首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rab8 is a small Ras-like GTPase that regulates polarized membrane transport to the basolateral membrane in epithelial cells and to the dendrites in neurons. It has recently been demonstrated that fibroblasts sort newly synthesized proteins into two different pathways for delivery to the cell surface that are equivalent to the apical and the basolateral post-Golgi routes in epithelial cells (Yoshimori, T., P. Keller, M.G. Roth, and K. Simons. 1996. J. Cell Biol. 133:247-256). To determine the role of Rab8 in fibroblasts, we used both transient expression systems and stable cell lines expressing mutant or wild-type (wt) Rab8. A dramatic change in cell morphology occurred in BHK cells expressing both the wt Rab8 and the activated form of the GTPase, the Rab8Q67L mutant. These cells formed processes as a result of a reorganization of both their actin filaments and microtubules. Newly synthesized vesicular stomatitis virus G glycoprotein, a basolateral marker protein in MDCK cells, was preferentially delivered into these cell outgrowths. Based on these findings, we propose that Rab8 provides a link between the machinery responsible for the formation of cell protrusions and polarized biosynthetic membrane traffic.  相似文献   

2.
We have previously demonstrated that Rab27 regulates dense granule secretion in platelets. Here, we analyzed the activation status of Rab27 using the thin layer chromatography method analyzing nucleotides bound to immunoprecipitated Rab27 and the pull-down method quantifying Rab27 bound to the GTP-Rab27-binding domain (synaptotagmin-like protein (Slp)-homology domain) of its specific effector, Slac2-b. We found that Rab27 was predominantly present in the GTP-bound form in unstimulated platelets due to constitutive GDP/GTP exchange activity. The GTP-bound Rab27 level drastically decreased due to enhanced GTP hydrolysis activity upon granule secretion. In permeabilized platelets, increase of Ca(2+) concentration induced dense granule secretion with concomitant decrease of GTP-Rab27, whereas in non-hydrolyzable GTP analogue GppNHp (beta-gamma-imidoguanosine 5'-triphosphate)-loaded permeabilized platelets, the GTP (GppNHp)-Rab27 level did not decrease upon the Ca(2+)-induced secretion. These data suggested that GTP hydrolysis of Rab27 was not necessary for inducing the secretion. Taken together, Rab27 is maintained in the active status in unstimulated platelets, which could function to keep dense granules in a preparative status for secretion.  相似文献   

3.
Iwasaki K  Toyonaga R 《The EMBO journal》2000,19(17):4806-4816
Guanine nucleotide exchange is essential for Rab GTPase activities in regulating intracellular vesicle trafficking. This exchange process is facilitated by guanine nucleotide exchange factor (GEF). Previously, we identified Caenorhabditis elegans AEX-3 as a GEF for Rab3 GTPase. Here we demonstrate that AEX-3 regulates neural activities through a second, previously unrecognized pathway via interactions with the novel protein CAB-1. CAB-1 is 425 amino acids long and has an 80 amino acid motif in common with the mouse neural protein NPDC-1. cab-1 and rab-3 mutants have different behavioral defects, and RAB-3 localization and function are apparently normal in cab-1 mutants, indicating that the CAB-1 pathway is distinct from the RAB-3 pathway. The aex-3 mutant phenotype resembles the sum of the rab-3 and cab-1 mutant phenotypes, indicating that AEX-3 regulates two different pathways for neural activities. We propose that connection of multiple pathways may be an important feature of Rab GEFs to coordinate various cellular events.  相似文献   

4.
We have analyzed both biochemically and functionally a series of Arf6 mutants, providing new insights into the molecular mode of action of the small G protein Arf6. First, by comparing a fast-cycling mutant (Arf6(T157N)) and a GTPase-deficient mutant (Arf6(Q67L)), we established the necessity for completion of the Arf6 GDP/GTP cycle for recycling of major histocompatibility complex molecules to the plasma membrane. Second, we found that aluminum fluoride (AlF), known for inducing membrane protrusion in cells expressing exogenous wild-type Arf6, stabilized a functional wild-type Arf6.AlF(x) . GTPase-activating protein (GAP) complex in vitro and in vivo. We also found that the tandem mutation Q37E/S38I prevented the binding of two Arf GAPs, but not the effector ARHGAP10, and blocked the formation of membrane protrusion and actin reorganization. Together, our results with AlF(x) and Arf6(Q37E/S38I) demonstrate the critical role of the Arf6 GAPs as effectors for Arf6-regulated actin cytoskeleton remodeling. Finally, competition experiments conducted in vivo suggest the existence of a membrane receptor for GDP-bound Arf6.  相似文献   

5.
The sorting of newly synthesized membrane proteins to the cell surface is an important mechanism of cell polarity. To identify more of the molecular machinery involved, we investigated the function of the small GTPase Rab10 in polarized epithelial Madin-Darby canine kidney cells. We find that GFP-tagged Rab10 localizes primarily to the Golgi during early cell polarization. Expression of an activated Rab10 mutant inhibits biosynthetic transport from the Golgi and missorts basolateral cargo to the apical membrane. Depletion of Rab10 by RNA interference has only mild effects on biosynthetic transport and epithelial polarization, but simultaneous inhibition of Rab10 and Rab8a more strongly impairs basolateral sorting. These results indicate that Rab10 functions in trafficking from the Golgi at early stages of epithelial polarization, is involved in biosynthetic transport to the basolateral membrane and may co-operate with Rab8.  相似文献   

6.
Vav functions as a specific GDP/GTP nucleotide exchange factor which is regulated by tyrosine phosphorylation in the hematopoietic system. Loss of the amino-terminus sequences of Vav was sufficient to control its transforming potential and its function in T cells. We report here the identification of the hematopoietic GDP dissociation inhibitor protein, Ly-GDI, as a protein that interacts with the amino-terminus of Vav. Further analysis confirmed that Vav and Ly-GDI interact both in in vitro and in in vivo assays. This association is maximal only when the amino region of Vav is intact and requires an intact carboxy-terminus of Ly-GDI. The interaction between Vav and Ly-GDI is not dependent on the tyrosine phosphorylation status of Vav. In addition, Rho-GDI, the highly homologous protein to Ly-GDI, associates with Vav as well. The contribution of the interaction between Vav and GDIs, proteins that are involved in the GDP/GTP exchange processes, to the biological function of Vav is further discussed.  相似文献   

7.
The brain-specific GDP/GTP exchange factor collybistin interacts with the receptor-anchoring protein gephyrin and activates the Rho-like GTPase Cdc42, which is known to regulate actin cytoskeleton dynamics. Alternative splicing creates two collybistin variants, I and II. In coexpression experiments, collybistin II has been shown to induce the formation of submembraneous gephyrin aggregates which cluster with hetero-oligomeric glycine receptors (GlyRs). Here we identified residues critical for interaction with gephyrin in the linker region between the SH3 and the DH domains of collybistin. Respective collybistin deletion mutants failed to bind gephyrin upon coexpression in heterologous cells, in GST pull-down assays and in the yeast two-hybrid system. Site-directed mutagenesis revealed polar amino acid residues as essential determinants of gephyrin binding. Furthermore, in vitro gephyrin bound simultaneously to both collybistin and the GlyR beta-subunit binding motif. Our data are consistent with collybistin-gephyrin interactions occuring during inhibitory postsynaptic membrane formation.  相似文献   

8.
RasGRPs constitute a new group of diacylglycerol-dependent GDP/GTP exchange factors that activate Ras subfamily GTPases. Despite a common structure, Ras-GRPs diverge in their GTPase specificity, subcellular distribution, and downstream biological effects. The more divergent family member is RasGRP2, a Rap1-specific exchange factor with low affinity toward diacylglycerol. The regulation of RasGRP2 during signal transduction has remained elusive up to now. In this report, we show that the subcellular localization of Ras-GRP2 is highly dependent on actin dynamics. Thus, the induction of F-actin by cytoskeletal regulators such as Vav, Vav2, Dbl, and Rac1 leads to the shift of RasGRP2 from the cytosol to membrane ruffles and its co-localization with F-actin. Treatment of cells with cytoskeletal disrupting drugs abolishes this effect, leading to an abnormal localization of RasGRP2 in cytoplasmic clusters of actin. The use of Rac1 effector mutants indicates that the RasGRP2 translocation is linked exclusively to actin polymerization and is independent of other pathways such as p21-activated kinase JNK, or superoxide production. Biochemical experiments demonstrate that the translocation of RasGRP2 to membrane ruffles is mediated by the direct association of this protein with F-actin, a property contained within its 150 first amino acids. Finally, we show that the RasGRP2/F-actin interaction promotes the regionalized activation of Rap1 in juxtamembrane areas of the cell. These results reveal a novel function of the actin cytoskeleton in mediating the spatial activation of Ras subfamily GTPases through the selective recruitment of GDP/GTP exchange factors.  相似文献   

9.
The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca(2+)-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP-/- mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction approximately 10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.  相似文献   

10.
The Caenorhabditis elegans excretory cell extends tubular processes, called canals, along the basolateral surface of the epidermis. Mutations in the exc-5 gene cause tubulocystic defects in this canal. Ultrastructural analysis suggests that exc-5 is required for the proper placement of cytoskeletal elements at the apical epithelial surface. exc-5 encodes a protein homologous to guanine nucleotide exchange factors and contains motif architecture similar to that of FGD1, which is responsible for faciogenital dysplasia. exc-5 interacts genetically with mig-2, which encodes Rho GTPase. These results suggest that EXC-5 controls the structural organization of the excretory canal by regulating Rho family GTPase activities.  相似文献   

11.
Communication between membranes and the actin cytoskeleton is an important aspect of neuronal function. Regulators of actin cytoskeletal dynamics include the Rho-like small GTP-binding proteins and their exchange factors. Kalirin is a brain-specific protein, first identified through its interaction with peptidylglycine-alpha-amidating monooxygenase. In this study, we cloned rat Kalirin-7, a 7-kilobase mRNA form of Kalirin. Kalirin-7 contains nine spectrin-like repeats, a Dbl homology domain, and a pleckstrin homology domain. We found that the majority of Kalirin-7 protein is associated with synaptosomal membranes, but a fraction is cytosolic. We also detected higher molecular weight Kalirin proteins. In rat cerebral cortex, Kalirin-7 is highly enriched in the postsynaptic density fraction. In primary cultures of neurons, Kalirin-7 is detected in spine-like structures, while other forms of Kalirin are visualized in the cell soma and throughout the neurites. Kalirin-7 and its Dbl homology-pleckstrin homology domain induce formation of lamellipodia and membrane ruffling, when transiently expressed in fibroblasts, indicative of Rac1 activation. Using Rac1, the Dbl homology-pleckstrin homology domain catalyzed the in vitro exchange of bound GDP with GTP. Kalirin-7 is the first guanine-nucleotide exchange factor identified in the postsynaptic density, where it is positioned optimally to regulate signal transduction pathways connecting membrane proteins and the actin cytoskeleton.  相似文献   

12.
The small GTP-binding protein Rab11 is an essential regulator of the dynamics of recycling endosomes. Here we report the crystallographic analysis of the GDP/GTP cycle of human Rab11a, and a structure-based mutagenesis study that identifies a novel mutant phenotype. The crystal structures show that the nucleotide-sensitive switch 1 and 2 regions differ from those of other Rab proteins. In Rab11-GDP, they contribute to a close packed symmetrical dimer, which may associate to membranes in the cell and allow Rab11 to undergo GDP/GTP cycles without recycling to the cytosol. The structure of active Rab11 delineates a three-dimensional site that includes switch 1 and is separate from the site defined by the Rab3/Rabphilin interface. It is proposed to form a novel interface for a Rab11 partner compatible with the simultaneous binding of another partner at the Rabphilin interface. Mutation of Ser(29) to Phe in this epitope resulted in morphological modifications of the recycling compartment that are distinct from those induced by the classical dominant-negative and constitutively active Rab11 mutants. Recycling endosomes condensed in the perinuclear region where they retained recycling transferrin, and they clustered Rab11- and EEA1-positive membranes. Altogether, our study suggests that this mutation impairs a specific subset of Rab11 interactions, possibly those involved in cytoskeleton-based movements driving the slow recycling pathway.  相似文献   

13.
The Rab family of small guanosine triphosphatases (GTPases) plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs). Ras and Rab interactor (or Ras interaction/interference)-like (RINL), which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM) domain-containing (Anks) protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.  相似文献   

14.
Activation of Rho/Rac GTPases during cell signaling requires the participation of GDP/GTP exchange factors of the Dbl family. Although the structure of the catalytic core of Dbl proteins has been established recently, the molecular changes that the full-length proteins experience during normal or oncogenic conditions of stimulation are still unknown. Here, we have used single-particle electron microscopy to solve the structures of the inactive (unphosphorylated), active (phosphorylated), and constitutively active (N-terminally deleted) versions of the exchange factor Vav3. Comparison of these forms has revealed the interdomain interactions maintaining the inactive Vav3 state and the dynamic changes that the overall Vav3 structure undergoes upon tyrosine phosphorylation. We have also found that the conformations of phosphorylated Vav3 and N-terminally deleted Vav3 are distinct, indicating that the acquisition of constitutive activity by exchange factors is structurally more complex than the mere elimination of inhibitory interactions between structural domains.  相似文献   

15.
Cells of the budding yeast undergo oriented cell division by choosing a specific site for growth depending on their cell type. Haploid a and alpha cells bud in an axial pattern whereas diploid a/alpha cells bud in a bipolar pattern. The Ras-like GTPase Rsr1p/Bud1p, its GDP-GTP exchange factor Bud5p, and its GTPase-activating protein Bud2p are essential for selecting the proper site for polarized growth in all cell types. Here we showed that specific residues at the N terminus and the C terminus of Bud5p were important for bipolar budding, while some residues were involved in both axial and bipolar budding. These bipolar-specific mutations of BUD5 disrupted proper localization of Bud5p in diploid a/alpha cells without affecting Bud5p localization in haploid alpha cells. In contrast, Bud5p expressed in the bud5 mutants defective in both budding patterns failed to localize in all cell types. Thus, these results identify specific residues of Bud5p that are likely to be involved in direct interaction with spatial landmarks, which recruit Bud5p to the proper bud site. Finally, we found a new start codon of BUD5, which extends the open reading frame to 210 bp upstream of the previously estimated start site, thus encoding a polypeptide of 608 amino acid residues. Bud5p with these additional N-terminal residues interacted with Bud8p, a potential bipolar landmark, suggesting that the N-terminal region is necessary for recognition of the spatial cues.  相似文献   

16.
Here we describe a new signaling cross-talk between the Vav/Rac1 and Ras pathways that is established through the stimulation of RasGRP1, an exchange factor for Ras subfamily GTPases. This interaction is crucial for Ras activation in lymphoid cells, since this GTPase cannot become activated in the absence of Vav proteins. The activation of RasGRP1 requires both the generation of diacylglycerol via phospho lipase C-gamma and the induction of actin polymerization, two responses induced by Vav and Rac1 that facilitate the translocation of RasGRP1 to juxtamembrane areas of the cell. Consistent with this, the cross-talk can be activated by tyrosine-phosphorylated wild-type Vav, oncogenic Vav and constitutively active Rac1. Conversely, Ras activation can be blocked in lymphocytes and ectopic systems using inhibitors affecting either phospholipase C-gamma or F-actin polymerization. These results indicate that a relay mechanism exists in lymphoid and other cells helping in the generation of robust signaling responses by the Rac/Rho and Ras pathways upon receptor engagement.  相似文献   

17.
Formation of the ternary complex Met-tRNAi X eukaryotic initiation factor (eIF) 2 X GTP from eIF-2 X GDP requires exchange of GDP for GTP. However, at physiological Mg2+ concentrations, GDP is released from eIF-2 exceedingly slowly (Clemens, M.J., Pain, V.M., Wong, S.T., and Henshaw, E.C. (1982) Nature (Lond.) 296, 93-95). However, GDP is released rapidly from impure eIF-2 preparations, indicating the presence of a GDP/GTP exchange factor. We have now purified this factor from Ehrlich cells and refer to it as GEF. CM-Sephadex chromatography of ribosomal salt wash separated two peaks of eIF-2 activity. GEF was found in association with eIF-2 in the first peak and co-purified with eIF-2 under low salt conditions. It was separated from eIF-2 in high salt buffers and further purified on hydroxylapatite and phosphocellulose. Gel electrophoresis of our purest preparations showed major bands at 85, 67, 52, 37, 27, and 21 kDa. Purified GEF increased the rate of exchange of [32P] GDP for unlabeled GDP 25-fold but did not function with phosphorylated eIF-2 (alpha subunit). The factor also stimulated markedly the rate of ternary complex formation using eIF-2 X GDP as substrate with GTP and Met-tRNAi but not using phosphorylated eIF-2 X GDP as substrate. eIF-2 is released from the 80 S initiation complex with hydrolysis of GTP. If eIF-2 X GDP is actually the complex released, then GEF is absolutely required for eIF-2 to cycle and it is therefore a new eukaryotic initiation factor. Furthermore, the inability of GEF to utilize eIF-2 (alpha P) X GDP explains how phosphorylation of eIF-2 can inhibit polypeptide chain initiation.  相似文献   

18.
We have found that the brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) interacts with the beta subunits of the gamma-aminobutyric acid type-A receptor (GABA(A)R). BIG2 is a Sec7 domain-containing guanine nucleotide exchange factor known to be involved in vesicular and protein trafficking. The interaction between the 110 amino acid C-terminal fragment of BIG2 and the large intracellular loop of the GABA(A)R beta subunits was revealed with a yeast two-hybrid assay. The native BIG2 and GABA(A)Rs interact in the brain since both coprecipitated from detergent extracts with either anti-GABA(A)R or anti-BIG2 antibodies. In transfected human embryonic kidney cell line 293 cells, BIG2 promotes the exit of GABA(A)Rs from endoplasmic reticulum. Double label immunofluorescence of cultured hippocampal neurons and electron microscopy immunocytochemistry of rat brain tissue show that BIG2 concentrates in the trans-Golgi network. BIG2 is also present in vesicle-like structures in the dendritic cytoplasm, sometimes colocalizing with GABA(A)Rs. BIG2 is present in both inhibitory GABAergic synapses that contain GABA(A)Rs and in asymmetric excitatory synapses. The results are consistent with the hypotheses that the interaction of BIG2 with the GABA(A)R beta subunits plays a role in the exocytosis and trafficking of assembled GABA(A)R to the cell surface.  相似文献   

19.
The lipoglycoproteins of the WNT family act on seven transmembrane-spanning Class Frizzled receptors. Here, we show that WNT-5A evokes a proliferative response in a mouse microglia-like cell line (N13), which is sensitive to pertussis toxin, thus implicating the involvement of heterotrimeric G proteins of the Gi/o family. We continue to show that WNT-5A stimulation of N13 membranes and permeabilized cells evokes the exchange of GDP for GTP of pertussis toxin-sensitive G proteins employing [γ-35S]GTP assay and activity state-specific antibodies to GTP-bound Gi proteins. Our functional analysis of the PTX-sensitivity of WNT-induced G protein activation and PCR analysis of G protein and FZD expression patterns suggest that WNT-5A stimulation leads to the activation of Gi2/3 proteins in N13 cells possibly mediated by FZD5, the predominant FZD expressed. In summary, we provide for the first time molecular proof that WNT-5A stimulation results in the activation of heterotrimeric Gi2/3 proteins in mammalian cells with physiological protein stochiometry.  相似文献   

20.
The sodium-selective amiloride-sensitive epithelial sodium channel (ENaC) mediates electrogenic sodium re-absorption in tight epithelia. ENaC expression at the plasma membrane requires regulated transport, processing, and macromolecular assembly of subunit proteins in a defined and highly compartmentalized manner. Ras-related Rab GTPases monitor these processes in a highly regulated sequence of events. In order to evaluate the role of Rab proteins in ENaC function, Rab4 wild-type (WT), the GTPase-deficient mutant Rab4Q67L, and the dominant negative GDP-locked mutant Rab4S22N were over-expressed in the colon cancer cell line, HT-29 and amiloride-sensitive currents were recorded. Rab4 over-expression inhibited amiloride-sensitive currents. The effect was reversed by introducing Rab4-neutralizing antibody and Rab4 specific SiRNA. The GDP-locked Rab4 mutant inhibited, while GTPase-deficient mutant moderately stimulated amiloride-sensitive currents. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. Immunoprecipitation and pull-down assay suggest protein-protein interaction between Rab4 and ENaC. In addition, the functional modulation coincides with concomitant changes in ENaC expression at the cell surface and in intracellular pool. We propose that Rab4 is a critical element that regulates ENaC function by mechanisms that include GTP-GDP status, recycling, and expression level. Our observations imply that channel expression in apical membranes of epithelial cell system incorporates RabGTPase as an essential determinant of channel function and adds an exciting paradigm to ENaC therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号