首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed cultures of the cellulolytic fungus Trichoderma harzianum with the anaerobic diazotroph Clostridium butyricum were shown to co-operatively degrade cellulose and utilize the degradation products for N2 fixation. Cellulose degradation and N2 fixation were stimulated by small (0.1 mg/ml) additions of (NH4)2SO4. The (NH42SO4 stimulates cellulolysis thereby increasing the supply of cellulose degradation products to the diazotroph. In aerobic environments the anaerobe depends on the respiration of the aerobe to create anaerobic microsites. The N source increased O2 uptake by the fungus increasing the number of sites suitable for the development of the anaerobe. Stimulation in the growth of T. harzianum by (NH42SO4 resulted in increased growth and N2 fixation by Cl. butyricum.  相似文献   

2.
Abstract— The fatty acid composition of cerebrosides, sulphatides and ceramides has been determined at 20 days postpartum in the brains of Quaking mutant mice and of littermate controls. There was a significant deficit in the proportion of long-chain fatty acids (C22-C24) affecting both normal and a-hydroxy fatty acids of the cerebrosides. The proportion of normal but not the a-hydroxy long-chain fatty acids of the sulphatides was also decreased. Striking and disproportionate deficits of the C24:1 and C24 h:1 fatty acids of cerebrosides, sulphatides and ceramides characterized the brain of the Quaking mutant, and an increased proportion of C23 h:O fatty acid was found in the cerebrosides and sulphatides of the brain of this mutant. We compared these data with findings on the Jimpy mutant which has been examined by the same techniques. The deficiency of long-chain fatty acids which was found in the cerebrosides and sulphatides of both mutants was less extensive but more selective in the Quaking mutant.  相似文献   

3.
A total of 46 populations belonging to the genus Coincya Ruoy (Brassicaceae) from the Iberian Peninsula was examined for their wax ester fatty acids composition. Size of ester fatty acids in the genus Coincya varies between 14 and 28 carbon atoms. This series is dominated by acids with an even number of carbon atoms. The most abundant acids are Ojg, C^y, C^^o and C26 among evens and C17 and C21 among odds. A positive correlation was observed between chemical composition and environmental adaptation, and also with certain morphological characters. Changes relate to low temperatures or to high relative humidity, and there is a positive correlation between chemical composition and leaf glaucousness.  相似文献   

4.
Abstract Enrichment cultures from marine sediments mineralized benzene while using sulfate as the terminal electron acceptor. Parallel cultures using river marsh sediment displayed no activity. Mineralization was confirmed by release of 14CO2 from radiolabeled benzene. The dependence on sulfate reduction was demonstrated by stoichiometric balances and the use of specific inhibitors. This work supports recent observations that anaerobic benzene degradation takes place coupled to sulfate reduction.  相似文献   

5.
Anaerobic benzene degradation is an important process in contaminated aquifers but is poorly understood due to the scarcity of microbial cultures for study. We have enriched a ferric iron-reducing culture that completely mineralizes benzene to CO2. With 13C6-labelled benzene as the growth substrate, ring-labelled benzoate was identified as a major intermediate by liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of culture supernatants. With increasing incubation time, 13C7-labelled benzoate appeared, indicating that the carboxyl group of benzoate derived from CO2 that was produced from mineralization of labelled benzene. This was confirmed by growing the culture in 13C-bicarbonate-buffered medium with unlabelled benzene as the substrate, as the label appeared in the carboxyl group of benzoate produced. Phenol was also identified as an intermediate at high concentration. However, it was clearly shown that phenol was formed abiotically by autoxidation of benzene during the sampling and analysis procedure as a result of exposure to air. The results suggest that, in our culture, anaerobic benzene degradation proceeds via carboxylation and that caution should be exercised in interpreting hydroxylated benzene derivatives as metabolic intermediates of anaerobic benzene degradation.  相似文献   

6.
ABSTRACT. The effect of culture age on the rate of oxidation of short-, medium-, and long-chain fatty acids by Leishmania major promastigotes was investigated. Promastigotes from 5-day stationary phase cultures oxidized several saturated fatty acids about 3-to-4-fold faster than cells from late log phase cultures, but [10−14C]oleate was oxidized 9-fold faster. The increase in rate of oxidation was partially reversed within 5 h and almost completely reversed within 30 h after resuspending cells from a 5-day stationary culture in fresh medium. Addition of acetate, leucine, or alanine caused moderate inhibitions of [1-14C]palmitate oxidation, while glycerol had little effect. Glucose, however, was a powerful inhibitor of the oxidation of [1-14C]palmitate and of [1-14C]octanoate. Mannose and fructose were also strong inhibitors of palmitate oxidation, but neither galactose, 2-deoxyglucose or 6-deoxyglucose caused appreciable inhibition. The extent of inhibition by acetate increased with increasing culture age, whereas inhibition by glucose decreased. In addition to demonstrating a reversible rise in β-oxidation capacity with culture age, these data also demonstrate a hitherto unrecognized strong and culture age-dependent inhibition of fatty acid oxidation by glucose.  相似文献   

7.
Multiple forms of peroxidase with indole-3-acetic acid (IAA) oxidase activity were detected in callus cultures from soybean seeds [ Glycinc max (L.) Merrill, cv. Acme] using ion-exchange chromatography and polyacrylamide gel electrophoresis. The properties of the IAA oxidase were studied with a partially purified fraction eluted from a DEAE cellulose column. At pH 5.7. p-coumaric acid and MnCl2 were required as cofactors and H2O2 was not able to replace them, but H2O2 eliminated the usual lag period of the reaction. Activation effects obtained with some dicarboxylic acids acting only on IAA oxidase are shown. These effects were studied at different pH values and oxalic acid was found to be the most efficient activator, particularly at pH 4.6. Activation by oxalic acid occurred even in the absence of MnCl2, but the presence of this salt produced a synergistic effect. IAA oxidase showed a sigmoidal kinetic behaviour at pH 5.7 changing to hyperbolic at pH 4.6  相似文献   

8.
Anaerobic l-lactate degradation by Lactobacillus plantarum   总被引:5,自引:0,他引:5  
Abstract Lactobacillus plantarum strains used as silage inoculants were investigated for their ability to metabolize lactic acid anaerobically after prolonged incubation (7–30 days) when glucose was absent from the medium. When citrate was present in the medium together with glucose during the initial fermentation, the lactic acid produced was degraded. Citrate was concomitantly degraded, resulting in accumulation of formic, acetic and succinic acids along with CO2. The anaerobic degradation was confirmed by the use of l 14C(U) labelled lactate. The existence of pyruvate formate lyase in L. plantarum was indicated by using 14C-labelled pyruvate and HPLC identification of end-products. The 1-14C-carboxylic acid group of pyruvate was converted to formic acid, and the 3-14C was found in acetic acid. The key enzyme(s) in this metabolic pathway appears to require anaerobic conditions and induction by citrate.  相似文献   

9.
Dicarboxylic acid solid waste containing phthalic acid, malic acid, quinone, saturated and unsaturated dicarboxylic esters etc., are discharged in huge quantities during the crackdown of benzene over the catalyst vanadium at temperatures greater than 500 °C in a dicarboxylic acid manufacturing industry. Concern over the biological effects of these compounds underlines the necessity to treat this solid waste. The role of yeast Saccharomyces cerevisiae and anaerobic mixed bacterial cultures immobilized in activated carbon, in sequential two stage anoxic reactors, were investigated for the degradation of dicarboxylic acid solid waste (DASW). In the first stage, DASW was dissolved in water to yield a concentration of 0.5% w/v and was treated in yeast Saccharomyces cerevisiae immobilized reactor at an optimum residence time of 24 h. The yeast fermented samples were further treated in an upflow anaerobic reactor containing mixed culture immobilized in activated carbon at an Hydraulic Retention Time (HRT) of 0.2076 days at an hydraulic flow rate of 14.6×10−3 m3/day and Chemical Oxygen Demand (COD) loading rate of 4.3 kg/m3/day. The intermediates that were formed during the yeast fermentation and the anaerobic degradation of DASW were characterized by HPLC, proton NMR, C13 NMR and mass spectrometry.  相似文献   

10.
Flavonoids, the potent antioxidant and anti-inflammatory plant compounds, require deglycosylation for absorption across the intestine. Intestinal bacteria are indispensable for the hydrolysis of flavonoid diglycosides. We isolated, for the first time, three anaerobic Lactobacillus -like strains designated as MF-01, MF-02 and MF-03 from the cecum of chicken capable of converting flavonoid diglycosides into bioactive aglycones. All the isolated strains were found to be active in the conversion of quercetin-3-rhamnoglucoside (rutin) and hesperetin-7-rhamnoglucoside (hesperidin) into their aglyconic forms. No metabolites were detected after the fermentation tests with naringenin-7-rhamnoglucoside (naringin). The degradation rates of flavonoids and influence of different carbon sources, following incubation with isolated strains, were also monitored. Overall maltose resulted in rapid degradation of flavonoids. However, when organic acids (lactate, acetate, butyrate or propionate) were added to the basal medium as carbon source, flavonoid degradation was completely inhibited. Using consortium of three isolated strains, fructooligosaccharide (10 g L−1) supplementation was found to be imperative for preserving aglycone hesperitin while organic acids supplementation (10 g L−1) to the fermentation medium resulted in rapid degradation of hesperitin indicating that the metabolic fate of flavonoids may be related to the gut metabolic behavior. Butyrate and propionate also suppressed rutin deglycosylation by the consortium.  相似文献   

11.
Abstract— —Continuous cell lines, primary cell cultures derived from embryonic CNS, and homogenates made from adult and embryonic CNS were compared with respect to their lipid pattern and their ability to bind 125I-labelled tetanus toxin. In parallel experiments de novo synthesis of gangliosides in the cell lines was studied, using [14C]glucosamine as precursor. Of the total lipid only gangliosides were specifically labelled by [14C]glucosamine. The patterns of the de novo synthesized gangliosides corresponded to those present in the respective cells.
Pronounced binding of 125I-labelled toxin was only detectable in tissues containing long-chain gangliosides (ganglioside C which represents GDIb and GTI).
Accordingly, hybrid (neuroblastoma x glioma) cells, due to their lack of long-chain gangliosides, bound just-discernible amounts of labelled toxin. When previously exposed to gangliosides, their binding of tetanus toxin tremendously increased.
It was concluded that only the long-chain gangliosides in the neuronal cells are functionally involved in the binding of the tetanus toxin and that these acceptors of tetanus toxin can be transplanted.  相似文献   

12.
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5–6 months amended with either 13CH4 or H13CO3-. In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by 13CO2, but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25–1.3 mol% of the methane oxidized.  相似文献   

13.
Microbiological analysis of soils from a polycyclic aromatic hydrocarbon (PAH)-contaminated site resulted in the enrichment of five microbial communities capable of utilizing pyrene as a sole carbon and energy source. Communities 4 and 5 rapidly degraded a number of different PAH compounds. Three pure cultures were isolated from community 5 using a spray plate method with pyrene as the sole carbon source. The cultures were identified as strains of Burkholderia ( Pseudomonas ) cepacia on the basis of biochemical and growth tests. The pure cultures (VUN 10 001, VUN 10 002 and VUN 10 003) were capable of degrading fluorene, phenanthrene and pyrene (100 mg l−1) to undetectable levels within 7–10 d in standard serum bottle cultures. Pyrene degradation was observed at concentrations up to 1000 mg l−1. The three isolates were also able to degrade other PAHs including fluoranthene, benz[ a ]anthracene and dibenz[ a , h ]anthracene as sole carbon and energy sources. Stimulation of dibenz[ a , h ]anthracene and benzo[ a ]pyrene degradation was achieved by the addition of small quantities of phenanthrene to cultures containing these compounds. Substrate utilization tests revealed that these micro-organisms could also grow on n -alkanes, chlorinated- and nitro-aromatic compounds.  相似文献   

14.
Two organisms, CCMI507 and CCMI852, degrading undecylbenzenesulphonate (LAS) by the ortho- and meta- cleavage pathways were studied in cultures where glucose was used as carbon and energy source. CCMI507 ( ortho -pathway) started the degradation of LAS at the beginning of the culture development in parallel with glucose utilization. The degradation followed a steady profile of degradation until 77% of LAS was degraded in the culture containing initially 5 mg l−1 of the compound and 81% in the cultures containing initially 10 and 20 mg l−1 of LAS, after 72 h fermentation. The organism CCMI852 ( meta -pathway) started degrading the compound only after 20 h, when 75% of glucose was spent and well within the stationary phase. After 72 h fermentation the level of degradation by CCMI852 varied from 70% (5 mg l−1 of LAS) to around 75% (10 and 20 mg l−1 of LAS).  相似文献   

15.
Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8 / LACS1 , one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C24) were elevated more than 155%. The C16 cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C18 monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C20–C30, with highest activity for C30 acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C16 but not C18 cutin monomers are reduced in lacs1 , and C16 acids are the next most preferred acid (behind C30) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C16 monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C16) fatty acids for cutin synthesis.  相似文献   

16.
Abstract The influence of oxygen on growth and fumarate-dependent respiration of Wolinella recta ATCC 33238 was studied in continuous culture. Steady states were obtained with formate-limited cultures grown at a specific growth rate of 0.1 h−1 with different levels of oxygenation. The extent of aeration was regulated by means of a redox control system permitting reproducible cultivation at oxygen levels below the detection limit of conventional lead-silver probes. The ratio of succinate produced to that of formate consumed (Suc/For) decreased from 0.99 in strictly anaerobic cultures to 0.06–0.10 in aerated cultures. The growth yield did not change significantly with increasing redox readings: 4.9–5.2 g cell carbon/mol formate. The ability to use O2 as the sole electron acceptor was demonstrated in a chemostat culture with formate as electron donor and succinate as carbon source. Washed cells from all chemostat cultures comsumed O2 with formate as electron donor at a high rate (2.1–3.7 μmol/min per mg protein) and possessed b - and c -type cytochromes and CO-binding pigments. These results clearly indicated the microaerophilic nature of W. recta .  相似文献   

17.
Abstract Sewage sludge-derived methanogenic enrichments degrading ferulic acid as sole carbon and energy source were partially inhibited with 2-bromoethanesulfonic acid. The various intermediates and products formed under inhibition of methanogenesis were studied using gas chromatography/mass spectrometry (GC/MS). In addition to aromatic, alicyclic, and aliphatic acids previously shown to be intermediates of ferulate degradation to CO2 and CH4, the following compounds were detected: toluene, ethylbenzene, phenol, p -cresol, 2-ethylphenol, catechol, and 3-hydroxy-4-ethylphenol. The character and the sequence of appearance of the compounds indicate that fermentative bacteria which initiate the anaerobic transformation of ferulic acid, in case of disruption of interspecies hydrogen transfer, dispose of electrons by converting part of the substrate to reduced derivatives. Aromatic hydrocarbons are further partially oxidized through hydroxylation of the ring (and, to a lesser extent, the side-chain), and partially reduced to saturated alicyclic rings. Some of these compounds seem to be gradually degraded to branched or straight- chain aliphatic acids. Some compounds, like catechol and ethylphenol, accumulate transiently or persistently in high concentrations (up to 16 mM carbon out of the initial concentration of 30 mM substrate carbon), indicating that hydroxylation of the aromatic ring might be an important metabolic reaction in these systems.  相似文献   

18.
Abstract The strain ' Acetobacter rancens ' CCM1774 was investigated concerning the occurrence of aldehyde dehydrogenases after growth on different carbon sources. Two constitutive enzyme activities, a NADP+-dependent one and a pyridine nucleotide-independent one, have been detected. The catalytic properties of the latter membrane-bound aldehyde dehydrogenase suggest its participation in the degradation of long-chain n -alkanes.  相似文献   

19.
Abstract A multi-stage bi-directional chemostat system has been developed in which solutes but not cells are allowed to diffuse between the individual growth chambers which are separated by 0.2 micron pore size polyvinyledene difluoride membranes. The experimental system enables the generation of physico-chemical gradients which, together with the spatial separation of the individual microbial processes, provides a useful laboratory model to study microbial interactions. This paper describes the construction of a multi-stage diffusion chemostat and its application in studying carbon flow in anaerobic estuarine sediments. Populations of Clostridium butyricum, Desulfovibrio desulfuricans and Chromatium vinosum were grown in the compound diffusion chemostat at a dilution rate of 0.03 h−1 at 25°C, and the effects of inorganic nitrogen source and availability on carbon flow and individual cell populations were determined. C. butyricum and D. desulfuricans both used NO3 as an e acceptor with an increase in cell numbers. Under these growth conditions, free S2− concentrations were lower, resulting in more stable cell populations than in comparable cultures grown on NH+4 as nitrogen source.  相似文献   

20.
Abstract When grown in carbon source-limited chemostat cultures with lactate or glucose as the carbon and energy source and xylose as an additional source of reducing equivalents, Pseudomonas putida NCTC 10936 oxidized xylose to xylonolactone and xylonate. No other products were formed from this pentose, nor was it incorporated into biomass. The presence of xylose in these cultures resulted in higher Yglucose and Ylactate values as compared to cultures without xylose indicating that biologically useful energy was conserved during the periplasmic oxidation of xylose. As the Y0 values for growth on glucose or on lactate alone were equal to the Y0 values with xylose as co-substrate, it is concluded that for flucose- or lactate-limited growth energy conservation by PQQH2 oxidation is as efficient as by NADH2 oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号