首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conditional protein kinase DeltaMEKK3:ER* allows activation of the mitogen-activated and stress-activated protein kinases (MAPKs and SAPKs) without imposing a primary cellular stress or damage. Such separation of stress from stress-induced signalling is particularly important in the analysis of apoptosis. Activation of DeltaMEKK3:ER* in cycling CCl39 cells caused a rapid stimulation of the ERK1/2, JNK and p38 pathways but resulted in a slow, delayed apoptotic response. Paradoxically, activation of the same pathways inhibited the rapid expression of Bim(EL) and apoptosis following withdrawal of serum. Inhibition of the ERK1/2 pathway prevented the down-regulation of Bim(EL) but caused only a partial reversion of the cyto-protective effect of DeltaMEKK3:ER*. In contrast, inhibition of p38 had no effect, raising the possibility that activation of JNK might also exert a protective effect. To test this we used CCl39 cells expressing DeltaMEKK1:ER* which activates JNK but not ERK1/2, p38, PKB or IkappaB kinase. Activation of DeltaMEKK1:ER* inhibited serum withdrawal-induced conformational changes in Bax and apoptosis. These results suggest that in the absence of any overt cellular damage or chemical stress activation of JNK can act independently of the ERK1/2 or PKB pathways to inhibit serum withdrawal-induced cell death.  相似文献   

2.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient.  相似文献   

3.
Cell survival depends on proper propagation of protective signals through intracellular signaling intermediates. We report here that calponin homology domain-containing integrin-linked kinase (ILK)-binding protein (CH-ILKBP), a widely expressed adaptor protein localized at plasma membrane-actin junctions, is essential for transmission of survival signals. Cells that are depleted of CH-ILKBP undergo extensive apoptosis despite the presence of cell-extracellular matrix contacts and soluble growth factors. The activating phosphorylation of protein kinase B (PKB/Akt), a key regulator of apoptosis, is impaired in the absence of CH-ILKBP. Importantly, loss of CH-ILKBP prevents the membrane translocation of PKB/Akt. Furthermore, forced membrane targeting of PKB/Akt bypasses the requirement of CH-ILKBP for the activating phosphorylation of PKB/Akt, suggesting that CH-ILKBP is required for the membrane translocation but not the subsequent phosphorylation of PKB/Akt. Finally, we show that loss of CH-ILKBP is also required for the full activation of extracellular signal-regulated kinase (ERK)1/2. However, restoration of the PKB/Akt activation is sufficient for protection of cells from apoptosis induced by the depletion of CH-ILKBP despite the persistent suppression of the ERK1/2 activation. Thus, CH-ILKBP is an important component of the prosurvival signaling pathway functioning primarily by facilitating the membrane translocation of PKB/Akt and consequently the activation of PKB/Akt in response to extracellular survival signals.  相似文献   

4.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells, increased the IC50 for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long-term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.  相似文献   

5.
A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity. Ras-dependent signaling plays a significant, although incompletely understood, role in adipocyte differentiation, because activated Ras has been reported to either promote or inhibit adipogenesis depending on the cellular context. In various cell types activation of Ras leads to activation of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein kinase B (PKB)/Akt, which exert opposing effects on adipogenesis, with ERK1/2 inhibiting and PKB/Akt promoting terminal differentiation. Here we report that the levels of activated ERK1/2 and PKB/Akt are significantly increased in pRB-deficient MEFs both before and after the addition of adipogenic inducers. Consistently, we detected higher levels of activated Ras in MEFs lacking pRB. Suppression of ERK1/2 activation by the MEK inhibitor UO126 restored the ability of pRB-deficient MEFs to undergo adipocyte differentiation, as manifested by expression of adipocyte marker genes and lipid accumulation. Furthermore and reflecting the elevated levels of activated PKB/Akt in the pRB-deficient MEFs, differentiation proceeded in an insulin-independent manner. In conclusion, we suggest that pRB plays a pivotal role in adipogenesis by suppressing MAPK activity.  相似文献   

6.
Mouse kidney proximal tubular epithelial (MK-PT) cells die by apoptosis over 7-10 days when deprived of all survival factors. We show here that withdrawal of all survival factors from MK-PT cells is associated with a progressive increase in the activity of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and a progressive decrease in phosphorylated Akt, a kinase critical to cell survival. Pharmacological inhibition of MEK1/2, the immediate upstream kinase for ERK1/2, not only prevented the decrease in phosphorylated Akt, but also prolonged MK-PT cell survival. Inhibition of ERK1/2, by itself, in the absence of any other known survival factors, was as potent as epidermal growth factor in maintaining MK-PT cell viability. ERK1/2 co-immunoprecipitated with Akt in a multimolecular assembly of signaling molecules, containing at a minimum ERK1/2, Akt, Rsk, and 3-phosphoinositide dependent kinase 1 (PDK1). We hypothesize that the kinase Rsk, whose activation requires phosphorylation by both ERK1/2 and PDK1, acts as a bridge bringing ERK1/2 into proximity with PDK1-associated Akt. Although a number of interactions between the Raf-MEK-ERK and PI3K-Akt signaling pathways have been described, our results are the first to show modulation of Akt activity by signaling events originating with ERK1/2. Spontaneous activation of ERK1/2 occurs via MEK1/2 and appears to depend on oxidant stress, accompanying induction of the default pathway of apoptosis. Together, these data suggest that the spontaneous activation of ERK1/2, in the absence of known extracellular stimuli, represents a previously unrecognized major regulatory pathway determining the fate of cells destined to die by the default pathway of apoptosis.  相似文献   

7.
The role of protein kinases in the inhibition of TNF-alpha associated apoptosis of human neutrophils by crystals of calcium pyrophosphate dihydrate (CPPD) (25 mg/ml) was investigated. We monitored the activities of the p44 extracellular signal-regulated kinase 1 (ERK1) and p42 ERK2 mitogen-activated protein (MAP) kinases and phosphatidylinositol 3-kinase (PI3-K)-regulated protein kinase B (Akt) in neutrophils incubated with TNF-alpha and CPPD crystals, separately and in combination, in parallel with the endogenous caspase 3 activity and DNA fragmentation. CPPD crystals were observed to induce a robust and transient activation of ERK1, ERK2, and Akt, whereas TNF-alpha produced only a modest and delayed activation of Akt. In the presence of TNF-alpha, Akt activity was enhanced, and CPPD crystal-induced activation of ERK1 and ERK2 was more sustained than with CPPD crystals alone, but TNF-alpha itself reduced the basal phosphotransferase activities of these MAP kinases. Preincubation with the MAP kinase kinase (MEK1) inhibitors PD98059 (20 ng/ml) and U0126 (250 nM), or the PI3-K inhibitors wortmannin (100 nM) and LY294002 (50 microM) repressed the activation of ERK1, ERK2, and Akt in association with CPPD crystal incubation, in the absence or presence of TNF-alpha. Furthermore, the inhibition of the Mek1/Mek2-->ERK1/ERK2 or PI3-K/Akt pathways reversed CPPD crystal-associated suppression of TNF-alpha-induced caspase 3 activation and neutrophil apoptosis. Together, these results indicate that CPPD crystals function to induce acute inflammatory responses through ERK1/ERK2 and PI3-K/Akt-mediated stimulation of neutrophil activation and repression of apoptosis.  相似文献   

8.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells, increased the IC50 for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long-term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.  相似文献   

9.
MEKK1 binds raf-1 and the ERK2 cascade components   总被引:8,自引:0,他引:8  
Mitogen-activated protein (MAP) kinase cascades are involved in transmitting signals that are generated at the cell surface into the cytosol and nucleus and consist of three sequentially acting enzymes: a MAP kinase, an upstream MAP/extracellular signal-regulated protein kinase (ERK) kinase (MEK), and a MEK kinase (MEKK). Protein-protein interactions within these cascades provide a mechanism to control the localization and function of the proteins. MEKK1 is implicated in activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and ERK1/2 MAP kinase pathways. We showed previously that MEKK1 binds directly to JNK/SAPK. In this study we demonstrate that endogenous MEKK1 binds to endogenous ERK2, MEK1, and another MEKK level kinase, Raf-1, suggesting that it can assemble all three proteins of the ERK2 MAP kinase module.  相似文献   

10.
In this study, we investigated the signalling pathways induced by ultraviolet B (UVB) and the effects of sphingosine-1-phosphate on UVB-induced apoptosis of mouse melanocytes, Mel-Ab, and observed the cytoprotective effects of sphingosine-1-phosphate on UVB-induced apoptosis. Since sphingosine-1-phosphate is a well-known mitogenic agent, we thought it possible that the mitogenic effect of sphingosine-1-phosphate might contribute to cell survival. However, we found that sphingosine-1-phosphate significantly inhibits DNA synthesis. We next examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by sphingosine-1-phosphate against UVB-induced apoptosis. UVB irradiation resulted in the remarkable and sustained activation of c-Jun N-terminal kinase (JNK), while p38 MAP kinase was only transiently activated. The basal level of extracellular signal-regulated protein kinase (ERK) phosphorylation decreased 30 min after UVB irradiation, whereas the basal level of Akt phosphorylation was unaffected by UVB. We also found that sphingosine-1-phosphate potently stimulates the phosphorylation of both ERK and Akt, which are involved in the cell survival-signalling cascade. Furthermore, the specific inhibition of the ERK and Akt pathways by PD98059 and LY294002, respectively, restored the cytoprotective effect induced by sphingosine-1-phosphate. On the other hand, the p38 inhibitor SB203580 additively enhanced the cytoprotective effect on sphingosine-1-phosphate. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that sphingosine-1-phosphate probably exert its cytoprotective effect in Mel-Ab cells through ERK and Akt activation.  相似文献   

11.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

12.
Tong JS  Zhang QH  Huang X  Fu XQ  Qi ST  Wang YP  Hou Y  Sheng J  Sun QY 《PloS one》2011,6(3):e16781
Icaritin, a compound from Epimedium Genus, has selective estrogen receptor (ER) modulating activities, and possess anti-tumor activity. Here, we examined icaritin effect on cell growth of human endometrial cancer Hec1A cells and found that icaritin potently inhibited proliferation of Hec1A cells. Icaritin-inhibited cell growth was associated with increased levels of p21 and p27 expression and reduced cyclinD1 and cdk 4 expression. Icaritin also induced cell apoptosis accompanied by activation of caspases as evidenced by the cleavage of endogenous substrate Poly (ADP-ribose) polymerase (PARP) and cytochrome c release, which was abrogated by pretreatment with the pan-caspase inhibitor z-VAD-fmk. Icaritin treatment also induced expression of pro-apoptotic protein Bax with a concomitant decrease of Bcl-2 expression. Furthermore, icaritin induced sustained phosphorylation of extracellular signal-regulated kinase1/2 (the MAPK/ ERK1/2) in Hec1A cells and U0126, a specific MAP kinase kinase (MEK1/2) inhibitor, blocked the ERK1/2 activation by icaritin and abolished the icaritin-induced growth inhibition and apoptosis. Our results demonstrated that icaritin induced sustained ERK 1/2 activation and inhibited growth of endometrial cancer Hec1A cells, and provided a rational for preclinical and clinical evaluation of icaritin for endometrial cancer therapy.  相似文献   

13.
To elucidate signal transduction pathways leading to neuronal differentiation, we have investigated a conditionally immortalized cell line from rat hippocampal neurons (H19-7) that express a temperature sensitive simian virus 40 large T antigen. Treatment of H19-7 cells with the differentiating agent basic fibroblast growth factor at 39 degrees C, the nonpermissive temperature for T function, resulted in the activation of c-Raf-1, MEK, and mitogen-activated protein (MAP) kinases (ERK1 and -2). To evaluate the role of Raf-1 in neuronal cell differentiation, we stably transfected H19-7 cells with v-raf or an oncogenic human Raf-1-estrogen receptor fusion gene (deltaRaf-1:ER). deltaRaf-1:ER transfectants in the presence of estradiol for 1 to 2 days expressed a differentiation phenotype only at the nonpermissive temperature. However, extended exposure of the deltaRaf-1:ER transfectants to estradiol or stable expression of the v-raf construct yielded cells that extended processes at the permissive as well as the nonpermissive temperature, suggesting that cells expressing the large T antigen are capable of responding to the Raf differentiation signal. deltaRaf-1:ER, MEK, and MAP kinase activities in the deltaRaf-1:ER cells were elevated constitutively for up to 36 h of estradiol treatment at the permissive temperature. At the nonpermissive temperature, MEK and ERKs were activated to a significantly lesser extent, suggesting that prolonged MAP kinase activation may not be sufficient for differentiation. To test this possibility, H19-7 cells were transfected or microinjected with constitutively activated MEK. The results indicate that prolonged activation of MEK or MAP kinases (ERK1 and -2) is not sufficient for differentiation of H19-7 neuronal cells and raise the possibility that an alternative signaling pathway is required for differentiation of H19-7 cells by Raf.  相似文献   

14.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

15.
The tumor suppressor PTEN dephosphorylates focal adhesion kinase (FAK) and inhibits integrin-mediated cell spreading and cell migration. We demonstrate here that expression of PTEN selectively inhibits activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. PTEN expression in glioblastoma cells lacking the protein resulted in inhibition of integrin-mediated MAP kinase activation. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)- induced MAPK activation were also blocked. To determine the specific point of inhibition in the Ras/Raf/ MEK/ERK pathway, we examined these components after stimulation by fibronectin or growth factors. Shc phosphorylation and Ras activity were inhibited by expression of PTEN, whereas EGF receptor autophosphorylation was unaffected. The ability of cells to spread at normal rates was partially rescued by coexpression of constitutively activated MEK1, a downstream component of the pathway. In addition, focal contact formation was enhanced as indicated by paxillin staining. The phosphatase domain of PTEN was essential for all of these functions, because PTEN with an inactive phosphatase domain did not suppress MAP kinase or Ras activity. In contrast to its effects on ERK, PTEN expression did not affect c-Jun NH2-terminal kinase (JNK) or PDGF-stimulated Akt. Our data suggest that a general function of PTEN is to down-regulate FAK and Shc phosphorylation, Ras activity, downstream MAP kinase activation, and associated focal contact formation and cell spreading.  相似文献   

16.
The activation of Akt/PKB signaling pathway and cell survival   总被引:22,自引:0,他引:22  
Akt/PKB is a serine/threonine protein kinase that functions as a critical regulator of cell survival and proliferation. Akt/PKB family comprises three highly homologous members known as PKBalpha/Akt1, PKBbeta/Akt2 and PKBgamma/Akt3 in mammalian cells. Similar to many other protein kinases, Akt/PKB contains a conserved domain structure including a specific PH domain, a central kinase domain and a carboxyl-terminal regulatory domain that mediates the interaction between signaling molecules. Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival. This review surveys recent developments in understanding the molecular mechanisms of Akt/PKB activation and its roles in cell survival in normal and cancer cells.  相似文献   

17.
18.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on cell cycle progression, gene expression, prevention of apoptosis and sensitivity to chemotherapeutic drugs were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf-1 and Akt-1 activation by treatment with testosterone or tamoxifen respectively. In these cells we can compare the effects of normal cytokine vs. oncogene mediated signaling in the same cells by changing the culture conditions. Raf-1 was more effective than Akt-1 in inducing cell cycle progression and preventing apoptosis in the presence and absence of chemotherapeutic drugs. The normal cytokine for these cells, interleukin-3 induced/activated most downstream genes transiently, with the exception of p70S6K that was induced for prolonged periods of time. In contrast, most of the downstream genes induced by either the activate Raf-1 or Akt-1 oncogenes were induced for prolonged periods of time, documenting the differences between cytokine and oncogene mediated gene induction which has important therapeutic consequences. The FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells were sensitive to MEK and PI3K/mTOR inhibitors. Combining MEK and PI3K/mTOR inhibitors increased the induction of apoptosis. The effects of doxorubicin on the induction of apoptosis could be enhanced with MEK, PI3K and mTOR inhibitors. Targeting the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be an effective approach for therapeutic intervention in those cancers which have upstream mutations which result in activation of these pathways.  相似文献   

19.
Multiple signal transduction pathways, including the Raf/MEK/ERK and PI3K/Akt kinase cascades, play critical roles in transducing growth signals from activated cell surface receptors. Using conditionally and constitutively-active forms of MEK1 and either PI3K or Akt, we demonstrate synergy between these kinases in relieving cytokine-dependence of the FDC-P1 hematopoietic cell line. Cytokine-independent cells were obtained from ?MEK1:ER-infected cells at a frequency of 5 x 10-5 indicating that low frequency of cells expressing ?-estradiol-regulated ?MEK1:ER became factor-independent, while activated PI3K or Akt by themselves did not relieve cytokine-dependence. In contrast, cytokine-independent cells were recovered approximately 25 to 250-fold more frequently from ?MEK1:ER infected cells also infected with either activated PI3K or Akt. MEK/PI3K and MEK/Akt-responsive cells could be maintained long-term as long as either ?-estradiol or the estrogen receptor antagonist 4-hydroxy-tamoxifen (4HT) were provided. The MEK/PI3K/Akt responsive cells were sensitive to both MEK and PI3K/Akt/p70S6K inhibitors. Synergy was observed when inhibitors which targeted both pathways were added together. These results indicate that there is synergy between the Raf/MEK/ERK and PI3K/Akt pathways in terms of abrogation of cytokine-dependence of hematopoietic cells. Likewise, suppression of multiple signal transduction pathways is a more effective means to inhibit cell cycle progression and induce apoptosis in leukemic cells.  相似文献   

20.
Subtilase cytotoxin (SubAB) is the prototype of a distinct AB5 toxin family produced by Shiga toxigenic Escherichia coli. Recent reports disclosed pro-apoptotic pathways triggered by SubAB, whereas its anti-apoptotic signals have not been elucidated. In the present study, we investigated pro-survival signaling elicited by SubAB, especially focusing on extracellular signal-regulated kinase (ERK) and Akt. We found that SubAB activated ERK and Akt, and inhibition of individual kinases enhanced SubAB-triggered apoptosis. SubAB induced endoplasmic reticulum (ER) stress, and other ER stress inducers mimicked the stimulatory effects of SubAB on ERK and Akt. Attenuation of ER stress reduced SubAB-induced phosphorylation of these kinases, suggesting involvement of the unfolded protein response (UPR). SubAB induced activation of protein kinase-like ER kinase (PERK) and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and phosphorylation of eIF2α by salubrinal caused activation of ERK and Akt, leading to cell survival. Dominant-negative inhibition of PERK enhanced SubAB-induced apoptosis and reduced phosphorylation of ERK and Akt. Furthermore, the anti-apoptotic effect of eIF2α was significantly reversed by inhibition of ERK and Akt. These results suggest cytoprotective roles of ERK and Akt in SubAB-triggered, ER stress-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号