首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ATM (ataxia telangiectasia mutated) gene product has been implicated in mitogenic signal transduction, chromosome condensation, meiotic recombination, and cell cycle control. The human ATM protein shows similarity to several yeast and mammalian proteins involved in meiotic recombination and cell cycle progression. Because of the homology of the human ATM gene to the TEL1 and rad3 genes of yeast, it has been suggested that mutations in ATM could lead to defective telomere maintenance. Recently, we have shown that the ATM gene product, which is defective in the cancer-prone disorder ataxia telangiectasia (AT), influences chromosome end associations and telomere length. A possible hypothesis explaining these results is that the defective telomere metabolism in AT cells is due to altered interactions between the telomeres and the nuclear matrix. These interactions were examined in nuclear matrix halos prior to and after irradiation. A difference was observed in the ratio of soluble and matrix-associated telomeric DNA between cells derived from AT and normal individuals. Treatment with ionizing radiation affected the ratio of soluble and matrix-associated telomeric DNA only in the AT cells. To test the hypothesis that the ATM gene product is involved in interactions between telomeres and the nuclear matrix, such interactions were examined in human cells expressing either a dominant-negative effect or complementation of the ATM gene. The phenotype of RKO colorectal tumor cells expressing ATM fragments containing a leucine zipper motif mimics the altered interactions of telomere and nuclear matrix seen in AT cells. Fibroblasts from AT individuals transfected with a wild-type ATM gene had corrected telomere-nuclear matrix interactions. In experiments designed to determine whether there is a link between the altered telomere-nuclear matrix interactions and defective telomere movement and clustering, a significant difference was observed in the ratio of soluble compared to matrix-associated telomeric DNA sequences in meiocytes of Atm(-/-) and control mice. These results suggest that the ATM gene influences the interactions between telomeres and the nuclear matrix and that alterations in telomere chromatin could be at least partly responsible for the pleiotropic phenotypes of the ATM gene. This paper summarizes our recent publications on the influence of inactivation of ATM on the interaction of telomeres with nuclear matrix in somatic and germ cells.  相似文献   

3.
The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families.  相似文献   

4.
5.
6.
Ataxia telangiectasia–mutated gene (ATM) is a 350-kDa protein whose function is defective in the autosomal recessive disorder ataxia telangiectasia (AT). Affinity-purified polyclonal antibodies were used to characterize ATM. Steady-state levels of ATM protein varied from undetectable in most AT cell lines to highly expressed in HeLa, U2OS, and normal human fibroblasts. Subcellular fractionation showed that ATM is predominantly a nuclear protein associated with the chromatin and nuclear matrix. ATM protein levels remained constant throughout the cell cycle and did not change in response to serum stimulation. Ionizing radiation had no significant effect on either the expression or distribution of ATM. ATM immunoprecipitates from HeLa cells and the human DNA-dependent protein kinase null cell line MO59J, but not from AT cells, phosphorylated the 34-kDa subunit of replication protein A (RPA) complex in a single-stranded and linear double-stranded DNA–dependent manner. Phosphorylation of p34 RPA occurred on threonine and serine residues. Phosphopeptide analysis demonstrates that the ATM-associated protein kinase phosphorylates p34 RPA on similar residues observed in vivo. The DNA-dependent protein kinase activity observed for ATM immunocomplexes, along with the association of ATM with chromatin, suggests that DNA damage can induce ATM or a stably associated protein kinase to phosphorylate proteins in the DNA damage response pathway.  相似文献   

7.
The defining characteristic of recessive disorders is the absence of disease in heterozygous carriers of the mutant alleles. However, it has been recognized that recessive carriers may differ from noncarriers in some phenotypes. Here, we studied ataxia telangiectasia (AT), a classical recessive disorder caused by mutations in the ataxia telangiectasia mutated (ATM) gene. We compared the gene and microRNA expression phenotypes of noncarriers, AT carriers who have one copy of the ATM mutations, and AT patients with two copies of ATM mutations. We found that some phenotypes are more similar between noncarriers and AT carriers compared to AT patients, as expected for a recessive disorder. However, for some expression phenotypes, AT carriers are more similar to the patients than to the noncarriers. Analysis of one of these expression phenotypes, TNFSF4 level, allowed us to uncover a regulatory pathway where ATM regulates TNFSF4 expression through MIRN125B (also known as miR-125b or miR125b) [corrected] In AT carriers and AT patients, this pathway is disrupted. As a result, the level of MIRN125B is lower and the level of its target gene, TNFSF4, is higher than in noncarriers. A decreased level of MIRN125B is associated with breast cancer, and an elevated level of TNFSF4 is associated with atherosclerosis. Thus, our findings provide a mechanistic suggestion for the increased risk of breast cancer and heart disease in AT carriers. By integrating molecular and computational analyses of gene and microRNA expression, we show the complex consequences of a human gene mutation.  相似文献   

8.
Gorodetsky E  Calkins S  Ahn J  Brooks PJ 《DNA Repair》2007,6(11):1698-1707
The genetic disease ataxia telangiectasia (AT) results from mutations in the ataxia telangiectasia mutated (ATM) gene. AT patients develop a progressive degeneration of cerebellar Purkinje neurons. Surprisingly, while ATM plays a criticial role in the cellular reponse to DNA damage, previous studies have localized ATM to the cytoplasm of rodent and human Purkinje neurons. Here we show that ATM is primarily localized to the nucleus in cerebellar Purkinje neurons in postmortem human brain tissue samples, although some light cytoplasmic ATM staining was also observed. No ATM staining was observed in brain tissue samples from AT patients, verifying the specificity of the antibody. We also found that antibodies against components of the Mre11/Rad50/Nbs1 (MRN) complex showed strong staining in Purkinje cell nuclei. However, while ATM is present in both the nucleoplasm and nucleolus, MRN proteins are excluded from the nucleolus. We also observed very high levels of topoisomerase 1 (TOP1) in the nucleus, and specifically the nucleolus, of human Purkinje neurons. Our results have direct implications for understanding the mechanisms of neurodegeneration in AT and AT-like disorder.  相似文献   

9.
Approximately 0.5%-1% of the general population has been estimated to be heterozygous for a germline mutation in the ATM gene. Mutations in the ATM gene are responsible for the autosomal recessive disorder ataxia-telangiectasia (A-T) (MIM 208900). The finding that ATM-heterozygotes have an increased relative risk for breast cancer was supported by some studies but not confirmed by others. In view of this discrepancy, we examined the frequency of ATM germline mutations in a selected group of Dutch patients with breast cancer. We have analyzed ATM germline mutations in normal blood lymphocytes, using the protein-truncation test followed by genomic-sequence analysis. A high percentage of ATM germline mutations was demonstrated among patients with sporadic breast cancer. The 82 patients included in this study had developed breast cancer at age <45 and had survived >/=5 years (mean 15 years), and in 33 (40%) of the patients a contralateral breast tumor had been diagnosed. Among these patients we identified seven (8.5%) ATM germline mutations, of which five are distinct. One splice-site mutation (IVS10-6T-->G) was detected three times in our series. Four heterozygous carriers were patients with bilateral breast cancer. Our results indicate that the mutations identified in this study are "A-T disease-causing" mutations that might be associated with an increased risk of breast cancer in heterozygotes. We conclude that ATM heterozygotes have an approximately ninefold-increased risk of developing a type of breast cancer characterized by frequent bilateral occurrence, early age at onset, and long-term survival. The specific characteristics of our population of patients may explain why such a high frequency was not found in other series.  相似文献   

10.
Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.  相似文献   

11.
12.
13.
Cells derived from ataxia telangiectasia (A-T) patients show a prominent defect at chromosome ends in the form of chromosome end-to-end associations, also known as telomeric associations, seen at G(1), G(2), and metaphase. Recently, we have shown that the ATM gene product, which is defective in the cancer-prone disorder A-T, influences chromosome end associations and telomere length. A possible hypothesis explaining these results is that the defective telomere metabolism in A-T cells are due to altered interactions between the telomeres and the nuclear matrix. We examined these interactions in nuclear matrix halos before and after radiation treatment. A difference was observed in the ratio of soluble versus matrix-associated telomeric DNA between cells derived from A-T and normal individuals. Ionizing radiation treatment affected the ratio of soluble versus matrix-associated telomeric DNA only in the A-T cells. To test the hypothesis that the ATM gene product is involved in interactions between telomeres and the nuclear matrix, we examined such interactions in human cells expressing either a dominant-negative effect or complementation of the ATM gene. The phenotype of RKO colorectal tumor cells expressing ATM fragments containing a leucine zipper motif mimics the altered interactions of telomere and nuclear matrix similar to that of A-T cells. A-T fibroblasts transfected with wild-type ATM gene had corrected telomere-nuclear matrix interactions. Further, we found that A-T cells had different micrococcal nuclease digestion patterns compared to normal cells before and after irradiation, indicating differences in nucleosomal periodicity in telomeres. These results suggest that the ATM gene influences the interactions between telomeres and the nuclear matrix, and alterations in telomere chromatin could be at least partly responsible for the pleiotropic phenotypes of the ATM gene.  相似文献   

14.
Angèle S  Hall J 《Mutation research》2000,462(2-3):167-178
The genetic determinants for most breast cancer cases remain elusive. Whilst mutations in BRCA1 and BRCA2 significantly contribute to familial breast cancer risk, their contribution to sporadic breast cancer is low. In such cases genes frequently altered in the general population, such as the gene mutated in Ataxia telangiectasia (AT), ATM may be important risk factors. The initial interest in studying ATM heterozygosity in breast cancer arose from the findings of epidemiological studies of AT families in which AT heterozygote women had an increased risk of breast cancer and estimations that 1% of the population are AT heterozygotes. One of the clinical features of AT patients is extreme cellular sensitivity to ionising radiation. This observation, together with the finding that a significant proportion of breast cancer patients show an exaggerated acute or late normal tissue reactions after radiotherapy, has lead to the suggestion that AT heterozygosity plays a role in radiosensitivity and breast cancer development. Loss of heterozygosity in the region of the ATM gene on chromosome 11, has been found in about 40% of sporadic breast tumours. However, screening for ATM mutations in sporadic breast cancer cases, showing or not adverse effects to radiotherapy, has not revealed the magnitude of involvement of the ATM gene expected. Their size and the use of the protein truncation test to identify mutations limit many of these studies. This latter parameter is critical as the profile of mutations in AT patients may not be representative of the ATM mutations in other diseases. The potential role of rare sequence variants within the ATM gene, sometimes reported as polymorphisms, also needs to be fully assessed in larger cohorts of breast cancer patients and controls in order to determine whether they represent cancer and/or radiation sensitivity predisposing mutations.  相似文献   

15.
Apoptosis is usually characterized by profound morphological nuclear changes. Chromatin undergoes a progressive condensation that eventually involves all the nucleus. At earlier stages chromatin appears as divided in compact and diffuse areas, while the nuclear pores disappear from the nuclear envelope that surrounds the compact areas, and cluster around diffuse chromatin. Here we have performed a morphometric study on the different chromatin areas of freeze-fractured apoptotic cell nuclei in order to investigate its morphometric and functional organization. We have found large portions of inactive chromatin aggregations corresponding to the dense cap-shaped patches, while domains of nucleosomic fibres have been identified in the diffuse chromatin areas. The correlation of the nucleosomic fibre/diffuse chromatin domain with the nuclear pore clusters is demonstrated, and its implications with a possible residual nuclear activity are discussed.  相似文献   

16.
17.
The ATM protein kinase regulates the response of the cell to DNA damage by associating with and then phosphorylating proteins involved in cell cycle checkpoints and DNA repair. Here, we report on deletion studies designed to identify protein domains required for ATM to phosphorylate target proteins and to control cell survival following exposure to ionizing radiation. Deletion studies demonstrated that amino acids 1-150 of ATM were required for the ATM protein to regulate cellular radiosensitivity. Additional deletions and point mutations indicated that this domain extended from amino acids 81-106 of ATM, with amino acid substitutions located between amino acids 91 and 97 inactivating the functional activity of ATM. When ATM with mutations in this region (termed ATM90) was expressed in AT cells, it was unable to restore normal radiosensitivity to the cells. However, ATM90 retained normal kinase activity and was autophosphorylated on serine 1981 following exposure to DNA damage. Furthermore, wild-type ATM displayed DNA-damage induced association with p53, brca1, and LKB1 in vivo, whereas ATM90 failed to form productive complexes with these target proteins either in vivo or in vitro. Furthermore, ATM90 did not phosphorylate p53 in vivo and did not form nuclear foci in response to ionizing radiation. We propose that amino acids 91-97 of ATM contain a protein interaction domain required for the DNA damage-induced association between ATM and its target proteins, including the brca1, p53, and LKB1 proteins. Furthermore, this domain of ATM is required for ATM to form nuclear foci following exposure to ionizing radiation.  相似文献   

18.
During apoptotic execution, chromatin undergoes a phase change from a heterogeneous, genetically active network to an inert highly condensed form that is fragmented and packaged into apoptotic bodies. We have previously used a cell-free system to examine the roles of caspases or other proteases in apoptotic chromatin condensation and nuclear disassembly. But so far, the role of DNase activity or ATP hydrolysis in this system has not yet been elucidated. Here, in order to better define the stages of nuclear disassembly in apoptosis, we have characterized the apoptotic condensation using a cell-free system and time-lapse imaging. We demonstrated that the population of nuclei undergoing apoptosis in vitro appears to follow a reproducible program of nuclear condensation, suggesting the existence of an ordered biochemical pathway. This enabled us to define three stages of apoptotic chromatin condensation: stage 1 ring condensation; stage 2 necklace condensation; and stage 3 nuclear collapse/disassembly. Electron microscopy revealed that neither chromatin nor detectable subnuclear structures were present inside the stage 1 ring-condensed structures. DNase activity was not essential for stage 1 ring condensation, which could occur in apoptotic extracts depleted of all detectable DNase activity. However, DNase(s) were required for stage 2 necklace condensation. Finally, we demonstrated that hydrolyzable ATP is required for stage 3 nuclear collapse/disassembly. This requirement for ATP hydrolysis further distinguished stage 2 from stage 3. Together, these experiments provide the first steps towards a systematic biochemical characterization of chromatin condensation during apoptosis.  相似文献   

19.
Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.  相似文献   

20.
Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases δ and , is involved in DNA replication as well as in diverse DNA repair pathways. In quiescent cells, UV light-induced bulky DNA damage triggers the transition of PCNA from a soluble to an insoluble chromatin-bound form, which is intimately associated with the repair synthesis by polymerases δ and . In this study, we investigated the efficiency of PCNA complex formation in response to ionizing radiation-induced DNA strand breaks in normal and radiation-sensitive Ataxia telangiectasia (AT) cells by immunofluorescence and western blot techniques. Exposure of normal cells to γ-rays rapidly triggered the formation of PCNA foci in a dose-dependent manner in the nuclei and the PCNA foci (40–45%) co-localized with sites of repair synthesis detected by bromodeoxyuridine labeling. The chromatin-bound PCNA gradually declined with increasing post-irradiation times and almost reached the level of unirradiated cells by 6 h. The PCNA foci formed after γ-irradiation was resistant to high salt extraction and the chromatin association of PCNA was lost after DNase I digestion. Interestingly, two radiosensitive primary fibroblast cell lines, derived from AT patients harboring homozygous mutations in the ATM gene, displayed an efficient PCNA redistribution after γ-irradiation. We also analyzed the PCNA complex induced by a radiomimetic agent, Bleomycin (BLM), which produces predominantly single- and double-strand DNA breaks. The efficiency and the time course of PCNA complex induced by BLM were identical in both normal and AT cells. Our study demonstrates for the first time that the ATM gene product is not required for PCNA complex assembly in response to DNA strand breaks. Additionally, we observed an increased interaction of PCNA with the Ku70 and Ku80 heterodimer after DNA damage, suggestive of a role for PCNA in the non-homologous end-joining repair pathway of DNA strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号