首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor alpha (TNF) primes human neutrophils (PMN) for enhanced superoxide (O2-) production if cells are subsequently stimulated with the chemotactic peptide, n-formyl-Met-Leu-Phe (fMLP). fMLP activates phospholipase D to form phosphatidic acid (PA), and a correlation may exist between PA production and O2- generation in PMN. Therefore, we assessed the ability of TNF to prime phospholipase D activation in PMN stimulated with fMLP. TNF (100 units/ml) pretreatment primed enhanced PA production in PMN challenged with 1 microM fMLP, in the absence of cytochalasin B, as demonstrated by increased production of tritiated PA from PMN label with 1-O-[9',10'-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine ([3H]LPAF) and by increased PA mass. PA was formed via activation of phospholipase D and occurred with minimal production of diglycerides. Production of O2- was also enhanced in identically treated cells, and we demonstrated a direct correlation between enhanced PA formation and O2- production. Conversely, ethanol inhibition of PA formation led to a comparable reduction in O2- generation. This report of priming of phospholipase D by physiological agonists is the only natural system where enhanced PA formation has been dissociated from diglyceride formation. Our results suggest a link between PA production and NADPH oxidase activation in human PMN.  相似文献   

2.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine which produces diverse biological effects in target cells of myeloid origin. GM-CSF enhances the production of superoxide anion (O2-) by mature neutrophils in response to chemotactic peptides such as formyl-methionyl-leucyl-phenylalanine (fMLP), but alone it has no effect on this system. This process has been termed "priming." fMLP activates neutrophils via a pertussis toxin-sensitive GTP-binding protein, leading to the rapid production of the second messengers diacylglycerol (DAG) and inositol trisphosphate, via phosphatidylinositol turnover, and arachidonic acid (AA) by a presumptive phospholipase A2-mediated mechanism. All three second messengers may lead to the generation of O2-. We investigated the effect of priming of GM-CSF on these systems. GM-CSF had no effect on fMLP-stimulated DAG and inositol trisphosphate levels, nor did it amplify the response to exogenously added phorbol ester (to mimic the action of DAG) or calcium ionophore. Neutrophils primed with the cytokine showed a small, but significant, enhancement of fMLP-stimulated AA release. Compared with unprimed controls, primed neutrophils also showed a significant increase in O2- production when stimulated with either AA or the nonhydrolyzable GTP analogue, GTP-gamma-S. The magnitude of enhanced O2- production was similar to that observed after fMLP treatment of primed cells. All of these effects, including the increased sensitivity to AA treatment, were inhibited by pertussis toxin. These data show that GM-CSF primes neutrophils by modulating the activity of at least one pertussis toxin-sensitive G protein coupled to a metabolic pathway that mobilizes and utilizes arachidonic acid.  相似文献   

3.
The present study utilizes an electropermeabilized cell system to determine the effect of Mg.ATP on neutrophil superoxide (O2-)-generating responses stimulated by suboptimal concentrations of fMLP, GTP gamma S and PMA. Permeabilization in the presence of exogenously added Mg.ATP was neither sufficient to initiate O2- release nor necessary for stimulated O2- production. However, the inclusion of Mg.ATP in the permeabilization medium primed the O2(-)-generating responses mediated by suboptimal concentrations of these stimuli. The site of action of Mg.ATP is intracellular. Moreover, the fact that Mg.ATP primes responses stimulated by fMLP, GTP gamma S and PMA suggests that the modulatory effect is at the level of protein kinase C.  相似文献   

4.
The aim of our study was to investigate the physiologic mechanisms involved in eosinophil activation as an essential prerequisite to disrupting the biochemical cascade that triggers inflammation, thereby attenuating the effect of this activation or, ideally, preventing it from occurring. We have, therefore, examined the nature of the fMLP- and PAF-induced [Ca2+]i rise and the relationship between the [Ca2+]i rise and O2- production in human umbilical cord blood-derived eosinophils cultured in the presence of IL-3 and IL-5. These cells responded to fMLP or PAF (1 microM each) with an increase in [Ca2+]i (217.3 +/- 22.1 and 197.8 +/- 22.1 nM respectively) which was associated with production of O2- (40.2 +/- 8.2 and 35.2 +/- 7.6 pmol/min/10(6) cells respectively). The role of Ca2+ in the induced respiratory burst was studied by changing the availability of Ca2+ in the intra- and extracellular compartments. Removal or chelation of extracellular Ca2+ induced a reduction of both the fMLP and PAF-induced [Ca2+]i rise and O2- production. Chelation of intracellular Ca2+ induced a concentration-dependent inhibition of fMLP- and PAF-induced [Ca2+]i rise and caused a decrease in O2- production. SK&F 96365 had a stimulatory effect on PAF-induced [Ca2+]i rise and on fMLP-induced O2- production, this phenomenon was not observed with extracellular Ca2+ removal or chelation. Furthermore, Ni2+ exhibited an inhibition of both fMLP and PAF-induced [Ca2+]i rise and O2- production. Finally, both fMLP and PAF induced an increase in divalent cation influx that was further augmented by thapsigargin. Our results indicate that fMLP and PAF dependent O2- production in human eosinophils require intra- and extracellular Ca2+ and that Ca2+ influx is necessary for optimal activation.  相似文献   

5.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

6.
The effect of 6,9-deepoxy-6,9-(phenylimino)-delta 6,8-prostaglandin I1 (Piriprost) on the oxidative response was studied in human neutrophils stimulated by N-formyl-methionyl-leucyl-phenylalanine (fMLP), phorbol 12-myristate, 13-acetate (PMA) or opsonized zymosan. Piriprost inhibited the stimulatory effect of fMLP on superoxide anion (O2-) generation, at concentrations higher than those which depress leukotriene B4 (LTB4) formation. This inhibition was overcome by increasing the concentration of fMLP. Neither exogenous LTB4 nor indomethacin were able to reverse the inhibitory effect of piriprost on fMLP action. In contrast, piriprost did not inhibit the stimulation of O2- production induced by PMA or zymosan. Piriprost behaves thus as a specific and apparently competitive antagonist of fMLP: this action does not seem to involve lipoxygenase inhibition and might be exerted at the level of the fMLP receptor or its associated mechanisms of transduction.  相似文献   

7.
The development of cytochrome b558 (Cyt b) as determined spectrophotometrically, was investigated in human polymorphonuclear neutrophils (PMN), monocytes (MN) and during differentiation of HL-60 and U 937 cells induced by retinoic acid (RA) alone or in combination with IFN gamma. O2- release in response to a panel of stimulating agents, ie latex particles, opsonised zymosan, PMA, Con A and fMLP, was monitored by lucigenin-amplified chemiluminescence (CL). In parallel the expression of myeloperoxidase (MPO) was investigated and its catalytic activity on H2O2 related to luminol-amplified CL responses. In mature PMN and MN phagocytes, regardless of the stimulating agent, the O2- production is closely related to Cyt b but not to MPO specific contents. In differentiated HL-60 and U 937 cells, the oxidative metabolism increases in parallel with Cyt b specific contents, both being enhanced by the addition of IFN gamma to the RA treatment. However, marked differences in the O2- production intensities are observed depending on the stimulating agent tested and the state of differentiation considered. The PMA-stimulated O2- production is rather low ie 100 and 20 times less in granulocytic HL-60 and monocyto-macrophagic U 937 cells than in PMN and MN respectively. Latex, zymosan and Con A stimulated responses are close to those of MN, in monocyte-macrophagic U 937 cells. In conclusion, these data show that during differentiation; 1), Cyt b plays a critical role in O2- production; 2), the pathways leading to NADPH oxidase activation are diversely modulated following phagocyte differentiation with IFN gamma and/or with RA.  相似文献   

8.
Changes in intracellular ionized free calcium ([Ca]i), inositol triphosphate (IP3), and sn-1,2-diacylglycerol (DAG) were determined in relation to agonist-induced human neutrophil superoxide (O2-) production. With 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation, generation of IP3 and a peak rise in [Cai] occurred at 30 sec, preceding maximal O2- production (1.5 min) and the maximal rise in DAG mass (4 min). FMLP-induced O2- production was inhibited by pertussis toxin. In cytochalasin B-primed, concanavalin A (Con A) stimulated neutrophils, a peak rise in [Ca]i but not IP3 proceeded O2- production, and pertussis toxin did not inhibit O2- production. EGTA inhibited the cytochalasin B/fMLP-induced increment in [Ca]i and O2- production by 75% and 50%, respectively, and completely ablated the response to cytochalasin B/Con A, suggesting a role for extracellular as well as intracellular calcium in the respiratory burst. However, three types of experiments indicate that an increase in [Ca]i is neither sufficient nor always required for O2- production. First, treatment with ionomycin resulted in a marked increase in [Ca]i but did not cause O2- production. Second, pertussis toxin inhibited both fMLP-induced IP3 generation and O2- production but did not inhibit the rise in [Ca]i. Third, following neutrophil priming with dioctanoylglycerol (diC8), maximal O2- production occurred in response to 0.015 microM fMLP or Con A without a rise in [Ca]i, and diC8/fMLP-induced O2- production was not inhibited by EGTA. Taken together, these data suggest that 1) an increment in [Ca]i is not strictly essential for neutrophil O2- production, 2) unlike fMLP, Con A-induced O2- production does not proceed through a pathway involving the pertussis toxin-sensitive G protein, and 3) regulation of neutrophil [Ca]i involves mechanisms independent of IP3 concentration.  相似文献   

9.
A real-time study of the initiation of the respiratory burst in human neutrophils was made. The cells were stimulated with fMet-Leu-Phe (fMLP) C5a, platelet-activating factor, leukotriene B4, phorbol myristate acetate (PMA), or ionomycin, and H2O2 production was determined by chemiluminescence. Identical average onset times (2.4 s) and closely comparable values for the apparent first-order rate constant (kapp) for the induction of NADPH-oxidase activity (0.21-0.29 s-1) were obtained following stimulation with fMLP, C5a, platelet-activating factor, or leukotriene B4, suggesting that different agonists act through a common transduction sequence. Much longer onset times and lower kapp values were obtained upon stimulation with PMA or ionomycin. Pretreatment with PMA consistently shortened the onset time of the neutrophil's responses to agonists by about 1 s. When H2O2 production was initiated with PMA, a subsequent stimulation with the agonist fMLP elicited an immediate response (onset time less than 0.2 s) which preceded further changes in fura-2-detected [Ca2+]i. The results are consistent with a mechanism in which agonist signals appear to be transduced by two sequences acting in concert--a rate-limiting one liberating Ca2+ and diacylglycerol and turning on the Ca2+/phospholipid-dependent enzyme protein kinase C, and an essentially instantaneous one which does not appear to require further changes in cytosolic Ca2+.  相似文献   

10.
Priming of human neutrophils with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by treatment with formyl-methionyl-leucyl-phenylalanine (fMLP) stimulates cells in a physiologically relevant manner with modest 5-lipoxygenase activation and formation of leukotrienes. However, pretreatment of neutrophils with thimerosal, an organomercury thiosalicylic acid derivative, led to a dramatic increase (>50-fold) in the production of leukotriene B(4) and 5-hydroxyeicosatetraenoic acid, significantly higher than that observed after stimulation with calcium ionophore A23187. Little or no effect was observed with thimerosal alone or in combination with either GM-CSF or fMLP. Elevation of [Ca(2+)](i) induced by thimerosal in neutrophils stimulated with GM-CSF/fMLP was similar but more sustained compared with samples where thimerosal was absent. However, [Ca(2+)](i) was significantly lower compared with calcium ionophore-treated cells, suggesting that a sustained calcium rise was necessary but not sufficient to explain the effects of this compound on the GM-CSF/fMLP-stimulated neutrophil. Thimerosal was found to directly inhibit neutrophil lysophospholipid:acyl-CoA acyltransferase activity at the doses that stimulate leukotriene production, and analysis of lysates from neutrophil preparations stimulated in the presence of thimerosal showed a marked increase in free arachidonic acid, supporting the inhibition of the reincorporation of this fatty acid into the membrane phospholipids as a mechanism of action for this compound. The dramatic increase in production of leukotrienes by neutrophils when a physiological stimulus such as GM-CSF/fMLP is employed in the presence of thimerosal suggests a critical regulatory role of arachidonate reacylation that limits leukotriene biosynthesis in concert with 5-lipoxygenase and cytosolic phospholipase A(2)alpha activation.  相似文献   

11.
This experiment was performed to clarify the role of protein kinase C (PKC) delta in NADPH oxidase-dependent O(2-) production and actin polymerization followed by phagocytosis in neutrophils. Bovine neutrophils and human neutrophil-like differentiated HL-60 (dHL-60) cells were stimulated with serum-opsonized zymosan (OZ) and fMet-Leu-Phe (fMLP), respectively. Rottlerin, a specific inhibitor of PKCdelta, attenuated the production of O(2-) from NADPH oxidase in both neutrophils and dHL-60 cells. However, it did not inhibit the translocation of p47(phox) from the cytosol to the membrane in either type of cell or the phosphorylation of p47(phox) in dHL-60 cells. GF109203X (GFX), an inhibitor of cPKC, attenuated not only the production of O(2-) but also the translocation of p47(phox) in both cells. Furthermore, rottlerin significantly attenuated the ingestion of opsonized particles and the formation of F-actin in OZ-stimulated neutrophils, whereas, GFX did not affect those phagocytic processes. These results suggest that both PKCdelta and cPKC regulate NADPH oxidase through different pathways, but only PKCdelta regulates the phagocytic function in neutrophils.  相似文献   

12.
Chemoattractants are thought to be the first mediators generated at sites of bacterial infection. We hypothesized that signaling through G protein-coupled chemoattractant receptors may stimulate cytokine production. To test this hypothesis, a human mast cell line (HMC-1) that normally expresses receptors for complement components C3a and C5a at low levels was stably transfected to express physiologic levels of fMLP receptors. We found that fMLP, but not C3a or C5a, induced macrophage inflammatory protein (MIP)-1ss (CCL4) and monocyte chemoattractant protein-1 (CCL2) mRNA and protein. Although fMLP stimulated both sustained Ca(2+) mobilization and phosphorylation of extracellular signal-regulated kinase (ERK), these responses to C3a or C5a were transient. However, transient expression of C3a receptors in HMC-1 cells rendered the cells responsive to C3a for sustained Ca(2+) mobilization and MIP-1ss production. The fMLP-induced chemokine production was blocked by pertussis toxin, PD98059, and cyclosporin A, which respectively inhibit G(i)alpha activation, mitgen-activated protein kinase kinase-mediated ERK phosphorylation, and calcineurin-mediated activation of NFAT. Furthermore, fMLP, but not C5a, stimulated NFAT activation in HMC-1 cells. These data indicate that chemoattractant receptors induce chemokine production in HMC-1 cells with a selectivity that depends on the level of receptor expression, the length of their signaling time, and the synergistic interaction of multiple signaling pathways, including extracellular signal-regulated kinase phosphorylation, sustained Ca(2+) mobilization and NFAT activation.  相似文献   

13.
Protein I, the major outer membrane protein of Neisseria gonorrhoeae, is a voltage-dependent anion channel which can translocate from the gonococcus into human cells. Since granule exocytosis from neutrophils is regulated by ion fluxes, we examined the effect of protein I on neutrophil activation. Pretreatment with protein I (250 nM) impaired degranulation from neutrophils: beta-glucuronidase release decreased to 27 +/- 6% S.E. of cells treated with N-f-Met-Leu-Phe (fMLP, 0.1 microM) and to 13 +/- 4% of cells treated with leukotriene B4 (LTB4, 0.1 microM); lysozyme release decreased to 52 +/- 17% of fMLP-treated cells and 22 +/- 9% of LTB4-treated cells. Morphometric analysis was consistent: control neutrophils increased their surface membrane after fMLP (43.3 +/- 5.6 microns relative perimeter versus 71.4 +/- 3.7 microns) while protein I-treated neutrophils did not (29.4 +/- 2 (S.E.) microns relative perimeter versus 34 +/- 4 microns). Enzyme release after exposure to phorbol myristate acetate was not affected (lysozyme: 86 +/- 27% of control). Cell/cell aggregation in response to fMLP was inhibited by treatment with protein I. However, generation of O2 was not affected. Protein I altered the surface membrane potential (Oxonol V): protein I evoked a transient membrane hyperpolarization which was not inhibited by furosemide. After exposure to fMLP, protein I-treated neutrophils underwent a furosemide-sensitive hyperpolarization rather than the usual depolarization. Protein I did not alter increments in [Ca]i (Fura-2) stimulated by fMLP (460 +/- 99 nM (S.E.) versus 377 +/- 44 nM) nor decrements in [pH]i (7.22 +/- 0.04 S.E. versus 7.22 +/- 0.02, bis-(carboxy-ethyl)carboxyfluorescein). The results suggest that degranulation and O2 generation have separate ionic requirements and that protein I interrupts the activation sequence proximal to activation of protein kinase C.  相似文献   

14.
Nociceptin/orphanin FQ (N/OFQ) produces several biological actions by activating the N/OFQ peptide receptor (NOP). It has been previously shown that N/OFQ stimulates leukocyte chemotaxis both in vitro and in vivo. In the present study we investigated the ability of N/OFQ, in comparison with the proinflammatory peptide formyl-Met-Leu-Phe (fMLP), to stimulate human neutrophil and monocyte chemotaxis and the release of lysozyme and superoxide anion (O2-) production from neutrophils. fMLP stimulated all the leukocyte functions examined. N/OFQ stimulated monocyte (pEC50 12.15) but not neutrophil chemotaxis. The production of O2- from neutrophils was not affected by N/OFQ while the release of lysozyme was increased in a concentration dependent manner (pEC50 11.00) although the maximal effects evoked by N/OFQ were about half of those of fMLP. The NOP ligands [Arg14, Lys15]N/OFQ, N/OFQ(1-13)NH2, Ro 64-6198, UFP-101 and the opioid antagonist naloxone were used for pharmacologically characterizing the receptor involved in the monocyte chemoattractant action of N/OFQ. [Arg14, Lys15]N/OFQ, N/OFQ(1-13)NH2, and Ro 64-6198 mimicked the action of N/OFQ showing similar maximal effects and the following order of potency: [Arg14, Lys15]N/OFQ (pEC50 13.22)>Ro 64-6198 (pEC50 12.96)>N/OFQ(1-13)NH2 (pEC50 12.67)>N/OFQ (pEC50 12.15). Moreover, the monocyte chemoattractant action of N/OFQ was not modified by naloxone 1 microM while antagonized by UFP-101 10 microM (pA2 7.00). Thus, the order of potency of agonists and the antagonist selectivity demonstrated that N/OFQ stimulates human monocyte chemotaxis via NOP receptor activation.  相似文献   

15.
This experiment was performed to clarify the role of extracellular signal-regulated kinase, ERK1/2, in NADPH oxidase-dependent O2- production in rat peritoneal neutrophils. When neutrophils were exposed to N-formyl-methionyl-leucyl-phenylalanine (fMLP) to stimulate an N-formyl peptide receptor, not only the production of Opact">- but also the activation of ERK1/2 was observed. The translocation of an NADPH oxidase component, p47phoxphox, from cytosol to membrane also occurred in neutrophils stimulated with fMLP. U0126, an ERK1/2 kinase inhibitor, inhibited both the production of Opact">- and the translocation of p47phoxphox elicited by fMLP. On the other hand, when complement receptor 3 of neutrophils was stimulated with opsonized zymosan (OZ), weaker activation of ERK1/2 than that by fMLP was observed. In this case, U0126 showed no inhibition against the production of Opact">- and slight inhibition against the translocation of p47phoxphox. Large inhibition against the OZ-induced production of Opact">- was only observed in neutrophils treated with GF109203X, a PKC inhibitor. The present study indicates that receptor dependence exists in the ERK1/2 signaling pathway leading to the activation of NADPH oxidase.  相似文献   

16.
The induction of the respiratory burst in human neutrophils by combinations of fMLP and either PAF or LTB4 was studied. Pretreatment with PAF (0.0001 to 10 uM), which by itself did not elicit the burst, greatly enhanced the rate and extent of fMLP-induced superoxide production. A synergism of a different kind was observed with the reversed stimulus sequence: Pretreatment with fMLP made the neutrophils capable to respond to PAF with superoxide production. A moderate enhancement of the fMLP response was also obtained following pretreatment with LTB4. The response of the cells to LTB4, however, was not influenced by fMLP, and no synergism was observed between the two neutrophil products PAF and LTB4. The results of this study demonstrate a marked synergism between fMLP and PAF and suggest that PAF may function as an amplifier of the respiratory burst response of stimulated neutrophils.  相似文献   

17.
Human neutrophils (PMN) activated by N-formyl-methionyl-leucyl-phenylalanine (fMLP) simultaneously release nitric oxide (.NO), superoxide anion (O2-) and its dismutation product, hydrogen peroxide (H2O2). To assess whether NO production shares common steps with the activation of the NADPH oxidase, PMN were treated with inhibitors and antagonists of intracellular signaling pathways and subsequently stimulated either with fMLP or with a phorbol ester (PMA). The G-protein inhibitor, pertussis toxin (1-10 μg/ml) decreased H2O2 yield without significantly changing. NO production in fMLP-stimulated neutrophils; no effects were observed in PMA-activated cells. The inhibition of tyrosine kinases by genistein (1-25 μg/ml) completely abolished H2O2 release by fMLP-activated neutrophils; conversely, NO production increased about 1.5- and 3-fold with fMLP and PMA, respectively. Accordingly, orthovanadate, an inhibitor of phosphotyrosine phosphatase, markedly decreased -NO production and increased O2;- release. On the other hand, inhibition of protein kinase C with staurosporine and the use of burst antagonists like adenosine, cholera toxin or dibutyryl-cAMP diminished both H2O2 and NO production. The results suggest that the activation of the tyrosine kinase pathway in stimulated human neutrophils controls positively O2- and H2O2 generation and simultaneously maintains -NO production in low levels. In contrast, activation of protein kinase C is a positive modulator for O2;-and *NO production.  相似文献   

18.
This present study examined the effects of high concentrations of nitric oxide (NO*) and peroxynitrite (ONOO-) on superoxide (O2*-) production from formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated polymorphonuclear leukocytes (PMNs) by using electron spin resonance (ESR) and spin trapping with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO). We demonstrated that ONOO- (100 microM) decreased the ESR signal of DEPMPO-OOH from fMLP-activated PMNs, indicating the inhibition of O2*- generation, while it enhanced the signal of DEPMPO-OH. Inhibition of the respiratory burst was also observed when PMNs were pre-exposed to high concentrations of NO* (100 microM), generated by the NO* donor NOR-1, 30 min prior to stimulation with fMLP. NOR-1 inhibited O2*- generation more effectively under conditions in which ONOO-was formed concurrently. The ability of high concentrations of either ONOO- or NO* to inhibit O2*-generation from fMLP-stimulated PMNs is relevant to pathophysiological conditions, such as severe inflammation, in which NO* or ONOO- production can be significantly elevated.  相似文献   

19.
A chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP), induced an acidification of cytosol by about 0.05 pH units in 30 sec followed by an alkalinization in human neutrophils. The quantitative contribution of acid production to the acidification was studied. The superoxide (O2 ) production stimulated by fMLP was not involved in the acidification because the production of acids in neutrophils from patients with chronic granulomatous disease who do not produce O2 , was the same as that in normal neutrophils. The intracellular acidification was completely inhibited by deoxyglucose, suggesting that energy metabolism enhanced upon stimulation by fMLP might be the main source of the acidification. Although enhancement of the lactate formation by fMLP was 0.8 nmol/106 cells, which could lower intracellular pH by 0.08 pH units, the lactate production could not explain the initial acidification because the production of lactate started at 1 min after the stimulation while the intracellular acidification began immediately after the stimulation. Mitochondrial respiratory inhibitors such as KCN and rotenone had no effects on the fMLP-induced intracellular acidification. The fMLP-induced production of CO2 in 30 sec through the hexose monophosphate shunt was only 2.6 pmol/106 cells, which was calculated to decrease intracellular pH by only 0.0014. Thus, changes of energy metabolism induced by fMLP does not explain the acidification.Abbreviations fMLP N-formyl-methionyl-leucyl-phenylalanine - BCECF-AM 2,7-bis(carboxyethyl)carboxyfluorescein acetoxymethyl ester - PMA phorbol 12-myristate 13-acetate - CGD chronic granulomatous disease - HMP hexose monophosphate - pHi intracellular pH  相似文献   

20.
Cytochalasin D (CD) induced production of the superoxide radical (O(2)(-)) in guinea pig polymorphonuclear leukocytes (PMNs). The protein kinase C (PKC) inhibitor GF109203X (GFX) was rarely without effect on CD-induced O(2)(-) production. CD as well as PMA induced the translocation of p47(phox) to the membrane fraction, and this translocation was slightly decreased by GFX. Moreover, the inhibitory effect of a PKCzeta antagonist with sequences based on the endogenous PKCzeta pseudosubstrate region was weaker than the inhibitory effect on N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced O(2)(-) production. On the other hand, the production of O(2)(-) induced by CD was more strongly suppressed by the PLD inhibitor ethanol and phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin than that induced by fMLP, and the activation of phospholipase D (PLD) by CD was restrained by wortmannin. These findings suggest that NADPH oxidase is activated by CD through a PKC-independent signaling pathway in PMNs, and this pathway involves the activation of PLD through PI3-K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号