首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

2.
Most Robertsonian translocations are dicentric, suggesting that the location of chromosomal breaks leading to their formation occur in the acrocentric short arm. Previous cytogenetic and molecular cytogenetic studies have shown that few Robertsonian translocations retain ribosomal genes or beta-satellite DNA. Breakpoints in satellite III DNA, specifically between two chromosome 14-specific subfamilies, pTRS-47 and pTRS-63, have been indicated for most of the dicentric 14q21q and 13q14q translocations that have been studied. We have analyzed the structure of 36 dicentric translocations, using several repetitive DNA probes that localize to the acrocentric short arm. The majority of the translocations retained satellite III DNA, while others proved variable in structure. Of 10 14q21q translocations analyzed, satellite III DNA was undetected in 1; 6 retained one satellite III DNA subfamily, pTRS-47; and 3 appeared to contain two 14-specific satellite III DNA sub-families, pTRS-47 and pTRS-63. In 10/11 translocations involving chromosome 15, the presence of satellite III DNA was observed. Our results show that various regions of the acrocentric short arm, and, particularly, satellite III DNA sequences, are involved in the formation of Robertsonian translocations.  相似文献   

3.
We describe a new subfamily of satellite III DNA (pTRS-63), which, by a combination of in situ hybridization to human metaphase chromosomes and analysis of a panel of somatic cell hybrids, is shown to be specific for human chromosome 14. This DNA has a basic 5-bp repeating unit of diverged GGAAT which is tandemly repeated and organized into either one of two distinct higher-order structures of 5 kb (designated the "L" form) or 4.8 kb (designated the "S" form). In addition, a third (Z) form, representing no detectable levels of this satellite III subfamily, is found. Results from five somatic cell hybrid lines and from a number of informative human individuals suggest that, on any one chromosome 14, only one of the three forms may exist. Subchromosomally, this sequence has been mapped to the p11 region and is distal to the domain occupied by another previously described satellite III subfamily (pTRS-47) found on chromosome 14. The pTRS-63 sequence described adds to the understanding of the structural organization of the short arm of human chromosome 14 and should be useful for the investigation of the molecular etiology of the frequently occurring t(13q14q) and t(14q21q) Robertsonian translocations.  相似文献   

4.
Unbalanced whole-arm translocations (WATs) of the long arm of chromosome 1, resulting in complete trisomy 1q, are chromosomal abnormalities detectable in both solid tumors and hematologic neoplasms. Among the WATs of 1q to acrocentric chromosomes, a few patients with der(1;15) described as a dicentric chromosome have been reported so far, whereas cases of der(1;14) are much rarer. We report on a case of der(1;14) detected as single anomaly in a patient with myelodysplastic syndrome. The aim of our work was to investigate the breakpoints of the (1;14) translocation leading to the der(1;14). Fluorescence in situ hybridization (FISH) experiments have been performed on chromosome preparations from bone marrow aspirate, using specific centromeric probes of both chromosomes, as well as a probe mapping to 1q11 band. FISH results showed that in our patient the derivative chromosome was monocentric with a unique centromere derived from chromosome 14. The breakpoints of the translocation were located in the short arm of chromosome 14 and in the long arm of chromosome 1, between the alphoid D1Z5 and the satellite II domains. The 1q breakpoint was within the pericentromeric region of chromosome 1, which is notoriously an unstable chromosomal region, involved in different chromosomal rearrangements.  相似文献   

5.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

6.
Genomic single-copy DNA fragments were used to characterize an undetected chromosome translocation in an individual whose metaphase chromosome analysis revealed apparent monosomy 21. Eight RFLPs detected by six probes were used to identify homologous sequences from chromosome 21 in DNA digests from the proband and her parents. These family studies showed that the proband was disomic for the distal region of 21q. Reverse banding and in situ hybridization of chromosome 21-specific probes to metaphase chromosomes from the proband revealed a de novo translocation with breakpoints at 5p13 or 14 and 21q11 or 21. In situ hybridization permitted orientation of the translocated portion of chromosome 21 on the derivative chromosome 5 and, in conjunction with molecular analysis and previous mapping studies, refined the physical map for the long arm of chromosome 21.  相似文献   

7.
To isolate DNA sequences unique to chromosome 21 we have used a recombinant-DNA library, constructed from a mouse-human somatic-cell hybrid line containing chromosome 21 as the only human chromosome. Individual recombinant phage containing human DNA inserts were identified by their hybridization to total human DNA sequences and by their failure to hybridize to total mouse DNA sequences. A repeat-free human DNA fragment was then subcloned from each of 14 such recombinant phage. An independent somatic-cell hybrid was used to assign all 14 subcloned fragments to chromosome 21. Thirteen of the fragments have been regionally mapped using a somatic-cell hybrid containing a human 21 translocation chromosome. Two probes map proximal to the 21q21.2 translocation breakpoint, and 11 probes map distal to this breakpoint, placing them in the region 21q21.2-21q22. One of seven probes used to screen for restriction-fragment-length polymorphisms recognized polymorphic DNA fragments when hybridized to genomic DNA from unrelated individuals. These 14 unique probes provide useful tools for studying the structure and function of human chromosome 21 as well as for investigating the molecular biology of Down syndrome.  相似文献   

8.
Fluorescent in situ hybridization (FISH) was employed in mapping the alpha-satellite DNA that was revealed in the cosmid libraries specific for human chromosomes 13, 21, and 22. In total, 131 clones were revealed. They contained various elements of centromeric alphoid DNA sequences of acrocentric chromosomes, including those located close to SINEs, LINEs, and classical satellite sequences. The heterochromatin of acrocentric chromosomes was shown to contain two different groups of alphoid sequences: (1) those immediately adjacent to the centromeric regions (alpha 13-1, alpha 21-1, and alpha 22-1 loci) and (2) those located in the short arm of acrocentric chromosomes (alpha 13-2, alpha 21-2, and alpha 22-2 loci). Alphoid DNA sequences from the alpha 13-2, alpha 21-2, and alpha 22-2 loci are apparently not involved in the formation of centromeres and are absent from mitotically stable marker chromosomes with a deleted short arm. Robertsonian translocations t(13q; 21q) and t(14q; 22q), and chromosome 21p-. The heterochromatic regions of chromosomes 13, 21, and 22 were also shown to contain relatively chromosome-specific repetitive sequences of various alphoid DNA families, whose numerous copies occur in other chromosomes. Pools of centromeric alphoid cosmids can be of use in further studies of the structural and functional properties of heterochromatic DNA and the identification of centromeric sequences. Moreover, these clones can be employed in high-resolution mapping and in sequencing the heterochromatic regions of the human genome. The detailed FISH analysis of numerous alphoid cosmid clones allowed the identification of several new, highly specific DNA probes of molecular cytogenetic studies--in particular, the interphase and metaphase analyses of chromosomes 2, 9, 11, 14, 15, 16, 18, 20, 21-13, 22-14, and X.  相似文献   

9.
Human T cell tumours have few consistently occurring translocations which provide markers for this disease. The translocation t(11;14)(p13;q11), however, seems to be an exception, since it has been repeatedly observed in T-ALL. We have analysed a number of T-ALL samples carrying the t(11;14) with a view to assessing the nature of the translocated sequences on chromosomes 11 and 14. Three of the tumours studied have breakpoints, at 14q11, within the T cell receptor delta chain locus, while a fourth appears to break in the J alpha region. The TCR delta sequences involved in the translocation junctions are made from D delta-D delta-J delta joins or from D delta-D delta joins, allowing us to define distinct human D delta and J delta segments. These results allow us to make a comparison between the human and mouse TCR delta loci, both as regards sequence and rearrangement hierarchies. The disparate translocation breakpoints at chromosome 14q11 contrast with the marked clustering of breaks at chromosome 11p13; in all four cases, the breakpoint occurs within a region of less than 0.8 kb of chromosome 11. The analysis of junctional sequences at the 11p13 breakpoint cluster region only shows a consensus heptamer-like sequence in one out of four tumours analysed. Therefore, recombinase-mediated sequence specific recognition is not the only cause of chromosomal translocation.  相似文献   

10.
A Spanish family has previously been described with two siblings with dup(21q) Down syndrome. The father has a normal karyotype. The mother has a microchromosome. Cytogenetic, fluorescence in situ hybridization and DNA studies have now been carried out on the family. Findings include that the mother has three different chromosome anomalies, viz. (1) a chromosome 22 with an unusual pericentromeric region that contains alphoid DNA from chromosomes 21/13 and chromosome 22, (2) an isochromosome 21p in the frequent cell line and (3) an isochromosome 21q in a rare second cell line. A possible explanation is that the mother developed from a zygote with trisomy 21 and that mitotic error in early development resulted in the formation of two cell lines with karyotypes of 47,XX,+i(21p) and 47,XX,+i(21q), respectively. The unusual chromosome 22 represents a hitherto undescribed chromosome anomaly and one possible explanation is a translocation of the short arms between chromosomes 21/13 and 22 in the ancestry of the family. The relationship between the unusual chromosome 22 and the isochromosome formation in the mother is not known. However, all three chromosome anomalies involve the alphoid DNA of chromosome 21/13, indicating that this is not a chance finding.  相似文献   

11.
A strategy for the isolation of DNA probes from small numbers of flow-sorted human chromosomes has been developed. A lymphoblastoid cell line carrying the 22q- derivative chromosome product of the constitutional t(11;22) translocation was used as the source of chromosomes. Synthetic oligonucleotide primers, based on the consensus Alu sequence, were used to amplify inter-Alu sequence from 500 flow-sorted 22q- derivative chromosomes. The amplified sequences were cloned into a plasmid vector by blunt-end ligation, yielding clones with inserts in the range of 400 to 1000 bp. Approximately 70% of these clones hybridized to human DNA as single-copy probes. To identify clones derived from chromosome 11, the library was screened with a heterogeneous probe prepared by Alu-PCR amplification from the DNA of a somatic cell hybrid containing one homology of chromosome 11. All the positive clones found were mapped to within the q23-q25 region of chromosome 11 known to be translocated onto the 22q- derivative chromosome. Further mapping studies showed that most of these probes (7/8) lay between the breakpoints for the t(4;11) translocation of acute lymphocytic leukemia and the t(11;22) of Ewing sarcoma. Thus, the use of Alu-PCR on the small derivative chromosome 22q- has provided a greatly enriched source of probes to region 11q23, a part of the genome that is currently of great interest. This approach will be particularly appropriate to small numbers of chromosomes when high specificity rather than total representation is required.  相似文献   

12.
Translocation t(11;22)(q23;q11) is the most common constitutional reciprocal translocation in man. Balanced carriers are phenotypically normal, except for decreased fertility, an increased spontaneous abortion rate and a possible predisposition to breast cancer in some families. Here, we report the high resolution mapping of the t(11;22)(q23;q11) breakpoint. We have localised the breakpoint, by using fluorescence in situ hybidisation (FISH) walking, to a region between D11S1340 and WI-8564 on chromosome 11, and D22S134 and D22S264 on chromosome 22. We report the isolation of a bacterial artificial chromosome (BAC) clone spanning the breakpoint in 11q23. We have narrowed down the breakpoint to an 80-kb sequenced region on chromosome 11 and FISH analysis has revealed a variation of the breakpoint position between patients. In 22q11, we have sequenced two BACs (BAC2280L11 and BAC41C4) apparently mapping to the region; these contain low copy repeats (LCRs). Southern blot analysis with probes from BAC2280L11 has revealed different patterns between normal controls and translocation carriers, indicating that sequences similar/identical to these probes flank the translocation breakpoint. The occurrence of LCRs has previously been associated with genomic instability and "unclonable" regions. Hence, the presence of such repeats renders standard translocation breakpoint cloning techniques ineffective. Thus, we have used high resolution fiber-FISH to study this region in normal and translocation cases by using probes from 22q11, LCRs and 11q23. We demonstrate that the LCR containing the gap in 22q11 is probably substantially larger than the previous estimates of 100 kb. Using fiber-FISH, we have localised the breakpoint in 22q11 to approximately 20-40 kb from the centromeric border of the LCR (i.e. the telomeric end of AC006547) and have confirmed the breakpoint position on 11q23.  相似文献   

13.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

14.
We characterized 21 t(13;14) and 3 t(14;21) Robertsonian translocations for the presence of DNA derived from the short arms of the translocated acrocentric chromosomes and identified their centromeres. Nineteen of these 24 translocation carriers were unrelated. Using centromeric alpha-repeat DNA as chromosome-specific probe, we found by in situ hybridization that all 24 translocation chromosomes were dicentric. The chromatin between the two centomeres did not stain with silver, and no hybridization signal was detected with probes for rDNA or beta-satellite DNA that flank the distal and proximal ends of the rDNA region on the short arm of the acrocentrics. By contrast, all 24 translocation chromosomes gave a distinct hybridization signal when satellite III DNA was used as probe. This result strongly suggests that the chromosomal rearrangements leading to Robertsonian translocations occur preferentially in satellite III DNA. We hypothesize that guanine-rich satellite III repeats may promote chromosomal recombination by formation of tetraplex structures. The findings localize satellite III DNA to the short arm of the acrocentric chromosomes distal to centromeric alpha-repeat DNA and proximal to beta-satellite DNA.  相似文献   

15.
A combination of Southern blot analysis on a panel of tumor-derived somatic cell hybrids and fluorescence in situ hybridization (FISH) techniques was used to map a series of DNA markers relative to the 1q21 breakpoint of the renal cell carcinoma (RCC)-associated (X;1)(p11;q21) translocation. This breakpoint maps between several members of the S100 family which are clustered in the 1q21 region and a conserved region between man and mouse containing the markers SPTA1-CRP-APCS-FcER1A-ATP1A2-APOA2. The location of the breakpoint coincides with the transition of a region of synteny of human chromosome 1 with mouse chromosomes 3 and 1. Received: 10 November 1995 / Revised: 3 February 1996  相似文献   

16.
17.
Alphoid and satellite III sequences are arranged as large tandem arrays in the centromeric regions of human chromosomes. Several recent studies using in situ hybridisation to investigate the relative positions of these sequences have shown that they occupy adjacent but non-overlapping domains in metaphase chromosomes. We have analysed the DNA sequence at the junction between alphoid and satellite III sequences in a cosmid previously mapped to chromosome 10. The alphoid sequence consists of tandemly arranged dimers which are distinct from the known chromosome 10-specific alphoid family. Polymerase chain reaction experiments confirm the integrity of the sequence data. These results, together with pulsed field gel electrophoresis data place the boundary between alphoid and satellite III sequences in the mapping interval 10 centromere-10q11.2. The sequence data shows that these repetitive sequences are separated by a partial L1 interspersed repeat sequence less than 500bp in length. The arrangement of the junction suggests that a recombination event has brought these sequences into close proximity.  相似文献   

18.
We have assigned six polymorphic DNA segments to chromosomal subregions and have established the physical order of these sequences on the long arm of chromosome 21 by in situ hybridization of cloned probes to normal metaphase chromosomes and chromosomes 21 from individuals with three different structural rearrangements: an interstitial deletion, a ring chromosome, and a reciprocal translocation involving four different breakpoints in band 21q22. Segments D21S1 and D21S11 map to region 21q11.2----q21, D21S8 to 21q21.1----q22.11, and D21S54 to 21q21.3----q22.11; D21S23 and D21S25 are both in the terminal subband 21q22.3, but they are separated by a chromosomal breakpoint in a ring 21 chromosome, a finding that places D21S23 proximal to D21S25. The physical map order D21S1/D21S11-D21S8-D21S54-D21S23-D21S25 agrees with the linkage map, but genetic distances are disproportionately larger toward the distal end of 21q.  相似文献   

19.
We report on two unrelated cases of pericentric inversion 46,XY,inv(7)(p11q21.1) associated with distinct pattern of malformation including mental retardation, development delay, ectrodactyly, facial dismorphism, high arched palate. Additionally, one case was found to be characterized by mesodermal dysplasia. Cytogenetic analysis of the families indicated that one case was a paternally inherited inversion whereas another case was a maternally inherited one. Molecular cytogenetic studies have shown paternal inversion to have a breakpoint within centromeric heterochromatin being the cause of alphoid DNA loss. Maternal inversion was also associated with a breakpoint within centromeric heterochromatin as well as inverted euchromatic chromosome region flanked by two disrupted alphoid DNA blocks. Basing on molecular cytogenetic data we hypothesize the differences of clinical manifestations to be produced by a position effect due to localization of breakpoints within variable centromeric heterochromatin and, alternatively, due to differences in the location breakpoints, disrupteding different genes within region 7q21-q22. Our results reconfirm previous linkage analyses suggested 7q21-q22 as a locus of ectrodactily and propose inv (7)(p11q21.1) as a cause of recognizable pattern of malformations or a new chromosomal syndrome.  相似文献   

20.
The breakpoint regions of both translocation products of the (9;22) Philadelphia translocation of CML patient 83-H84 and their normal chromosome 9 and 22 counterparts have been cloned and analysed. Southern blotting with bcr probes and DNA sequencing revealed that the breaks on chromosome 22 occurred 3' of bcr exon b3 and that the 88 nucleotides between the breakpoints in the chromosome 22 bcr region were deleted. Besides this small deletion of chromosome 22 sequences a large deletion of chromosome 9 sequences (greater than 70 kb) was observed. The chromosome 9 sequences remaining on the 9q+ chromosome (9q+ breakpoint) are located at least 100 kb upstream of the v-abl homologous c-abl exons whereas the translocated chromosome 9 sequences (22q-breakpoint) could be mapped 30 kb upstream of these c-abl sequences. The breakpoints were situated in Alu-repetitive sequences either on chromosome 22 or on chromosome 9, strengthening the hypothesis that Alu-repetitive sequences can be hot spots for recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号