species-specific differences in active excretion of ammonia. During the invasion of brackish water and freshwater, the permeabilities of the body surfaces greatly decreased. The gills of marine Cancer pagurus exibited the greatest permeability (ca. 250 mS cm−2), thus representing practically no influx barrier for ions including NH+ 4. We therefore assume that C. pagurus had to develop the strongest mechanism of active excretion of ammonia to counteract influx. On the other hand, freshwater-adapted E. sinensis exhibited the lowest ion permeability (ca. 4 mS cm−2) which may reduce passive NH+ 4 influxes at high ambient levels. Accepted: 14 October 1998  相似文献   

10.
Glycine-rich peptide toxin of cyanobacterium Scytonema MKU 106 was purified. UV spectral analysis showed an absorption maximum at 228 nm and the molecular mass was less than 12 kDa. The mortality rate of American boll worms (Helicoverpa armigera) was about 80% and 40% 84 h after treatment with 0.001% crude and purified peptide toxins respectively; 100% mortality was observed after 108 h treatment with both purified and crude peptide toxins. The LC50 (lethal concentration to 50% of the population) for Heliothis larvae after 96 h was 8.3 μg/ml purified peptide toxin and 6.2 μg/ml crude peptide toxin. Observations also show that the peptide toxin at 0.01% concentration acts as a biopesticide and at high (0.1%) concentrations it will act as an anti-feeding compound for Stylepta derogata (leaf-roller) larvae of the cotton crop. Received: 22 May 1996 / Accepted: 8 July 1996  相似文献   

11.
The purpose of this investigation was to examine if exercise-induced arterial oxyhemoglobin desaturation selectively observed in highly trained endurance athletes could be related to differences in the pulmonary diffusing capacity (D L) measured during exercise. The D L of 24 male endurance athletes was measured using a 3-s breath-hold carbon monoxide procedure (to give D LCO) at rest as well as during cycling at 60% and 90% of these previously determined O2max. Oxyhemoglobin saturation (S aO2%) was monitored throughout both exercise protocols using an Ohmeda Biox II oximeter. Exercise-induced oxyhemoglobin desaturation (DS) (S aO2% < 91% at O2max) was observed in 13 subjects [88.2 (0.6)%] but not in the other 11 nondesaturation subjects [NDS: 92.9 (0.4)%] (P ≤ 0.05), although O2max was not significantly different between the groups [DS: 4.34 (0.65) l / min vs NDS: 4.1 (0.49) l / min]. At rest, no differences in either D LCO [m1 CO · mmHg−1 · min−1: 41.7 (1.7) (DS) vs 41.1 (1.8) (NDS)], D LCO / A [8.2 (0.4) (DS) vs 7.3 (0.9) (NDS)], MVV [l / min: 196.0 (10.4) (DS) vs 182.0 (9.9) (NDS)] or FEV1/FVC [86.3 (2.2) (DS) vs 82.9 (4.7) (NDS)] were found between groups (P ≥ 0.05). However, E /O2 at O2max was lower in the DS group [33.0 (1.1)] compared to the NDS group [36.8 (1.5)] (P ≤ 0.05). Exercise D LCO (m1 CO · mmHg−1 · min−1 ) was not different between groups at either 60% O2max [DS: 55.1 (1.4) vs NDS: 57.2 (2.1)] or at 90% O2max [DS: 61.0 (1.8) vs NDS: 61.4 (2.9)]. A significant relationship (r = 0.698) was calculated to occur between S aO2% and E /O2 during maximal exercise. The present findings indicate that the exercise-induced oxyhemoglobin desaturation seen during submaximal and near-maximal exercise is not related to differences in D L, although during maximal exercise S aO2 may be limited by a relatively lower exercise ventilation. Accepted: 25 September 1996  相似文献   

12.
Using an antisense control strategy, we isolated an Aspergillus oryzae mutant that produced low levels of carboxypeptidases (CPases). The mutant TFC-1 expressed the antisense RNA of the structural gene of CPase O and showed about 30% of the CPase activity in the parent strain. Gel filtration analysis indicated that this mutant decreased the CPase activities not only of CPase O but also of CPase O-1 and O-2. This result indicated that the antisense RNA was able to control the expression of the CPase genes as a group. Using the mutant as a heterologous protein expression host that produced the low levels of CPases, a stable and higher level of lysozyme expression could be obtained compared with the wild-type. In vitro proteolytic degradation assay also demonstrated that human lysozyme was degraded by purified CPase O. Received: 16 June 1997 / Received last revision: 29 August 1997 / Accepted: 15 September 1997  相似文献   

13.
Various concentrations of isopropyl β-d-thiogalactopyranoside (IPTG) were used to induce production of the enzyme penicillin G acylase by recom binant Escherichia coli harboring plasmid pQEA11. The plasmid pQEA11 carries a wild-type pga gene, which is under the control of the tac promoter and lacIq. At low IPTG concentrations (0.025 – 0.1 mM), enzyme activity increased with increasing IPTG concentrations. At higher IPTG concentrations (0.2 and 0.5 mM), enzyme activity declined progressively. Examination of induced recombinant E. coli cells by transmission electron microscopy showed the presence of only periplasmic inclusion bodies at low IPTG concentrations (up to 0.1 mM) and both periplasmic and cytoplasmic inclusion bodies at high IPTG concentrations (0.2 mM and 0.5 mM). Results from sodium dodecyl sulfate/polyacrylamide gel electrophoresis and immunoblots of whole-cell proteins, membrane proteins and inclusion body proteins in these cells indicated that cytoplasmic inclusion bodies constituted an accumulation of preproenzyme (i.e., precursor polypeptide containing a signal peptide) and that periplasmic inclusion bodies constituted an accumulation of proenzyme (i.e., precursor polypeptide lacking a signal peptide). Received: 27 March 1996 / Received revision: 2 July 1996 / Accepted: 10 November 1996  相似文献   

14.
Unidirectional flux rates of Ca2+ across gastrointestinal tissues from sheep and goats were measured in vitro by applying the Ussing-chamber technique. Except for the sheep duodenum, mucosal to serosal Ca2+ flux rates (J ms) exceeded respective flux rates in the opposite direction (J sm) in both species and in all segments of the intestinal tract. This resulted in net Ca2+ flux rates␣(J net = J ms − J sm) ranging between −2 and 9 nmol · cm−2 · h−1 in sheep and between 10 and 15 nmol cm−2 · h−1 in goats. In sheep, only J net in jejunum, and in goats, J netin duodenum and jejunum were significantly different from zero. Using sheep rumen wall epithelia, significant J net of Ca2+ of around 5 nmol · cm−2 · h−1 could be detected. Since the experiments were carried out in the absence of an electrochemical gradient, significant net Ca2+ absorption clearly indicates the presence of active mechanisms for Ca2+ transport. Dietary Ca depletion caused increased calcitriol plasma concentrations and induced significant stimulations of net Ca2+ absorption in goat rumen. J net of Ca2+ across goat rumen epithelia was significantly reduced by 1 mmol · l −1 verapamil in the mucosal buffer solution. In conclusion, there is clear evidence for the rumen as a main site for active Ca2+ absorption in small ruminants. Stimulation of active Ca2+ absorption by increased plasma calcitriol levels and inhibition by mucosal verapamil suggest mechanistic and regulatory similarities to active Ca2+ transport as described for the upper small intestines of monogastric species. Accepted: 31 July 1996  相似文献   

15.
The lugworm Arenicola marina is a typical inhabitant of intertidal flats. In its L-shaped burrow the animal is exposed to varying concentrations of O2 and toxic sulfide depending on the tides. The lugworm is able to detoxify sulfide through its oxidation to thiosulfate. When exposed to declining O2 tensions Arenicola marina reacted as an oxyconformer. In the presence of 25 μmol · l−1 sulfide the respiration was not affected. In contrast, the lugworm consumed significantly less O2 at any Po2 in the presence of 200 μmol · l−1 sulfide. Without sulfide anaerobic metabolism started at a Po2 of approximatedly 10 kPa. Even at high O2 tensions animals exposed to sulfide produced significantly more anaerobic metabolites compared with the controls. Accordingly the critical value PcM, the ambient Po2 below which anaerobic metabolism starts, was shifted towards normoxia. Since O2 supply was sufficient for aerobic metabolism, anaerobiosis was induced by sulfide. An influx of sulfide was observed at 25 as well as at 200 μmol · l−1 sulfide. The main product of sulfide detoxification in the lugworm was thiosulfate. Its synthesis increased with ambient Po2 and depended on the sulfide concentration. Sulfide and thiosulfate were detected in the coelomic fluid, the blood, and the body wall of Arenicola marina. Only about 2% of the ambient O2 was used for sulfide detoxification at 25 μmol · l−1 sulfide and about 50% at 200 μmol · l−1 sulfide, respectively. Even at the low sulfide concentration Arenicola marina's capacity to detoxify sulfide was too low to maintain a complete aerobic metabolism. Accepted: 19 February 1997  相似文献   

16.
 Kinetics of the steady-state oxidation of n–alkylferrocenes (alkyl = H, Me, Et, Bu and C5H11) by H2O2 to form the corresponding ferricenium cations catalyzed by horseradish peroxidase has been studied in micellar systems of Triton X-100, CTAB, and SDS, mostly at pH 6.0 and 25  °C. The rate of oxidation of ferrocenes with longer alkyl radicals is too slow to be measured. The reaction obeying the [RFc]:[H2O2] = 2 : 1 stoichiometry is strictly first-order in both HRP and RFc in a wide concentration range. The corresponding observed second-order rate constants k, which refer to the interaction of the peroxidase compound II (HRP-II) with RFc, decrease with the elongation of the alkyl substituent R, and this in turn is accompanied by an increase in the formal redox potentials E°′ in the same medium. Increasing the surfactant concentration lowers the rate constants k, the effect being due to the nonproductive binding of RFc to micelles rather than to enzyme inactivation. The micellar effects are accounted for in terms of the Berezin pseudo-phase model of micellar catalysis applied to the interaction of enzyme with organometallic substrates. The oxidation was found to occur primarily in the aqueous pseudo-phase and the calculated intrinsic second-order rate constants k w are (1.9 ± 0.5)×105, (2.7 ± 0.1)×104, and (5.9 ± 0.6)×103 M–1 s–1 for HFc, EtFc, and n–BuFc, respectively. The data obtained were used for estimating the self-exchange rate constants for the HRP-II/HRP couple in terms of the Marcus formalism. Received: 15 July 1996 / Accepted: 15 November 1996  相似文献   

17.
The freshwater microalga Haematococcus pluvialis is one of the best microbial sources of the carotenoid astaxanthin, but this microalga shows low growth rates and low final cell densities when cultured with traditional media. A single-variable optimization strategy was applied to 18 components of the culture media in order to maximize the productivity of vegetative cells of H. pluvialis in semicontinuous culture. The steady-state cell density obtained with the optimized culture medium at a daily volume exchange of 20% was 3.77 · 105 cells ml−1, three times higher than the cell density obtained with Bold basal medium and with the initial formulation. The formulation of the optimal Haematococcus medium (OHM) is (in g l−1) KNO3 0.41, Na2HPO4 0.03, MgSO4 · 7H2O 0.246, CaCl2 · 2H2O 0.11, (in mg l−1) Fe(III)citrate · H2O 2.62, CoCl2 · 6H2O 0.011, CuSO4 · 5H2O 0.012, Cr2O3 0.075, MnCl2 · 4H2O 0.98, Na2MoO4 · 2H2O 0.12, SeO2 0.005 and (in μg l−1]) biotin 25, thiamine 17.5 and B12 15. Vanadium, iodine, boron and zinc were demonstrated to be non-essential for the growth of H. pluvialis. Higher steady-state cell densities were obtained by a three-fold increase of all nutrient concentrations but a high nitrate concentration remained in the culture medium under such conditions. The high cell productivities obtained with the new optimized medium can serve as a basis for the development of a two-stage technology for the production of astaxanthin from H. pluvialis. Received: 10 September 1999 / Received revision: 2 December 1999 / Accepted: 3 December 1999  相似文献   

18.
Clostridium thermoaceticum were determined by equilibrium dialysis. CoA bound to as-isolated native α 2 β 2 enzyme with K D = 10 ± 8 μM and n = 0.2 ± 0.1 moles per αβ dimer, where K D is the thermodynamic dissociation constant and n is the number of CoAs bound per αβ dimer of the enzyme. The enzyme is heterogeneous; for example, only  ∼ 30% of α subunits contain A-clusters with labile Ni ions (the remainder have nonlabile Ni ions and are nonfunctional). The observed n value suggests that CoA binds only to αβ units with Ni-labile A-clusters. The CoA binding properties of enzyme lacking labile Ni was essentially the same, indicating that CoA does not bind directly to the Ni of the A-cluster. This was further evidenced by the observation that bound CoA did not inhibit removal of the labile Ni by 1,10-phenanthroline. CoA did not bind CO-reduced enzyme, and the EPR signal exhibited by the one-electron reduced and CO-bound form of the A-cluster was unaffected by the presence of up to 200 μM CoA. In contrast, CoA did bind Ti(III)-citrate-reduced enzyme (K D = 36 ± 16 μM, n = 0.16 ± 0.08). Implications of these results for the mechanism of catalysis are discussed. Received: 29 March 1999 / Accepted: 8 September 1999  相似文献   

19.
Eight fit men [maximum oxygen consumption (O2max) 64.6 (1.9) ml · kg−1 · min−1, aged 28.3 (1.7) years (SE in parentheses) were studied during two treadmill exercise trials to determine the effect of endogenous opioids on insulin and glucagon immunoreactivity during intense exercise (80% O2max). A double-blind experimental design was used with subjects undertaking the two exercise trials in counterbalanced order. Exercise trials were 20 min in duration and were conducted 7 days apart. One exercise trial was undertaken following administration of naloxone (N; 1.2 mg; 3 ml) and the other after receiving a placebo (P; 0.9% NaCl saline; 3 ml). Prior to each experimental trial a flexible catheter was placed into an antecubital vein and baseline blood samples were collected. Immediately after, each subject received either a N or P bolus injection. Blood samples were also collected after 20 min of continuous exercise (running). Glucagon was higher (P < 0.05), while insulin was lower (P < 0.05), during exercise compared with pre-exercise values in both trials. However, glucagon was higher (P < 0.05) in the P than in the N exercise trial [141.4 (8.3) ng · l−1 vs 127.2 (7.6) ng · l−1]. There were no differences in insulin during exercise between the P and N trials [50.2 (4.3) pmol · l−1 vs 43.8 (5) pmol · l−1]. These data suggest that endogenous opioids may augment the glucagon response during intense exercise. Accepted: 15 June 1996  相似文献   

20.
The influx of glucose into the brain and plasma glucose disappearance were estimated in rainbow trout (Oncorhynchus mykiss) intravenously injected (1 ml · kg−1 body weight) with a single dose (15 μCi · kg−1 body weight) of 3-O-methyl-D-[U-14C]glucose ([U-14C]-3-OMG) at different times (2–160 min), and after intravenous injection at 15 min of increased doses (10–60 μCi · kg−1 body weight) of [U-14C]-3-OMG. Brain and plasma radiotracer concentrations were measured, and several kinetic parameters were calculated. The apparent brain glucose influx showed a maximum after 15–20 min of injection then decreased to a plateau after 80 min. Brain distribution space of 3-OMG increased from 2 min to 20 min reaching equilibrium from that time onwards at a value of 0.14 ml · g−1. The unidirectional clearance of glucose from blood to brain (k1) and the fractional clearance of glucose from brain to blood (k2) were estimated to be 0.093 ml · min−1 · g−1, and 0.867 min−1, respectively. A linear increase was observed in brain and plasma radiotracer concentrations when increased doses of [U-14C]-3-OMG were used. All these findings support a facilitative transport of glucose through the blood-brain barrier of rainbow trout with characteristics similar to those observed in mammals. The injection of different doses of melatonin (0.25–1.0 mg · kg−1) significantly increased brain glucose influx suggesting a possible role for melatonin in the regulation of glucose transport into the brain. Accepted: 26 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号