首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of an effort to understand how proteins are imported into the peroxisome, we have sought to identify the peroxisomal targeting signals in four unrelated peroxisomal proteins: human catalase, rat hydratase:dehydrogenase, pig D-amino acid oxidase, and rat acyl-CoA oxidase. Using gene fusion experiments, we have identified a region of each protein that can direct heterologous proteins to peroxisomes. In each case, the peroxisomal targeting signal is contained at or near the carboxy terminus of the protein. For catalase, the peroxisomal targeting signal is located within the COOH-terminal 27 amino acids of the protein. For hydratase:dehydrogenase, D-amino acid oxidase, and acyl-CoA oxidase, the targeting signals are located within the carboxy-terminal 15, 14, and 15 amino acids, respectively. A tripeptide of the sequence Ser-Lys/His-Leu is present in each of these targeting signals as well as in the peroxisomal targeting signal identified in firefly luciferase (Gould, S.J., G.-A. Keller, and S. Subramani. 1987. J. Cell Biol. 105:2923-2931). When the peroxisomal targeting signal of the hydratase:dehydrogenase is mutated so that the Ser-Lys-Leu tripeptide is converted to Ser-Asn-Leu, it can no longer direct proteins to peroxisomes. We suggest that this tripeptide is an essential element of at least one class of peroxisomal targeting signals.  相似文献   

2.
Several peroxisomal proteins do not contain the previously identified tripeptide peroxisomal targeting signal (PTS) at their carboxy-termini. One such protein is the peroxisomal 3-ketoacyl CoA thiolase, of which two types exist in rat [Hijikata et al. (1990) J. Biol. Chem., 265, 4600-4606]. Both rat peroxisomal thiolases are synthesized as larger precursors with an amino-terminal prepiece of either 36 (type A) or 26 (type B) amino acids, that is cleaved upon translocation of the enzyme into the peroxisome. The prepieces are necessary for import of the thiolases into peroxisomes because expression of an altered cDNA encoding only the mature thiolase, which lacks any prepiece, results in synthesis of a cytosolic enzyme. When appended to an otherwise cytosolic passenger protein, the bacterial chloramphenicol acetyltransferase (CAT), the prepieces direct the fusion proteins into peroxisomes, demonstrating that they encode sufficient information to act as peroxisomal targeting signals. Deletion analysis of the thiolase B prepiece shows that the first 11 amino acids are sufficient for peroxisomal targeting. We conclude that we have identified a novel PTS that functions at amino-terminal or internal locations and is distinct from the C-terminal PTS. These results imply the existence of two different routes for targeting proteins into the peroxisomal matrix.  相似文献   

3.
A conserved tripeptide sorts proteins to peroxisomes   总被引:100,自引:35,他引:65       下载免费PDF全文
The firefly luciferase protein contains a peroxisomal targeting signal at its extreme COOH terminus (Gould et al., 1987). Site-directed mutagenesis of the luciferase gene reveals that this peroxisomal targeting signal consists of the COOH-terminal three amino acids of the protein, serine-lysine-leucine. When this tripeptide is appended to the COOH terminus of a cytosolic protein (chloramphenicol acetyltransferase), it is sufficient to direct the fusion protein into peroxisomes. Additional mutagenesis experiments reveal that only a limited number of conservative changes can be made in this tripeptide targeting signal without abolishing its activity. These results indicate that peroxisomal protein import, unlike other types of transmembrane translocation, is dependent upon a conserved amino acid sequence.  相似文献   

4.
Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process.  相似文献   

5.
Using streptolysin-O (SLO) we have developed a permeabilized cell system retaining the competence to import proteins into peroxisomes. We used luciferase and albumin conjugated with a peptide ending in the peroxisomal targeting sequence, SKL, to monitor the import of proteins into peroxisomes. After incubation with SLO-permeabilized cells, these exogenous proteins accumulated within catalase-containing vesicles. The import was strictly signal dependent and could be blocked by a 10-fold excess of peptide containing the SKL-targeting signal, while a control peptide did not affect the import. Peroxisomal accumulation of proteins was time and temperature dependent and required ATP hydrolysis. Dissipation of the membrane potential did not alter the import efficiency. GTP-hydrolyzing proteins were not required for peroxisomal protein targeting. Depletion of endogenous cytosol from permeabilized cells abolished the competence to import proteins into peroxisomes but import was reconstituted by the addition of external cytosol. We present evidence that cytosol contains factors with SKL-specific binding sites. The activity of cytosol is insensitive to N- ethylmaleimide (NEM) treatment, while the cells contain NEM-sensitive membrane-bound or associated proteins which are involved in the import machinery. The cytosol dependence and NEM-sensitivity of peroxisomal protein import should facilitate the purification of proteins involved in the import of proteins into peroxisomes.  相似文献   

6.
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.  相似文献   

7.
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported by the shuttling receptor PEX5 to the peroxisomal membrane docking/translocation machinery, where they are translocated into the organelle matrix. Under certain experimental conditions this protein import machinery has the remarkable capacity to accept already oligomerized proteins, a property that has heavily influenced current models on the mechanism of peroxisomal protein import. However, whether or not oligomeric proteins are really the best and most frequent clients of this machinery remain unclear. In this work, we present three lines of evidence suggesting that the peroxisomal import machinery displays a preference for monomeric proteins. First, in agreement with previous findings on catalase, we show that PEX5 binds newly synthesized (monomeric) acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their oligomerization. Second, in vitro import experiments suggest that monomeric ACOX1 and UOX are better peroxisomal import substrates than the corresponding oligomeric forms. Finally, we provide data strongly suggesting that although ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes when co-expressed with ACOX1 containing its targeting signal, this import pathway is inefficient.  相似文献   

8.
We have identified a novel peroxisomal targeting sequence (PTS) at the extreme COOH terminus of human catalase. The last four amino acids of this protein (-KANL) are necessary and sufficient to effect targeting to peroxisomes in both human fibroblasts and Saccharomyces cerevisiae, when appended to the COOH terminus of the reporter protein, chloramphenicol acetyl transferase. However, this PTS differs from the extensive family of COOH-terminal PTS tripeptides collectively termed PTS1 in two major aspects. First, the presence of the uncharged amino acid, asparagine, at the penultimate residue of the human catalase PTS is highly unusual, in that a basic residue at this position has been previously found to be a common and critical feature of PTS1 signals. Nonetheless, this asparagine residue appears to constitute an important component of the catalase PTS, in that replacement with aspartate abolished peroxisomal targeting (as did deletion of the COOH-terminal four residues). Second, the human catalase PTS comprises more than the COOH-terminal three amino acids, in that COOH-terminal-ANL cannot functionally replace the PTS1 signal-SKL in targeting a chloramphenicol acetyl transferase fusion protein to peroxisomes. The critical nature of the fourth residue from the COOH terminus of the catalase PTS (lysine) is emphasized by the fact that substitution of this residue with a variety of other amino acids abolished or reduced peroxisomal targeting. Targeting was not reduced when this lysine was replaced with arginine, suggesting that a basic amino acid at this position is required for maximal functional activity of this PTS. In spite of these unusual features, human catalase is sorted by the PTS1 pathway, both in yeast and human cells. Disruption of the PAS10 gene encoding the S. cerevisiae PTS1 receptor resulted in a cytosolic location of chloramphenicol acetyl transferase appended with the human catalase PTS, as did expression of this protein in cells from a neonatal adrenoleukodystrophy patient specifically defective in PTS1 import. Furthermore, through the use of the two-hybrid system, it was demonstrated that both the PAS10 gene product (Pas10p) and the human PTS1 receptor can interact with the COOH-terminal region of human catalase, but that this interaction is abolished by substitutions at the penultimate residue (asparagine-to- aspartate) and at the fourth residue from the COOH terminus (lysine-to-glycine) which abolish PTS functionality. We have found no evidence of additional targeting information elsewhere in the human catalase protein. An internal tripeptide (-SHL-, which conforms to the mammalian PTS1 consensus) located nine to eleven residues from the COOH terminus has been excluded as a functional PTS. Additionally, in contrast to the situation for S. cerevisiae catalase A, which contains an internal PTS in addition to a COOH-terminal PTS1, human catalase lacks such a redundant PTS, as evidenced by the exclusive cytosolic location of human catalase mutated in the COOH-terminal PTS. Consistent with this species difference, fusions between catalase A and human catalase which include the catalase A internal PTS are targeted, at least in part, to peroxisomes regardless of whether the COOH-terminal human catalase PTS is intact.  相似文献   

9.
In this study we cloned CTA1, the gene encoding peroxisomal catalase, from the methylotrophic yeast Candida boidinii and studied targeting of the gene product, Cta1p, into peroxisomes by using green fluorescent protein (GFP) fusion proteins. A strain from which CTA1 was deleted (cta1Delta strain) showed marked growth inhibition when it was grown on the peroxisome-inducing carbon sources methanol, oleate, and D-alanine, indicating that peroxisomal catalase plays an important nonspecific role in peroxisomal metabolism. Cta1p carries a peroxisomal targeting signal type 1 (PTS1) motif, -NKF, in its carboxyl terminus. Using GFP fusion proteins, we found that (i) Cta1p is transported to peroxisomes via its PTS1 motif, -NKF; (ii) peroxisomal localization is necessary for Cta1p to function physiologically; and (iii) Cta1p is bimodally distributed between the cytosol and peroxisomes in methanol-grown cells but is localized exclusively in peroxisomes in oleate- and D-alanine-grown cells. In contrast, the fusion protein GFP-AKL (GFP fused to another typical PTS1 sequence, -AKL), in the context of CbPmp20 and D-amino acid oxidase, was found to localize exclusively in peroxisomes. A yeast two-hybrid system analysis suggested that the low transport efficiency of the -NKF sequence is due to a level of interaction between the -NKF sequence and the PTS1 receptor that is lower than the level of interaction with the AKL sequence. Furthermore, GFP-Cta1pDeltankf coexpressed with Cta1p was successfully localized in peroxisomes, suggesting that the oligomer was formed prior to peroxisome import and that it is not necessary for all four subunits to possess a PTS motif. Since the main physiological function of catalase is degradation of H2O2, suboptimal efficiency of catalase import may confer an evolutionary advantage. We suggest that the PTS1 sequence, which is found in peroxisomal catalases, has evolved in such a way as to give a higher priority for peroxisomal transport to peroxisomal enzymes other than to catalases (e.g., oxidases), which require a higher level of peroxisomal transport efficiency.  相似文献   

10.
Import of stably folded proteins into peroxisomes.   总被引:21,自引:1,他引:20       下载免费PDF全文
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import.  相似文献   

11.
Many peroxisomal proteins are imported into peroxisomes via recognition of the peroxisomal targeting signal (PTS1) present at the C-termini by the PTS1 receptor (Pex5p). Catalase, a peroxisomal protein, has PTS1-like motifs around or at the C-terminus. However, it remains unclear whether catalase is imported into peroxisome via the PTS1 system. In this work, we analyzed the PTS of pumpkin catalase (Cat1). A full or truncated pumpkin Cat1 cDNA fused at the 3' end of the green fluorescent protein (GFP) coding sequence was introduced and stably expressed in tobacco BY-2 (Nicotiana tabacum cv. Bright Yellow 2) cells or Arabidopsis thaliana by Agrobacterium-mediated transformation. The cellular localization of GFP was analyzed by fluorescence microscopy. The results showed that the C-terminal 10-amino acid region containing an SKL motif-like tripeptide (SHL) was not required for the import into peroxisomes. Surprisingly, the C-terminal 3-amino acid region was required for the import when the fusion proteins were transiently expressed by using particle gun bombardment, suggesting that the transient expression system is inadequate to analyze the targeting signal. We proposed that the C-terminal amino acid region from 13 to 11 (QKL), which corresponds with the PTS1 consensus sequence, may function as an internal PTS1. Analysis of the binding of Cat1 to PTS1 receptor (Pex5p) by the yeast two-hybrid system revealed that Cat1 can bind with the PTS1 receptor (Pex5p), indicating that Cat1 is imported into peroxisomes by the PTS1 system.  相似文献   

12.
The surprising complexity of peroxisome biogenesis   总被引:7,自引:0,他引:7  
Peroxisomes are small organelles with a single boundary membrane. All of their matrix proteins are nuclear-encoded, synthesized on free ribosomes in the cytosol, and post-translationally transported into the organelle. This may sound familiar, but in fact, peroxisome biogenesis is proving to be surprisingly unique. First, there are several classes of plant peroxisomes, each specialized for a different metabolic function and sequestering specific matrix enzymes. Second, although the mechanisms of peroxisomal protein import are conserved between the classes, multiple pathways of protein targeting and translocation have been defined. At least two different types of targeting signals direct proteins to the peroxisome matrix. The most common peroxisomal targeting signal is a tripeptide limited to the carboxyl terminus of the protein. Some peroxisomal proteins possess an amino-terminal signal which may be cleaved after import. Each targeting signal interacts with a different cytosolic receptor; other cytosolic factors or chaperones may also form a complex with the peroxisomal protein before it docks on the membrane. Peroxisomes have the unusual capacity to import proteins that are fully folded or assembled into oligomers. Although at least 20 proteins (mostly peroxins) are required for peroxisome biogenesis, the role of only a few of these have been determined. Future efforts will be directed towards an understanding of how these proteins interact and contribute to the complex process of protein import into peroxisomes.  相似文献   

13.
X Gao  J L Marrison  M R Pool  R M Leech    A Baker 《Plant physiology》1996,112(4):1457-1464
To understand and manipulate plant peroxisomal protein targeting, it is important to establish the universality or otherwise of targeting signals. Contradictory results have been published concerning the nature and location of the glyoxysomal/peroxisomal targeting signal of isocitrate lyase (ICL). L.J. Olsen, W.F. Ettinger, B. Damsz, K. Matsudaira, A. Webb, and J.J. Harada ([1993] Plant Cell 5: 941-952) concluded that the last 5 amino acids (AKSRM) of Brassica napus ICL were sufficient and the last 37 amino acids were necessary for targeting to Arabidopsis leaf peroxisomes. In contrast, R. Behari and A. Baker ([1993]) J Biol Chem 268: 7315-7322) could find no requirement for the almost identical carboxy-terminal sequence AKARM for import of Ricinus communis ICL into isolated sunflower cotyledon glyoxysomes. To resolve this discrepancy, the import characteristics of a mutant R. communis ICL lacking the last 19 amino acids of the carboxy terminus was studied. ICL delta 19 was able to be imported by isolated sunflower glyoxysomes and by tobacco leaf peroxisomes when expressed transgenically. These results demonstrate that the in vitro import system faithfully reflects targeting in vivo, and that the source of the organelles (Arabidopsis versus sunflower, leaf peroxisomes versus seed glyoxysomes) is not responsible for observed differences between B. napus and R. communis ICL. The R. communis enzyme would therefore appear to possess an additional glyoxysome/peroxisome targeting signal that is lacking in the B. napus protein.  相似文献   

14.
The tripeptide serine-lysine-leucine (SKL) occurs at the carboxyl terminus of many peroxisomal proteins and serves as a peroxisomal targeting signal. Saccharomyces cerevisiae has two isozymes of citrate synthase. The peroxisomal form, encoded by CIT2, terminates in SKL, while the mitochondrial form, encoded by CIT1, begins with an amino-terminal mitochondrial signal sequence and ends in SKN. We analyzed the importance of SKL as a topogenic signal for citrate synthase, using oleate to induce peroxisomes and density gradients to fractionate organelles. Our experiments revealed that SKL was necessary for directing citrate synthase to peroxisomes. C-terminal SKL was also sufficient to target a leaderless version of mitochondrial citrate synthase to peroxisomes. Deleting this tripeptide from the CIT2 protein caused peroxisomal citrate synthase to be missorted to mitochondria. These experiments suggest that the CIT2 protein contains a cryptic mitochondrial targeting signal.  相似文献   

15.
We have previously shown that the peroxisomal targeting signal in firefly luciferase consists of the COOH-terminal three amino acids of the protein, serine-lysine-leucine (Gould, S.J., G.A. Keller, N. Hosken, J. Wilkinson, and S. Subramani, 1989. J. Cell Biol. 108:1657-1664). Antibodies were raised against a synthetic peptide that contained this tripeptide at its COOH terminus. Immunofluorescence and immunocryoelectron microscopy revealed that the anti-peptide antibodies specifically detected peroxisomes in mammalian cells. Further characterization revealed that the antibodies were primarily directed against the COOH-terminal three amino acids of the peptide. In Western blot experiments, the antibodies recognized 15-20 rat liver peroxisomal proteins, but reacted with only a few proteins from other subcellular compartments. These results provide independent immunological evidence that the peroxisomal targeting signal identified in firefly luciferase is present in many peroxisomal proteins.  相似文献   

16.
Saccharomyces cerevisiae has three distinct citrate synthases, two located in mitochondria (mature Cit1p and Cit3p) and one in peroxisomes (mature Cit2p). While the precursor of the major mitochondrial enzyme, Cit1p, has a signal for mitochondrial targeting at its N-terminus (MTS), Cit2p has one for peroxisomal targeting (PTS1) at its C-terminus. We have previously shown that the N-terminal segment of Cit2p is removed during import into peroxisomes [Lee, H.S. et al. (1994) Kor. J. Microbiol. 32, 558-564], which implied the presence of an additional N-terminal sorting signal. To analyze the function of the N-terminal region of Cit2p in protein trafficking, we constructed the N-terminal domain-swapped versions of Cit1p and Cit2p. Both fusions, Cit1::Cit2 and Cit2::Cit1, complemented the glutamate auxotrophy caused by the double-disruption of the CIT1 and CIT2 genes. In addition, part of the Cit2::Cit1 fusion protein, as well as Cit1::Cit2, was shown to be transported into both mitochondria and peroxisomes. The subcellular localization of the recombinant fusion proteins containing various N-terminal segments of Cit2p fused to a mutant version of green fluorescent protein (GFP2) was also examined. As a result, we found that the 20-amino acid N-terminal segment of Cit2p contains a cryptic cleavable targeting signal for both peroxisomes and mitochondria. In addition, we show that the peroxisomal import process mediated by the N-terminal segment of Cit2p was not affected by the disruption of either PEX5 (encoding PTS1 receptor) or PEX7 (encoding PTS2 receptor).  相似文献   

17.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. The peroxisomal targeting signals for phosphomevalonate kinase and isopentenyl diphosphate isomerase have been identified. In the current study we identify the peroxisomal targeting signals required for four other enzymes of the cholesterol biosynthetic pathway: acetoacetyl-CoA (AA-CoA) thiolase, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, mevalonate diphosphate decarboxylase (MPPD), and farnesyl diphosphate (FPP) synthase. Data are presented that demonstrate that mitochondrial AA-CoA thiolase contains both a mitochondrial targeting signal at the amino terminus and a peroxisomal targeting signal (PTS-1) at the carboxy terminus. We also analyze a new variation of PTS-2 sequences required to target HMG-CoA synthase and MPPD to peroxisomes. In addition, we show that FPP synthase import into peroxisomes is dependent on the PTS-2 receptor and identify at the amino terminus of the protein a 20-amino acid region that is required for the peroxisomal localization of the enzyme.These data provide further support for the conclusion that peroxisomes play a critical role in cholesterol biosynthesis.  相似文献   

18.
Pex6p belongs to the AAA family of ATPases. Its CHO mutant, ZP92, lacks normal peroxisomes but contains peroxisomal membrane remnants, so called peroxisomal ghosts, which are detected with anti-70-kDa peroxisomal membrane protein (PMP70) antibody. No peroxisomal matrix proteins were detected inside the ghosts, but exogenously expressed green fluorescent protein (GFP) fused to peroxisome targeting signal-1 (PTS-1) accumulated in the areas adjacent to the ghosts. Electron microscopic examination revealed that PMP70-positive ghosts in ZP92 were complex membrane structures, rather than peroxisomes with reduced matrix protein import ability. In a typical case, a set of one central spherical body and two layers of double-membraned loops were observed, with endoplasmic reticulum present alongside the outer loop. In the early stage of complementation by PEX6 cDNA, catalase and acyl-CoA oxidase accumulated in the lumen of the double-membraned loops. Biochemical analysis revealed that almost all the peroxisomal ghosts were converted into peroxisomes upon complementation. Our results indicate that 1) Peroxisomal ghosts are complex membrane structures; and 2) The complex membrane structures become import competent and are converted into peroxisomes upon complementation with PEX6.  相似文献   

19.
Johnson TL  Olsen LJ 《Plant physiology》2003,133(4):1991-1999
Most peroxisomal matrix proteins possess a carboxy-terminal tripeptide targeting signal, termed peroxisomal targeting signal type 1 (PTS1), and follow a relatively well-characterized pathway of import into the organelle. The peroxisomal targeting signal type 2 (PTS2) pathway of peroxisomal matrix protein import is less well understood. In this study, we investigated the mechanisms of PTS2 protein binding and import using an optimized in vitro assay to reconstitute the transport events. The import of the PTS2 protein thiolase differed from PTS1 protein import in several ways. Thiolase import was slower than typical PTS1 protein import. Competition experiments with both PTS1 and PTS2 proteins revealed that PTS2 protein import was inhibited by addition of excess PTS2 protein, but it was enhanced by the addition of PTS1 proteins. Mature thiolase alone, lacking the PTS2 signal, was not imported into peroxisomes, confirming that the PTS2 signal is necessary for thiolase import. In competition experiments, mature thiolase did not affect the import of a PTS1 protein, but it did decrease the amount of radiolabeled full-length thiolase that was imported. This is consistent with a mechanism by which the mature protein competes with the full-length thiolase during assembly of an import complex at the surface of the membrane. Finally, the addition of zinc to PTS2 protein imports increased the level of thiolase bound and imported into the organelles.  相似文献   

20.
The mechanism behind peroxisomal membrane protein targeting is still poorly understood, with only two yeast proteins believed to be involved and no consensus targeting sequence. Pex19 is thought to bind peroxisomal membrane proteins in the cytosol, and is subsequently recruited by Pex3 at the peroxisomal surface, followed by protein insertion via a mechanism that is as-yet-unknown. However, some peroxisomal membrane proteins still correctly sort in the absence of Pex3 or Pex19, suggesting that multiple sorting pathways exist. Here, we studied sorting of yeast peroxisomal ABC transporter Pxa1. Co-localisation analysis of Pxa1-GFP in a collection of 86 peroxisome-related deletion strains revealed that Pxa1 sorting requires Pex3 and Pex19, while none of the other 84 proteins tested were essential. To identify regions with peroxisomal targeting information in Pxa1, we developed a novel in vivo re-targeting assay, using a reporter consisting of the mitochondrial ABC transporter Mdl1 lacking its N-terminal mitochondrial targeting signal. Using this assay, we showed that the N-terminal 95 residues of Pxa1 are sufficient for retargeting this reporter to peroxisomes. Interestingly, truncated Pxa1 lacking residues 1–95 still localised to peroxisomes. This was confirmed via localisation of various Pxa1 truncation and deletion constructs. However, localisation of Pxa1 lacking residues 1–95 depended on the presence of its interaction partner Pxa2, indicating that this truncated protein does not contain a true targeting signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号