首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cultures of dermal fibroblasts, procollagen and the intermediates pC- and pN-collagen accumulated in the culture medium with little further processing to collagen. When polyethylene glycol (PEG) or other neutral polymers were added to fibroblast culture medium, no collagen or procollagen was found in the medium, but all the collagen was associated with the cell layer. The type I procollagen was fully processed to collagen with an initial transient accumulation of pN-collagen, and the processed collagen formed covalently cross-linked dimers. The presence of pepsin-sensitive COOH-terminal telopeptides and the accumulation of pN-collagen in PEG-treated cultures of dermatosparactic fibroblasts indicated that it was likely that processing occurred via the correct in vivo propeptidase activities. At the levels used in this study, PEG did not have any toxic effect during the incubation period on the fibroblasts in culture, since the amount of total protein synthesis was not altered by addition of PEG to cultures. However, the level of collagen production was reduced to about half, indicating that there was increased degradation or that the released collagen propeptides or the accumulation of processed collagen in association with the cells exerted a feedback regulation on collagen synthesis. Addition of neutral polymers to the culture medium provided a simple means of achieving complete and accurate processing of procollagen which more closely resembled the in vivo process.  相似文献   

2.
Human pancreatic secretory trypsin inhibitor inhibited cell-surface proteolytic activity in human fibroblasts. In the range of concentrations which caused proteinase inhibition, fibroblast proliferation was also inhibited by this reagent and by the ovine equivalent. At lower concentrations, there was some evidence for a mitogenic effect, and this was confirmed by obvious stimulation of DNA synthesis at these concentrations. Human alpha 1-proteinase inhibitor, previously demonstrated to be an inhibitor of fibroblast proliferation, was also mitogenic at concentrations lower than those which inhibited proteolytic activity and cell proliferation. Human pancreatic secretory trypsin inhibitor and epidermal growth factor apparently work through independent mechanisms, since their mitogenic effects are additive.  相似文献   

3.
We report here the continued characterization of a 41‐kDa protease expressed in the early stage of the sea urchin embryo. This protease was previously shown to possess both a gelatin‐cleavage activity and an echinoderm‐specific collagen‐cleavage activity. In the experiments reported here, we have explored the biochemical nature of this proteolytic activity. Pepstatin A (an acidic protease inhibitor), 1,10‐phenanthroline (a metalloprotease inhibitor), and E‐64 (a thiol protease inhibitor) were without effect on the gelatin‐cleavage activity of the 41‐kDa species. Using a gelatin substrate gel zymographic assay, the serine protease inhibitors phenylmethylsulfonyl fluoride and benzamide appeared to partially inhibit gelatin‐cleavage activity. This result was confirmed in a quantitative gelatin‐cleavage assay using the water soluble, serine protease inhibitor [4‐(2‐aminoethyl)benzenesulfonylfluoride]. The biochemical character of this protease was further explored by examining the effects of calcium and magnesium, the major divalent cations present in sea water, on the gelatin‐cleavage activity. Calcium and magnesium competed for binding to the 41‐kDa collagenase/gelatinase, and prebound calcium was displaced by magnesium. Cleavage activity was inhibited by magnesium, and calcium protected the protease against this inhibition. These results identify calcium and magnesium as antagonistic agents that may regulate the proteolytic activity of the 41‐kDa species. J. Cell. Biochem. 80:139–145, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

4.
Polymorphonuclear leukocytes have been shown to contain proteolytic enzymes which are capable of degrading connective tissue proteins such as native collagen. In this study, proteolytic enzymes were extracted from human polymorphonuclear leukocytes and a neutral proteinase was extensively purified and characterized. The activity of this enzyme was monitored by degradation of denatured [ 3H ]proline-labeled type I collagen or by cleavage of a synthetic dinitrophenylated peptide with a Gly-Ile sequence. The enzyme was readily separated from leukocyte collagenase by concanavalin-A--Sepharose affinity chromatography and further purified by QAE-Sephadex ion-exchange chromatography and gel filtration on Sephacryl S-200. The purified enzyme had a molecular weight of approximately 105000, its pH optimum was about 7.8, and it was inhibited by Na2EDTA and dithiothreitol, but not by fetal calf serum. The enzyme degraded genetically distinct type I, II, III, IV and V collagens, when in a non-helical form, but not when in native triple-helical conformation. Dansyl-monitored end-group analyses, combined with digestion by carboxypeptidase A, indicated that the enzyme cleaved denaturated type I collagen at Gly-Xaa sequences, in which Xaa can be leucine, isoleucine, valine, phenylalanine, lysine, or methionine. Thus, the purified enzyme referred to here as Gly-Xaa proteinase, is a neutral proteinase, which may be of importance in inflammatory disease processes by degrading further collagen peptides which have been rendered non-helical as a result of collagenase cleavage.  相似文献   

5.
Neprilysin is a cell surface peptidase that catalytically inactivates neuropeptide substrates and functions as a tumor suppressor via its enzymatic function and multiple protein-protein interactions. We investigated whether neutral endopeptidase could inhibit angiogenesis in vivo utilizing a murine corneal pocket angiogenesis model and found that it reduced fibroblast growth factor-2-induced angiogenesis by 85% (p < 0.01) but had no effect on that of vascular endothelial growth factor. Treatment with recombinant neprilysin, but not enzymatically inactive neprilysin, resulted in a slight increase in basic fibroblast growth factor electrophoretic mobility from proteolytic cleavage between amino acids Leu-135 and Gly-136, which was inhibited by the neutral endopeptidase inhibitor CGS24592 and heparin. Cleavage kinetics were rapid, comparable with that of other known neprilysin substrates. Functional studies involving neprilysin-expressing vascular endothelial cells demonstrated that neutral endopeptidase inhibition significantly enhanced fibroblast growth factor-mediated endothelial cell growth, capillary array formation, and signaling, whereas exogenous recombinant neprilysin inhibited signaling. Recombinant constructs confirmed that cleavage products neither promoted capillary array formation nor induced signaling. Moreover, mutation of the cleavage site resulted in concomitant loss of cleavage and increased the potency of fibroblast growth factor-2 to induce capillary array formation. These data indicate that neprilysin proteolytically inactivates fibroblast growth factor-2, resulting in negative regulation of angiogenesis.  相似文献   

6.
A peptidase activity capable of excising in a single fragment the N-terminal extension of the precursor of collagen type III (p-N-collagen type III) was observed in calf tendon fibroblast culture medium. A new procedure was developed for detecting this peptidase (p-N-collagen type III peptidase). It is based on the use of 14C-labelled p-N-collagen type III obtained by carboxymethylation of the half-cystine residues with iodo-[14C]acetamide. The released labelled N-terminal extension is soluble in 27% (v/v) ethanol, whereas the uncleaved substrate and the collagen are precipitated under these conditions. The endopeptidase nature of p-N-collagen type III peptidase is supported by the similarity in molecular weight of the product of cleavage of p-N-collagen III by the enzyme to those obtained by cleavage with bacterial collagenase. An apparent Km of 0.3 X 10(-6)M was established. The pH optimum of p-N-collagen type III peptidase is similar to that of p-N-collagen type I peptidase, i.e. about 7.5. Both peptidases are inhibited by dithiothreitol and by Cu2+ and Zn2+, but not by other bivalent ions. p-N-collagen type III peptidase does not cleave p-N-collagen I or p-N-gelatin I. Partial purification of p-N-collagen type III peptidase from fibroblast culture medium was performed by sieve chromatography on Ultrogel AcA-34 to yield two peaks of activity, of mol.wts. 170000 and 100000. Part of the activity was retained on affinity chromatography on concanavalin A--Sepharose. Studied as a function of the age of the culture, p-N-collagen type III peptidase activity produced by tendon fibroblasts parallels that of p-N-collagen type I peptidase and collagen synthesis.  相似文献   

7.
MT1-MMP (membrane type 1-matrix metalloproteinase) plays important roles in cell growth and tumor invasion via mediating cleavage of MMP2/gelatinase A and a variety of substrates including type I collagen. BST-2 (bone marrow stromal cell antigen 2) is a membrane tetherin whose expression dramatically reduces the release of a broad range of enveloped viruses including HIV from infected cells. In this study, we provided evidence that both transient and IFN-α induced BST-2 could decrease the activity of MMP2 via binding to cellular MT1-MMP on its C-terminus and inhibiting its proteolytic activity; and finally block cell growth and migration. Zymography gel and Western blot experiments demonstrated that BST-2 decreased MMP2 activity, but no effect on the expression of MMP2 and MT1-MMP genes. Confocal and immunoprecipitation data showed that BST-2 co-localized and interacted with MT1-MMP. This interaction inhibited the proteolytic enzyme activity of MT1-MMP, and blocked the activation of proMMP2. Experimental results of C-terminus deletion mutant of MT1-MMP showed that activity of MMP2 was no change and also no interaction existed between the mutant and BST-2 after co-transfection with the mutant and BST-2. It meant that C-terminus of MT1-MMP played a key role in the interaction with BST-2. In addition, cell growth in 3D type I collagen gel lattice and cell migration were all inhibited by BST-2. Taken together, BST-2, as a membrane protein and a tetherin of enveloped viruses, was a novel inhibitor of MT1-MMP and could be considerable as an inhibitor of cancer cell growth and migration on clinic.  相似文献   

8.
Over the last several decades, it has been established that proteolytic removal of short, non-helical terminal peptides (telopeptides) from type I collagen significantly alters the kinetics of in vitro fibrillogenesis. However, it has also been observed that the protein is still capable of forming fibers even after complete removal of telopeptides. This study focuses on the characterization of this fibrillogenesis competency of collagen. We have combined traditional kinetic and thermodynamic assays of fibrillogenesis efficacy with direct measurements of interaction between collagen molecules in fibers by osmotic stress and x-ray diffraction. We found that telopeptide cleavage by pepsin or by up to 20 h of Pronase treatment altered fiber assembly kinetics, but the same fraction of the protein still assembled into fibers. Small-angle x-ray diffraction showed that these fibers have normal, native-like D-stagger. Force measurements indicated that collagen-collagen interactions in fibers were not affected by either pepsin or Pronase treatment. In contrast, prolonged (>20 h) Pronase treatment resulted in cleavage of the triple helical domain as indicated by SDS-polyacrylamide gel electrophoresis. The triple-helix cleavage correlated with the observed decrease in the fraction of protein capable of forming fibers and with the measured loss of attraction between helices in fibers. These data suggest that telopeptides play a catalytic role, whereas the information necessary for proper molecular recognition and fiber assembly is encoded in the triple helical domain of collagen.  相似文献   

9.
The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely degraded following incubation with MMP-1, collagen in cartilage with intact aggrecan was not. Using interleukin-1-stimulated bovine nasal cartilage explants where aggrecan depletion occurs during the first week of culture, followed by collagen loss during the second week, we evaluated the effect of selective MMP and aggrecanase inhibitors on degradation. A selective MMP inhibitor did not block aggrecan degradation but caused complete inhibition of collagen breakdown. Similar inhibition was seen with inhibitor addition following aggrecan depletion on day 6-8, suggesting that MMPs are not causing significant collagen degradation prior to the second week of culture. Inclusion of a selective aggrecanase inhibitor blocked aggrecan degradation, and, in addition, inhibited collagen degradation. When the inhibitor was introduced following aggrecan depletion, it had no effect on collagen breakdown, ruling out a direct effect through inhibition of collagenase. These data suggest that aggrecan plays a protective role in preventing degradation of collagen fibrils, and that an aggrecanase inhibitor may impart overall cartilage protection.  相似文献   

10.
A specific collagenase from rabbit fibroblasts in monolayer culture   总被引:33,自引:15,他引:18  
1. Explants of rabbit skin and synovium in tissue culture secreted a specific collagenase into their culture media. Primary cultures of fibroblast-like cells, which were obtained from these tissues and maintained in culture for up to 14 subculture passages, also secreted high activities of a specific collagenase into serum-free culture medium. Secretion of enzyme activity from the cell monolayer was at constant rate for over 100h and continued for up to 8 days in serum-free culture medium. The enzymic activity released was proportional to the number of cells in the monolayer. 2. The fibroblast collagenase was maximally active between pH7 and 8. At 24 degrees C the collagenase decreased the viscosity of collagen in solution by 60%. The collagen molecule was cleaved into three-quarters and one-quarter length fragments as demonstrated by electron microscopy of segment-long-spacing crystallites (measured as native collagen molecules aligned with N-termini together along the long axis), and by polyacrylamide-gel electrophoresis of the denatured products. The collagenase hydrolysed insoluble collagen, reconstituted collagen fibrils and gelatin, but had no effect on haemoglobin or Pz-Pro-Leu-Gly-Pro-d-Arg (where Pz=4-phenylazobenzyloxycarbonyl). 3. The fibroblast collagenase was partially purified by gel filtration and the molecular weight was estimated as 38000. The activity of the partially purified enzyme was stimulated by 4-chloromercuribenzoate, inhibited by EDTA, cysteine, 1,10-phenanthroline and serum, but was unaffected by di-isopropyl phosphorofluoridate, Tos-LysCH(2)Cl and pepstatin. 4. Long-term cell cultures originating from rabbit skin or synovium from rabbits with experimentally induced arthritis also secreted specific collagenase. Human fibroblasts released only very small amounts of collagenase.  相似文献   

11.
Investigation of oyster blood cell lysate revealed one prominent band of proteolytic activity when analyzed using gelatin and collagen impregnated polyacrylamide gel electrophoresis. The proteolytic activity was inhibited by 1,10 phenanthroline and EDTA, but not by other proteinase inhibitors. Maximal activity was shown at pH 8.2 and the molecular weight of the protein responsible for the activity was estimated to be 68 kDa. Proteolytic activity was also measured by fluorescence assays containing hemocyte lysate and fluorescein-labeled gelatin, type I or type IV collagen. Characteristics of this proteolytic activity suggest that an invertebrate matrix metalloproteinase is responsible.  相似文献   

12.
Jeng YW  Chao HC  Chiu CF  Chou WG 《Mutation research》1999,435(3):225-232
A proteolytic activity capable of cleaving the Ku86 subunit of Ku protein to two polypeptides, with molecular masses of 69 and 17 kDa in vitro, is present in a human diploid fibroblast (HDF) cell line. The activity is elevated in late-passaged and senescent cells, and the cleaved 69-kDa product seems able to form complex with Ku70 to bind DNA ends. However, further studies indicate that cleavage of Ku86 could be inhibited by including leupeptin in the extraction buffer, and no 69 kDa variant was evident in the cell. In fact, the levels of Ku86, Ku70 and DNA-end binding activity of Ku remained unchanged during replicative senescence. Thus, this study reveals an intriguing protease in HDFs, and also indicates that inconsistent results of Ku86 expression will be obtained if the protease activity is not completely inhibited.  相似文献   

13.
An acid proteolytic activity has been found in cell culture supernatants from long-term cultivations of hybridoma cells in hollow fibre bioreactors using serum free medium. The proteolytic activity has now been further characterized and the main results were: (1) the proteolytic activity showed a maximum around pH 3 and declined essentially to zero at pH 8; (2) the activity was specifically inhibited by pepstatin A; (3) the acid proteases consisted of two sets of closely spaced bands with apparent molecular weights of 40-45K and 90-105K, respectively; (4) the protease bands (40-45K and 90-105K) were reactive with anti-human cathepsin D; (5) the IEP values of the acid proteases ranged from pH 4.55-6.5. Furthermore, IgG incubation with the acid proteases isolated from hybridoma cells yielded fragments similar to those found in serum-free hollow fibre cell culture supernatants. These results indicated that the IgG fragments are the result of degradation by cathepsin D like proteases released after cell death or cell lysis.  相似文献   

14.
A new protease, detected in an extract of Fasciola hepatica, was isolated and partly purified. The pH optimum for the cleavage of denaturated haemoglobin by the enzyme is pH 3.0. This proteolytic activity is inhibited by diazoacetylnorleucine methyl ester, pepstatin, the pepsin inhibitor from Ascaris suum, and phenylalanine. The cathepsin D inhibitor from potatoes, EDTA, mercaptoethanol and the inorganic salts tested have no inhibitory effect. The cleavage of the B-chain of oxidized insulin by enzyme was studied and compared with the digestion of the same substrate by chicken and pig pepsin. The protease from Fasciola hepatica belongs to the carboxyl group of proteases and probably plays an important role in helminth nutrition.  相似文献   

15.
Summary Human fetal skin fibroblasts (TIG-3S) were found to migrate into a denuded area in a cell monolayer when cultured in both serum-depleted and serum-supplemented media, unlike adult-donor skin fibroblasts which migrated well only when cultured in serum-supplemented medium. Therefore, a series of experiments was carried out to determine whether autocrine factors are involved in their migration. The migration of TIG-3S cells in serum-depleted medium was suppressed by the addition of suramin, a factor with growth factor antagonist properties, which suggests that growth factors are important for cell migration. The suramin-induced inhibition was reversed completely by adding excess basic fibroblast growth factor (bFGF) to the culture medium and partially by platelet-derived growth factor (PDGF). Treatment with neutralizing anti-PDGF antibody did not suppress TIG-3S cell migration, whereas neutralizing anti-bFGF antibody did, which indicates that bFGF is an autocrine and PDGF a paracrine factor involved in cell migration. Next, an experiment was performed to ascertain whether the extracellular matrix is involved in TIG-3S cell migration. Monensin, an inhibitor of extracellular matrix secretion, inhibited cell migration, which was reversed by adding excess type I collagen, but not excess plasma fibronectin. In addition, further evidence for the involvement of collagen was provided by the observation that ethyl-3,4-dihydroxybenzoate, a specific inhibitor of collagen synthesis, suppressed cell migration. These results suggest that the autonomous migration of TIG-3S human fetal skin fibroblasts is mediated by bFGF and type I collagen, which they produce and secrete.  相似文献   

16.
17.
Using a high performance liquid chromatography assay that detects the cleavage of the C-terminal leucine from angiotensin I, we have identified a carboxypeptidase activity in mast cells from human lung and in dispersed mast cell preparations from human skin. The enzyme activity was detected in a preparation of dispersed human mast cells from lung of greater than 99% purity and was released with histamine after stimulation with goat anti-human IgE. In nine preparations of dispersed human mast cells from lung of 10 to 99% purity, net percentage of release of carboxypeptidase correlated with the release of histamine, localizing carboxypeptidase to mast cell secretory granules. The enzyme activity was also detected in preparations of dispersed human mast cells from skin and in extracts of whole skin. The inhibitor profile and m.w. of carboxypeptidase activity from preparations of dispersed mast cells from skin was similar to that from dispersed mast cells from lung. Mast cell carboxypeptidase had a m.w. on gel filtration of 30,000 to 35,000. The enzyme in crude lysates of dispersed mast cell preparations had optimal activity between pH 8.5 and 9.5 and was inhibited by potato inhibitor, which distinguished it from carboxypeptidase in cultured human foreskin keratinocytes and adult fibroblasts, and from other proteolytic mast cell enzymes. The enzyme activity was also inhibited by EDTA, o-phenanthroline, and, to a small extent, by 8-OH quinoline, but not by Captopril, soybean trypsin inhibitor, or pepstatin. These findings demonstrate that human mast cell secretory granules contain carboxypeptidase in addition to tryptase and chymase. It appears that mast cells from skin may have a higher content of carboxypeptidase than do mast cells from lung.  相似文献   

18.
This study demonstrates the presence of boc-Gln-Arg-Arg-MCA cleaving activity in bovine chromaffin granule membranes that resembles yeast Kex2 proteolytic activity. The chromaffin granule boc-Gln-Arg-Arg-MCA cleaving activity, like Kex2 proteolytic activity, shows calcium dependence, optimum activity at pH 7.5-8.2, inhibition by serine protease inhibitors, and preference for cleavage at the COOH-terminal side of Arg-Arg and Lys-Arg, over Lys-Lys, paired basic residues. Potent inhibition by the active-site directed inhibitor [D-Tyr]-Glu-Phe-Lys-Arg-CK (20 microM) provided further evidence for dibasic residue cleavage site specificity. These results are the first report of endogenous mammalian Kex2-like proteolytic activity that may be related to PC1/PC3 and PC2 enzymes, the newly discovered mammalian homologues of Kex2 protease. It will be important to determine the role of this Kex2-like proteolytic activity in processing the precursors of adrenal medullary neuropeptides.  相似文献   

19.
The basis for the glucocorticoid-mediated decrease in tissue collagen was studied in mouse granulomas and in primary granuloma fibroblast cultures. Injection of mice for 12 days with dexamethasone (0.35 mg/kg body weight) resulted in a 50--70% inhibition of collagen synthesis and accumulation in polyvinyl sponge-induced granulomas whereas total protein synthesis was inhibited by only about 25%. The decreased collagen content of the granuloma was accounted for by both a reduced fibroblast number and diminished synthesis per cell. Growth rates, total protein synthesis and collagen synthesis were the same in granuloma fibroblast cultures derived from control or steroid-treated mice. However, addition of 3.10(-7) M hydrocortisone to the culture medium caused a 30--50% inhibition of both collagen and non-collagen protein synthesis in firbroblasts from either source. These inhibitory effects were dose- and time-dependent with a lag time of 12--24 h. Prolyl hydroxylase activity was reduced both in sponge granulomas from glucocorticoid-treated mice and in hydrocortisone-treated fibroblast cultures. However, protein synthesis was inhibited to the same extent as the inhibition of prolyl hydroxylase activity and there was no effect on peptidyl prolyl hydroxylation. These results indicate that the glucocorticoid-induced reduction of collagen synthesis and accumulation observed in mouse granulomas and primary granuloma fibroblast cultures is not specific for this protein. Furthermore, glucocorticoid-induced inhibition of collagen synthesis cannot be attributed to underhydroxylation of collagen prolyl residues.  相似文献   

20.
Gelatin zymography revealed the presence of proteolytic activity in conditioned medium (CM) from a serum-free, non-infected Spodoptera frugiperda, Sf9 insect cell culture. Two peptidase bands at about 49 and 39 kDa were detected and found to be proform and active form of the same enzyme. The 49-kDa form was visible on zymogram gels in samples of CM taken on days 4 and 5 of an Sf9 culture, while the 39-kDa form was seen on days 6 and 7. On basis of the inhibitor profile and substrate range, the enzyme was identified as an Sf9 homologue of cathepsin L, a papain-like cysteine peptidase. After lowering the pH of Sf9 CM to 3.5, an additional peptidase band at 22 kDa appeared. This peptidase showed the same inhibitor profile, substrate range and optimum pH (5.0) as the 39-kDa form, indicating that Sf9 cathepsin L has two active forms, at 39 and 22 kDa. Addition of the cysteine peptidase inhibitor E-64c to an Sf9 culture inhibited all proteolytic activities of Sf9 cathepsin L but did not influence the proliferation of Sf9 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号