首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione (GSH) plays an important role in the defence of microorganisms and plants against different environmental stresses. To determine the role of GSH under different stresses, such as acid pH, saline shock, and oxidative shock, a GSH-deficient mutant (Bradyrhizobium sp. 6144-S7Z) was obtained by disruption of the gshA gene, which encodes the enzyme gamma-glutamylcysteine synthetase. Growth of the mutant strain was significantly reduced in liquid minimal saline medium, and the GSH content was very low, about 4% of the wild-type level. The defect, caused by disruption of the gshA gene in the growth of mutant strain, cannot be reversed by the addition of GSH (up to 100 micromol/L) to the liquid minimal saline medium, and the endogenous GSH level was approximately the same as that observed without the addition of GSH. In contrast, the wild-type strain increased the GSH content under these conditions. However, the growth of the mutant strain in a rich medium (yeast extract--mannitol) increased, suggesting that at least some but not all of the functions of GSH could be provided by peptides and (or) amino acids. The symbiotic properties of the mutant were similar to those found in the wild-type strain, indicating that the mutation does not affect the ability of the mutant to form effective nodules.  相似文献   

2.
为研究人Elongator复合物EIp4亚基的功能,将人ELP4基因转入酵母ELP4基因缺失的突变菌株(elp4△菌株)中,并对转化菌株进行功能互补实验和SSA3和PHO5基因表达分析,结果表明人的ELP4基因不能恢复突变菌株对高盐的敏感性,但可以在一定程度上缓解突变菌株对高温、咖啡因(Caffeine)和6-氮尿嘧啶(6-AU)的敏感性,部分恢复低磷条件下PHO5基因表达延迟的缺陷,并可在热激条件下提高SSA3基因的表达,因此人的ELP4基因可以部分补偿酵母ELP4基因缺失所引起的生长缺陷,提示人的EIp4亚基可能与酵母的该亚基功能相似。  相似文献   

3.
Yeast metallothionein function in metal ion detoxification   总被引:10,自引:0,他引:10  
A genetic approach was taken to test the function of yeast metallothionein in metal ion detoxification. A yeast strain was constructed in which the metallothionein locus was deleted (cup1 delta). The cup1 delta strain was complemented with normal or mutant metallothionein genes under normal or constitutive regulatory control on high copy episomal plasmids. Metal resistance of the cup1 delta strain with and without the metallothionein-expressing vectors was analyzed. The normally regulated metallothionein gene conferred resistance only to copper (1000-fold); constitutively expressed metallothionein conferred resistance to both copper (500-fold) and cadmium (1000-fold), but not to mercury, zinc, silver, cobalt, nickel, gold, platinum, lanthanum, uranium, or tin. Two mutant versions of the metallothionein gene were constructed and tested for their ability to confer metal resistance in the cup1 delta background. The first had a deletion of a highly conserved amino acid sequence (Lys-Lys-Ser-Cys-Cys-Ser). The second was a hybrid gene consisting of the sequences coding for the first 20 amino acids of the yeast protein fused to the monkey metallothionein gene. Expression of these genes under the CUP1 promoter provided significant protection from copper, but none of the other metals tested. These results demonstrate that there is significant flexibility in the structural requirements for metallothionein to function in copper detoxification and that yeast metallothionein is also capable of detoxifying cadmium under conditions of constitutive expression.  相似文献   

4.
Yeast 6-phosphofructo-2-kinase: sequence and mutant.   总被引:4,自引:0,他引:4  
M Kretschmer  D G Fraenkel 《Biochemistry》1991,30(44):10663-10672
We have reported yeast 6-phosphofructo-2-kinase (EC 2.7.1.105) as having a ca. 96-kDa subunit size, as well as isolation of its structural gene, PFK26. Sequencing now shows an open reading frame of 827 amino acids and 93.5 kDa. The deduced amino acid sequence has 42% identity with the 55-kDa subunit of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver with extra material at both ends. Although the yeast sequence is especially similar to the liver one in its bisphosphatase domain, the essential His-258 of the liver enzyme is, in yeast, a serine, which may explain the apparent lack of bisphosphatase activity. Also, the yeast enzyme known to be activated via protein kinase A, has a putative phosphorylation site near its C-terminus and lacks the N-terminal phosphorylation sequence involved in inhibition of the liver enzyme. In a chromosomal null mutant strain, pfk26::LEU2, activity was marginal and the protein was not detectable as antigen. The mutant strain grew well on glucose and contained a near-normal level of fructose 2,6-P2. But in its growth on pyruvate, by contrast with the wild-type strain, no fructose 2,6-P2 was detectable, and it did not form after glucose addition in the presence of cycloheximide either. Such resting cells, however, metabolized glucose at the normal high rate. Glucose addition to the pfk26 mutant strain in the absence of cycloheximide, on the other hand, caused a ca. 10% normal rate of fructose 2,6-P2 accumulation, presumably employing a glucose-inducible second enzyme. Using strains also lacking 6-phosphofructo-1-kinase, affinity chromatography revealed the second enzyme as a minor peak amounting to 6% of 6-phosphofructo-2-kinase activity in a PFK26 strain and as the sole peak, in similar amount, in a pfk26 mutant strain.  相似文献   

5.
Transcriptional regulation of the MET3 gene of Saccharomyces cerevisiae   总被引:8,自引:0,他引:8  
H Cherest  N T Nguyen  Y Surdin-Kerjan 《Gene》1985,34(2-3):269-281
  相似文献   

6.
The modes of action of the antagonistic yeast Pichia anomala (strain K) have been studied; however, thus far, there has been no clear demonstration of the involvement of exo-beta-1,3-glucanase in determining the level of protection against Botrytis cinerea afforded by this biocontrol agent on apple. In the present study, the exo-beta-1,3-glucanase-encoding genes PAEXG1 and PAEXG2, previously sequenced from the strain K genome, were separately and sequentially disrupted. Transfer of the URA3-Blaster technique to strain K, allowing multiple use of URA3 marker gene, first was validated by efficient inactivation of the PaTRP1 gene and recovery of a double auxotrophic strain (uracil and tryptophan). The PAEXG1 and PAEXG2 genes then were inactivated separately and sequentially with the unique URA3 marker gene. The resulting mutant strains showed a significantly reduced efficiency of biocontrol of B. cinerea when applied to wounded apple fruit, the calculated protection level dropping from 71% (parental strain) to 8% (mutated strain) under some experimental conditions. This suggests that exo-beta-1,3-glucanases play a role in the biological control of B. cinerea on apple. Furthermore, biological control experiments carried out in this study underline the complexity of the host-antagonist-pathogen interaction. Two experimental parameters (yeast inoculum concentration and physiological stage of the fruit) were found to influence dramatically the protection level. Results also suggest that, under some conditions, the contribution of exo-beta-1,3-glucanase to biological control may be masked by other modes of action, such as competition.  相似文献   

7.
The plasmids carrying the gene encoding the hepatitis B surface antigen (HBsAg) under the control of 35S RNA single or dual promoters of the cauliflower mosaic virus CaMV 35S were constructed. These constructions were used for obtaining transgenic tobacco plants that synthesize the HBS antigen. The presence of HBsAg in tobacco plant extracts was confirmed by the enzyme-linked immunoassay using antibodies against the native HBs antigen. The antigen amount in plants carrying the HbsAg gene under a single 35 S promoter was 0.0001-0.001 of the total soluble protein whereas the use of a dual 35S promoter increased the antigen synthesis to 0.002-0.05% of the protein. The antigen-synthesizing ability was inherited by the offspring. In the F1 plants, the antigen expression varied in different lines comprising 0.001 to 0.03% of the total soluble protein, which corresponded to the antigen amount in the F0 plants.  相似文献   

8.
The ER24 aci (acidification) mutant of Saccharomyces cerevisiae excreting protons in the absence of glucose was transformed with a multicopy yeast DNA plasmid library. Three different DNA fragments restored the wild-type phenotype termed Aci- because it does not acidify the complete glucose medium under the tested conditions. Molecular dissection of the transforming DNA fragments identified two multicopy suppressor genes YJL185C, YJR129C and one allelic YLR376C. Disruption of either of the three genes in wild-type yeast strain resulted in acidification of the medium (Aci+ phenotype) similarly to the original ER24 mutant. These data indicate the contribution of the ER24 gene product Ylr376Cp and of the two suppressor gene products Yjl185Cp and Yjr129Cp to a complex regulation of the glyoxylate cycle in yeast.  相似文献   

9.
10.
To find factors participating in protein translocation in yeast, we screened a yeast genomic library for genes which, when introduced into Escherichia coli, suppressed secY24, a temperature sensitive mutation of an essential integral membrane protein (SecY) required for protein export. We isolated and characterized a gene (YSY6) which improved the translocation of the OmpA protein in mutant strain IQ85(secY24). It could also suppress another mutant [rplO215(Am)], in which the level of expression of the SecY protein is decreased at high-temperature. The YSY6 gene encodes a small amphiphilic peptide consisting of 65 amino acids, which can be expressed in E. coli cells.  相似文献   

11.
12.
We have designed a food-safe-grade module for gene disruptions in commercial baker's yeast strains, which contains the G418 resistance cassette, KanMX4, flanked by direct repeats from the MEL1 gene of Saccharomyces cerevisiae. This module was used to obtain a Trp(-) auxotrophic mutant of the polyploid HY strain by successive targeting to the TRP1 locus and later in vivo excision of the kan(r) marker. Southern blot analysis indicated that HY contains five copies of the TRP1 gene. However, after four disruption rounds, a strain named HYtrpM(4), unable to grow in the absence of tryptophan, was selected. Southern and Northern analysis of HYtrpM(4) cells showed that a remaining functional wild-type copy was still present, suggesting that the level of phosphoribosylanthranylate isomerase activity, resulting from a single copy of TRP1, is too low to sustain growth. Accordingly, a high reversion frequency of the Trp(-) phenotype, through gene conversion, was found in cells of the mutant strain. Nevertheless, this was not a drawback for its use as a recipient strain of heterologous genes. Indeed, YEpACT-X24 transformants were stable after 25 generations and expressed and secreted high levels of active recombinant xylanase. These data indicate that the new Trp(-) strain can be used to generate a stable recombinant yeast that fulfils all the requirements and market criteria for commercial utilisation.  相似文献   

13.
The gene (designated ADK1) encoding the so-called cytosolic adenylate kinase of the yeast Saccharomyces cerevisiae was isolated using a single mixed oligonucleotide hybridization probe designed from the published amino acid sequence. ADK1 was found to be identical to an adenylate kinase gene recently isolated by an approach entirely different from ours (Magdolen, V., Oechsner, U., and Bandlow, W. (1987) Curr. Genet. 12, 405-411). The gene resides on yeast chromosome IV adjacent to the histone gene H2A-1. Southern blot analysis revealed only one copy of the gene, and no other related yeast DNA sequences were detected. By gene disruption it is shown that the ADK1 gene is needed for normal cell proliferation but is not essential for cell viability. Immunological studies confirmed the absence of the ADK1 gene product in mutant cells; in extracts of total cellular protein, however, there were still about 10% of the wild-type enzymatic activity present. This indicates the existence of two or more adenylate kinase isozymes in yeast. From preliminary 31P NMR measurements on suspensions of yeast cells, a significant decrease in the level of nucleoside triphosphates was found in the mutant strain carrying the disrupted and partially deleted ADK1 locus.  相似文献   

14.
用PCR介导的基因重组法敲除酵母RAD16基因, 用羟胺处理酵母RAD16基因表达质粒, 获得RAD16基因突变库,并将其转化RAD16基因敲除的酵母细胞. 用平皿复制法获得温度敏感突变株 rad16-ts2,经互补试验证实,该突变表型为RAD16基因突变所致.将人cDNA表达文库转化rad16-ts2后筛选温度敏感拯救(rescue)表型, 回收拯救表型酵母细胞中的质粒. 测序结果表明,所获得的人cDNA克隆为HLTF/Zbu1/SMACA3基因.比较分析显示,人类该基因编码蛋白质氨基酸序列与酵母Rad16的同一性为32%,相似性则达50%.人HLTF/Zbu1/MACA3基因在HeLa细胞中过表达,可显著抑制过氧化氢损伤和UV照射诱导的细胞凋亡.  相似文献   

15.
一株高效降解芘的细菌分离、鉴定及其降解效果   总被引:2,自引:0,他引:2  
摘要:【目的】获得高效降解高分子量多环芳烃的细菌,并研究其对多环芳烃的降解能力。【方法】利用富集培养和芘升华平板方法,从焦化厂污染土壤中分离多环芳烃降解细菌,对分离菌株通过形态特征、16S rRNA基因和gyrb基因序列相似性分析进行鉴定,并研究该菌对高分子量多环芳烃(HMW-PAHs)的降解效果。【结果】筛选到一株能以芘、苯并蒽、屈、苯并芘、茚并芘、苯并苝、荧恩为碳源和能源生长并降解这些底物的菌株HBS1,该菌株的16S rRNA基因和gyrb基因序列与Gordonia amicalis的相应基因的相似  相似文献   

16.
把大肠杆菌β-半乳糖苷酶基因克隆到带有酵母半乳糖可诱导启动子GAL1的穿梭表达质粒pYESZ中,并把得到的重组质粒分别转化到两种不同遗传性状的宿主菌中,其中一株菌为蛋白酶活性缺失90%以上的pep4-3突变菌株。通过比较两株重组菌产生的β-半乳糖苷酶活性水平发现在所述实验条件下,蛋白酶缺失突变菌株中产生的β-卜半乳糖苷酶活水平不仅均要高于另一对照菌株,并且pep4-3突变菌株表现出受葡萄糖阻遏的严紧程度高及对诱导反应迅速等特点。此外,带有重组质粒的pep4-3突变菌株在葡萄糖阻遏培养基中最大生长量和重组对照菌株基本相同,但β-半乳糖苷酶在pep4-3突变菌株中的表达对细胞生长的影响明显小于对照菌株。  相似文献   

17.
具杀线虫活性植物内生细菌的筛选和活性产物   总被引:1,自引:0,他引:1  
【目的】植物寄生线虫是危害植物的重要病原物,为了筛选到能在植物体内稳定定殖并且对植物寄生线虫具有较高杀线虫活性的植物内生细菌生防菌。【方法】以松材线虫为靶标,用直接触杀法进行筛选。对高活性菌株采用正交实验优化发酵条件,测定发酵液杀线虫活性的稳定性,并对菌株进行鉴定。【结果】从6种植物中分离筛选出13株对松材线虫具有较高杀线虫活性的植物内生细菌菌株,这些菌株的发酵上清液对松材线虫处理24h杀线虫率均达到了100%;其中BCM2、SZ5、CCM7和DP1这4个菌株的杀线虫活性较高,发酵上清液稀释3倍处理24h杀线虫率均达到95%以上,DP1和SZ5菌株达到了100%;并发现部分菌株发酵液能使线虫虫体发生渗漏或消解。发酵条件优化后能使发酵液杀线虫效果提高4倍。4株高活性菌株产生的杀线虫物质均对蛋白酶稳定、耐热不耐酸碱且长时间保藏活性不下降。经过鉴定DP1和CCM7是枯草芽孢杆菌(Bacillus subtilis),BCM2和SZ5是蜡样芽孢杆菌(Bacillus cereus)。【结论】经济作物体内存在一定数量的能产生杀线虫活性物质的内生细菌,其中一些细菌产生的杀线虫物质具有较强的稳定性。认为杀线虫活性的植物内生细菌具有很大的生防潜力。  相似文献   

18.
The ura3 gene of Hansenula polymorpha was cloned, sequenced and used to generate a ura3 mutant from the wild-type strain of this yeast via integrative mutagenesis. The Tn5 neomycin-resistance marker (neo) under control of the ADH1 promoter from Saccharomyces cerevisiae served as a transformation marker. The results show that gene replacement can be achieved in H. polymorpha, a yeast with a high level of non-homologous integration. Correspondence to: C. P. Hollenberg  相似文献   

19.
Our laboratory previously studied the interaction between nuo and the acetate-producing pathway encoded by ackA-pta in Escherichia coli. We examined metabolic patterns, particularly the ethanol and acetate production rates, of several mutant strains grown under anaerobic growth conditions. Since the pyruvate formate-lyase (PFL) pathway is the major route for acetyl-CoA and formate production under anaerobic conditions, we examined the effects of nuo and ackA/pta mutations on the expression of pyruvate formate-lyase (pfl) under anaerobic conditions. The ackA-pta mutant has a pfl::lacZ expression level much higher than that of the wild-type strain, and cultures also exhibit the highest ethanol production. Real-time PCR demonstrated that the adhE gene expression in the ack-pta mutant strain was approximately 100 fold that of the same gene in the ackA-pta nuo mutant strain. This result correlates with the observed ethanol production rates in cultures of the strain. However, the lack of exact correlation between the ethanol production rates and the RT-PCR data suggests additional regulation actions at the posttranslation level. In addition, the activity of the pfl gene as indicated by mRNA levels was also considerably greater in theack-pta mutant. We can conclude that deletions of nuo and ack/pta can partially affect the expression of the genes encoding adhE and pfl under anaerobic conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号