首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Induction of the 17-kDa ubiquitin-like protein ISG15/UCRP and its subsequent conjugation to cellular targets is the earliest response to type I interferons. The polypeptide is synthesized as a precursor containing a carboxyl-terminal extension whose correct processing is required for subsequent ligation of the exposed mature carboxyl terminus. Recombinant pro-ISG15 is processed in extracts of human lung fibroblasts by a constitutive 100-kDa enzyme whose activity is unaffected by type I interferon stimulation. The processing enzyme has been purified to apparent homogeneity by a combination of ion exchange and hydrophobic chromatography and found to be stimulated 12-fold by micromolar concentrations of ubiquitin. Analysis of the products of pro-ISG15 processing enzyme demonstrates specific cleavage exclusively at the Gly(157)-Gly(158) peptide bond to generate a mature ISG15 carboxyl terminus. Irreversible inhibition of pro-ISG15 processing activity by thiol-specific alkylating agents and a pH rate dependence conforming to titration of a single group of pK(a) 8.1 indicate the 100-kDa enzyme is a thiol protease. Partial sequencing of a trypsin-derived peptide indicates the enzyme is either the human ortholog of yeast Ubp1 or a Ubp1-related protein. As yeast do not contain ISG15, these results suggest that a ubiquitin-specific enzyme was recruited for pro-ISG15/UCRP processing by adaptive divergence.  相似文献   

2.
Immunochemical methods were used to examine the effect of viral infection on the dynamics of intracellular ubiquitin pools. Infection of either the human lung carcinoma line A-549 or the mouse fibroblast line L929 with encephalomyocarditis virus had little effect on either the distribution or fractional level of intracellular ubiquitin conjugates. In contrast, viral infection resulted in a significant decline in the steady state content of the mono-ubiquitin conjugate to histone 2A (uH2A). Prior treatment with interferons protected against this decrease of uH2A. Furthermore, interferons induced the de novo synthesis of a 15-kDa protein immunologically related to ubiquitin. The ubiquitin cross-reactive protein (UCRP) was not constitutively present in control cells but was significantly induced in various cells sensitive to the biological effects of interferons. Induction of UCRP with respect to both time and interferon concentration dependence closely paralleled the appearance of resistance to viral infection and could be blocked by low levels of actinomycin D. Subsequent studies demonstrated that UCRP was identical to an interferon-induced 15-kDa protein whose sequence has recently been reported (Blomstrom, D. C., Fahey, D., Kutny, R., Korant, B. D., and Knight, E. (1986) J. Biol. Chem. 261, 8811-8816). An authentic sample of the 15-kDa protein was found to co-migrate with UCRP and to cross-react with two different anti-ubiquitin antibodies. Using the authentic 15-kDa protein as a standard, UCRP accumulated to 6.2 +/- 0.5 pmol/10(6) cells and 34 +/- 2 pmol/10(6) cells in interferon-treated A-549 and L929 cultures, respectively. Comparison of the primary sequence of the 15-kDa protein to that of ubiquitin indicated that the former is composed of two domains, each of which bears striking homology to ubiquitin. These observations suggest that the 15-kDa protein may represent one example of a functionally distinct family of ubiquitin-like proteins.  相似文献   

3.
Two neutrophil chemotactic factors were identified in soluble egg antigen preparations of Schistosoma japonicum. The higher-molecular-weight neutrophil chemotactic factor was not separable from eosinophil chemotactic factor by means of gel filtration, anion-exchange chromatography, isoelectric focusing, or affinity chromatography; this neutrophil chemotactic factor is apparently identical to the higher-molecular-weight eosinophil chemotactic factor which we purified previously from the soluble egg antigen. The chemotactic activity of the eosinophil chemotactic factor for neutrophils was stable to periodate oxidation but was notably affected by heating or Pronase digestion, suggesting that the determinant for neutrophil chemotaxis exists on the peptide moiety of the eosinophil chemotactic factor. The lower-molecular-weight neutrophil chemotactic factor was separable from the higher-molecular-weight eosinophil chemotactic factor by gel filtration or anion-exchange chromatography. This neutrophil chemotactic factor was rather hydrophobic and heat-stable, but was sensitive to Pronase or carboxypeptidase A digestion. These results suggest that the receptors on the surfaces of neutrophils and eosinophils for those chemoattractants would be different from each other. We suppose that neutrophil chemotactic factors and eosinophil chemotactic factors from the eggs are responsible for neutrophil and eosinophil accumulation around the eggs in schistosomiasis japonica.  相似文献   

4.
Ubiquitin cross-reactive protein (UCRP) is a 17-kDa protein that shows cross-reactivity with ubiquitin antisera and retains the carboxyl-terminal Leu-Arg-Gly-Gly amino acid sequence of ubiquitin that ligates to, and directs degradation of, cytosolic proteins. It has been reported that bovine endometrial UCRP is synthesized and secreted in response to conceptus-derived interferon-tau (IFNtau). In the present studies, UCRP mRNA and protein were detected in ovine endometrium. Ovine UCRP mRNA was detectable on Day 13, peaked at Day 15, and remained high through Day 19 of pregnancy. The UCRP mRNA was localized to the luminal epithelium (LE), stromal cells (ST) immediately beneath the LE, and shallow glandular epithelium (GE) on Day 13, but it extended to the deep GE, deep ST, and myometrium of uterine tissues by Day 15 of pregnancy. Western blotting revealed induction of UCRP in the endometrial extracts from pregnant, but not cyclic, ewes. Ovine UCRP was also detected in uterine flushings from Days 15 and 17 of pregnancy and immunoprecipitated from Day 17 pregnant endometrial explant-conditioned medium. Treatment of immortalized ovine LE cells with recombinant ovine (ro) IFNtau induced cytosolic expression of UCRP, and intrauterine injection of roIFNtau into ovariectomized cyclic ewes induced endometrial expression of UCRP mRNA. These results are the first to describe temporal and spatial alterations in the cellular localization of UCRP in the ruminant uterus. Collectively, UCRP is synthesized and secreted by the ovine endometrium in response to IFNtau during early pregnancy. Because UCRP is present in the uterus and uterine flushings, it may regulate endometrial proteins associated with establishment and maintenance of early pregnancy in ruminants.  相似文献   

5.
We have previously identified a 15-kDa interferon-induced protein that is recognized by affinity-purified rabbit polyclonal antibodies against ubiquitin (Haas, A. L., Ahrens, P., Bright, P. M., and Ankel, H. (1987) J. Biol. Chem. 262, 11315-11323). This ubiquitin cross-reactive protein (UCRP) possesses significant homology to a tandem diubiquitin sequence. Since the biological effects of ubiquitin arise from its covalent ligation to intracellular target proteins, we hypothesized that the multiple cellular responses to inteferon are mediated in part by an analogous conjugation pathway for UCRP. Rabbit polyclonal antibodies specific for UCRP were prepared against homogeneous recombinant protein. Affinity-purified anti-UCRP antibodies detected the induction of UCRP in interferon-beta-treated A549 cells and recognized a group of high molecular weight UCRP conjugates on immunoblots of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved cell extracts. Both free and conjugated UCRP are constitutively present at low levels in untreated cells, suggesting a role for UCRP ligation in normal cellular regulation, and significantly accumulate following interferon treatment. The temporal induction of free UCRP following interferon treatment preceded a delayed increase in UCRP conjugates. Treatment of A549 cells with type I interferons (alpha and beta) strongly induced the expression of free and conjugated UCRP, whereas the response to type II interferon (gamma) was significantly less. A survey of selected cultured cell lines showed differential induction of free versus conjugated UCRP pools in response to interferon. Interferon-beta treatment of A549, MG63, and U937 cells induced high levels of both free and conjugated UCRP, whereas only free UCRP levels increased in Daudi, Namalwa, and K562 cells. These results confirm that UCRP represents a functional ubiquitin homolog participating in a parallel pathway of post-translational ligation and provides a novel mechanism for the response of susceptible cells to the effects of interferon exposure.  相似文献   

6.
ISG15 is a ubiquitin-like protein that is upregulated on treatment with interferon. ISG15 is considered to be covalently conjugated to cellular proteins through a sequential reaction similar to that of the ubiquitin conjugation system consisting of E1/E2/E3 enzymes: UBE1L and UbcH8 have been reported to function as E1 and E2 enzymes, respectively, for ISG15 conjugation. Several cellular proteins have been identified as targets for ISG15 conjugation, but the roles of ISG15 conjugation remain unclear. In this study, we found that UbcH6 and UbcH8, E2 enzymes for ubiquitin conjugation, are covalently modified by ISG15. We also found that UbcH6 is capable of forming a thioester intermediate with ISG15 through Cys131. We determined that the Lys136 residue near the catalytic site Cys131 is the ISG15 conjugation site in UbcH6. We isolated ISG15-modified and unmodified UbcH6 proteins, and analyzed their abilities to form thioester intermediates with ubiquitin. A ubiquitin thioester intermediate was detected in the case of unmodified UbcH6, but not in that of ISG15-modified UbcH6, strongly suggesting that ISG15 conjugation to UbcH6 suppresses its ubiquitin E2 enzyme activity. Thus, we provide evidence for a link between the ubiquitin conjugation system and the ISG15 conjugation system.  相似文献   

7.
Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13C′, and 13Cα, as well as side chain 13Cβ, methyl (Ile-δ1, Leu, Val), amide (Asn, Gln), and indole N–H (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.  相似文献   

8.
The expression of the ubiquitin-like molecule ISG15 (UCRP) and protein modification by ISG15 (ISGylation) are strongly activated by interferon, genotoxic stress, and pathogen infection, suggesting that ISG15 plays an important role in innate immune responses. Inducible nitric-oxide synthase (iNOS) is induced by the similar stimuli as ISG15 and enhances the production of nitric oxide (NO), a pleiotropic free radical with antipathogen activity. Here, we report that cysteine residues (Cys-76 and -143 in mouse, Cys-78 in human) of ISG15 can be modified by NO, and the NO modification of ISG15 decreases the dimerization of ISG15. The mutation of the cysteine residue of ISG15 to serine improves total ISGylation. The NO synthase inhibitor S-ethylisothiourea reduces endogenous ISGylation. Furthermore, ectopic expression of iNOS enhanced total ISGylation. Together, these results suggest that nitrosylation of ISG15 enhances target protein ISGylation. This is the first report of a relationship between ISGylation and nitrosylation.  相似文献   

9.
We have purified to homogeneity two distinct 10-kDa proteins with potent chemotactic activity for neutrophils from porcine alveolar macrophages incubated for 24 h with Escherichia coli endotoxin (lipopolysaccharide (LPS), 10 micrograms/ml). Neutrophil chemotactic activity in alveolar macrophage supernatants was concentrated by adsorption to SP-Sephadex, and purified by cation exchange and reversed phase high performance liquid chromatography. The first peptide, alveolar macrophage chemotactic factor (AMCF)-I, had chemotactic activity for both porcine and human neutrophils. The chemotactic activity for porcine neutrophils was detectable at 3 x 10(-10) M, peaked at 3 x 10(-8) M, and was comparable to that of zymosan-activated porcine serum. Segmental instillation of AMCF-I into porcine lungs caused marked neutrophil accumulation at 4 h in both bronchoalveolar lavage fluid and in lung tissue. The second peptide, AMCF-II, was active at 1.4 x 10(-9) M for porcine neutrophils, but it was less active for human polymorphonuclear neutrophils than was AMCF-I. Oligonucleotide probes to regions of the N-terminal sequences of AMCF-I and AMCF-II hybridized to mRNA recovered from LPS-stimulated alveolar macrophages. The N-terminal sequences and amino acid compositions indicate that AMCF-I and AMCF-II are distinct proteins, but that both have homologies with a family of peptide chemoattractants produced by human blood monocytes and platelets. Thus, alveolar macrophages stimulated with LPS produce two distinct 10-kDa cytokines with potent chemotactic activity for neutrophils. This indicates that there are two different peptide pathways by which alveolar macrophages can recruit neutrophils into the lung.  相似文献   

10.
In delayed-type hypersensitivity reactions, cytokine-mediated cell migration leads to localized accumulation of neutrophils and mononuclear cells over 4-48 h. In contrast to transient (2-6 h) responses elicited by other chemotactic factors, earlier studies indicated that a chemotactic activity previously described in our laboratory elicited skin test responses over 24 h, identical to those induced by injection of antigen into a sensitized test subject. We have isolated this factor, a 10.3-kDa chemotactic protein designated CP-10, from supernatants of activated murine spleen cells. Purification to homogeneity was achieved using affinity chromatography on iminodiacetic acid-immobilized copper and cation-exchange, mixed mode (cation exchange/metal affinity), reversed-phase, and size-exclusion high performance liquid chromatography. CP-10 had maximal chemotactic activity for neutrophils at 10(-13) M. The 76-amino acid sequence, obtained by automated N-terminal microsequence analysis of native CP-10, and fragments derived from trypsin digestion and cyanogen bromide cleavage indicated no sequence identity with any known cytokine or chemotactic factor but revealed up to 55% sequence homology with S100, Ca2(+)-binding proteins. CP-10 appears to be the first protein of this family with a well defined function affecting cell migration, and its biological potency suggests an important role for this cytokine in cellular immune reactions.  相似文献   

11.
12.
Ubiquitin cross-reactive protein (UCRP), a 15-kDa interferon-induced protein, is a sequence homolog of ubiquitin that is covalently ligated to intracellular proteins in a parallel enzymatic reaction and is found at low levels within cultured cell lines and human tissues not exposed to interferon. Ubiquitin and UCRP ligation reactions apparently target distinct subsets of intracellular proteins, as judged from differences in the distributions of the respective adducts revealed on immunoblots. In this study, successive passages of the human lung carcinoma line A549 in the presence of neutralizing antibodies against alpha and beta interferons had no effect on the levels of either free or conjugated UCRP, indicating that these UCRP pools are constitutively present within uninduced cells and are thus not a consequence of autoinduction by low levels of secreted alpha/beta interferon. In an effort to identify potential targets for UCRP conjugation, the immunocytochemical distribution of UCRP was examined by using affinity-purified polyclonal antibodies against recombinant polypeptide. UCRP distributes in a punctate cytoskeletal pattern that is resistant to extraction by nonionic detergents (e.g., Triton X-100) in both uninduced and interferon-treated A549 cells. The cytoskeletal pattern colocalizes with the intermediate filament network of epithelial and mesothelial cell lines. Immunoblots of parallel Triton X-100-insoluble cell extracts suggest that the cytoskeletal association largely results from the noncovalent association of UCRP conjugates with the intermediate filaments rather than direct ligation of the polypeptide to structural components of the filaments. A significant increase in the sequestration of UCRP adducts on intermediate filaments accompanies interferon induction. These results suggest that UCRP may serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments.  相似文献   

13.
Recently, a new protein containing a disintegrin domain, alternagin-C (Alt-C), was purified from Bothrops alternatus venom. Unlike other disintegrins, in Alt-C an ECD amino acid mogif takes the place of the RGD sequence. Most disintegrins contain an RGD/KGD sequence and are very potent inhibitors of platelet aggregation, as well as other cell interactions with the extracellular matrix, including tumor cell metastasis and angiogenesis. The present study investigated the effects of Alt-C on human neutrophil chemotaxis in vitro and the activation of integrin-mediated pathways. Alt-C showed a potent chemotactic effect for human neutrophils when compared to N-formyl-methionyl-leucyl-phenylalanine peptide (fMLP), a classic chemotactic agent. Moreover, preincubation of neutrophils with Alt-C significantly inhibited chemotaxis toward fMLP and itself. In addition, a peptide containing an ECD sequence presented a chemotactic activity and significantly inhibited chemotaxis induced by Alt-C and fMLP. A significant increase of F-actin content was observed in cells treated with Alt-C, showing that the chemotactic activity of Alt-C on neutrophils is driven by actin cytoskeleton dynamic changes. Furthermore, this protein was able to induce an increase of phosphotyrosine content triggering focal adhesion kinase activation and its association with phosphatidylinositol 3-kinase. Alt-C was also able to induce a significant increase in extracellular signal-regulated kinase 2 nuclear translocation. The chemotactic activity of Alt-C was partially inhibited by LY294002, a specific phosphatidylinositol 3-kinase inhibitor, and by PD98056, a Map kinase kinase inhibitor. These findings suggest that Alt-C can trigger human neutrophil chemotaxis modulated by intracellular signals characteristic of integrin-activated pathways and that these effects could be related to the ECD mogif present in disintegrin-like domain.  相似文献   

14.
After i.p. infection of mice with the intracellular bacterium Mycobacterium bovis bacillus Calmette-Guérin, macrophages recovered from the peritoneal cavity display classical signs of immune activation. We have identified a member of the serine protease inhibitor (serpin) family which is highly induced in macrophages during bacillus Calmette-Guérin infection. Serpin 2a (spi2a) expression is also induced in macrophages in vivo during infection with Salmonella typhimurium and Listeria monocytogenes, and in vitro by a variety of bacteria and bacterial products. The cytokine IFN-gamma also induces spi2a expression in macrophages, and this induction is synergistic with bacterial products. We also demonstrate here that a ubiquitin homolog, IFN-stimulated gene of 15-kDa (ISG15), is strongly induced during in vitro and in vivo activation of macrophages and that it conjugates to spi2a in activated macrophages. The ISG15-spi2a conjugates were identified by tandem mass spectrometry and contained spi2a conjugated to either one or two molecules of ISG15. Whereas spi2a was induced by either bacterial products or IFN-gamma, ISG15 was induced only by bacterial products. Although many protein targets have been described for ubiquitin conjugation, spi2a is the first ISG15-modified protein to be reported. Macrophage activation is accompanied by the activation of a variety of proteases. It is of interest that a member of the serine protease inhibitor family is concomitantly induced and modified by a ubiquitin-like protein.  相似文献   

15.
The ubiquitin-like molecule ISG15 (UCRP) and protein modification by ISG15 (ISGylation) are strongly induced by interferon, genotoxic stress, and pathogen infection, suggesting that ISG15 plays an important role in innate immune responses. However, how ISGylation contributes to innate immune responses is not clear. The dsRNA-dependent protein kinase (PKR) inhibits translation by phosphorylating eIF2α to exert its anti-viral effect. ISG15 and PKR are induced by interferon, suggesting that a relationship exists between ISGylation and translational regulation. Here, we report that PKR is ISGylated at lysines 69 and 159. ISG15-modified PKR is active in the absence of virus infection and phosphorylates eIF2α to down-regulate protein translation. The present study describes a novel pathway for the activation of PKR and the regulation of protein translation.  相似文献   

16.
Posttranslational protein modification by ubiquitin and ubiquitin-like modifiers (UBLs) is mediated by a hierarchical cascade of conjugating enzymes and affects multiple biological processes within the cell. Interferon-stimulated gene 15 (ISG15) is an UBL, which is strongly induced by type I Interferon and ISG15 modification was shown to play an essential role in antiviral defense. While hHERC5 is the major E3 ligase for ISG15 modification in humans, ISGylation in the murine systems at the level of E3 ligases was weakly characterized as rodent genomes lack a direct homologue of hHERC5. Here, we show that mHERC6 is strongly induced by different pathogen-associated molecular patterns (PAMPs) in a type I Interferon receptor (IFNAR1) dependent manner. We demonstrate that mHERC6 is essential for endogenous murine ISGylation and thus represents the dominant ISG15 E3 ligase in mice. In contrast to its human homologue, mHERC6 is also capable to mediate conjugation of human ISG15.  相似文献   

17.
Shibata F  Konishi K  Nakagawa H 《Cytokine》2000,12(9):1368-1373
Rat cytokine-induced neutrophil chemoattractant-1 (CINC-1), CINC-2 and CINC-3/macrophage inflammatory protein-2 (MIP-2), members of the CXC chemokine family, are potent chemotactic factors for neutrophils. In order to identify the receptor for CINCs, rat CXC chemokine receptor 2 (CXCR2) was cloned and expressed in HEK293 cells. CINC-1, CINC-2 and CINC-3 induced calcium mobilizations dose-dependently in CXCR2-transfected cells, whereas formyl-methionyl-leucyl-phenylalanine (FMLP) did not. CINC-3 induced enhancement of cytoplasmic calcium concentration more potently than CINC-1 and CINC-2, and desensitized calcium transients induced by CINC-1 and CINC-2, which were essentially identical to those observed in rat neutrophils. In addition, anti-CXCR2 serum inhibited neutrophil chemotactic activities of three types of CINCs almost completely. The mutant CINC-3, whose amino-terminal amino acid sequence (SELR) was replaced to AAR, lost chemotactic activity of its own but inhibited that of CINC-1 and CINC-2 potently, and that of CINC-3 weakly. The results indicate that rat CXCR2 on neutrophils is the unique receptor for all three types of CINCs, and CINC-1/-2 and CINC-3 exert different biological activities through the common receptor.  相似文献   

18.
Neutrophils are pivotal in the pathogenesis of ischemia-reperfusion (I/R) injury leading to muscle damage. Firm adhesion of neutrophils to the endothelium is initiated by an interaction between intercellular adhesion molecular-1 (ICAM-1) on the endothelium and beta(2)-integrins on neutrophils. Inhibition of ICAM-1-dependent binding using monoclonal antibodies has been shown to be efficacious in ameliorating I/R injury by preventing the influx of neutrophils into the ischemic tissue. We recently described a cyclic peptide that is a potent and selective inhibitor of ICAM-1 (IP25) in vitro. In this study, we tested the hypothesis that IP25-mediated blockade of ICAM-1 would inhibit neutrophil influx during reperfusion of ischemic tissue and consequently attenuate muscle injury in a tourniquet hindlimb murine model of I/R injury. Varying amounts of peptide drug were injected at the beginning of the reperfusion period. The neutrophil influx and size of infarction at the end of 2 h of reperfusion were compared with those in untreated control mice and contralateral nonischemic limbs. Mice receiving IP25 immediately before reperfusion showed a 56% reduction in neutrophil infiltration in the ischemic muscle, accompanied by a 40% reduction in the infarct size. No effect on I/R injury was seen if IP25 administration was delayed for 60 min after reperfusion. We conclude that IP25 effectively inhibits ICAM-1-mediated adhesion of neutrophils to the endothelium in mice leading to a protective effect and suggests that synthetic peptide antagonists have a potential role as therapeutic tools.  相似文献   

19.
A putative mature human neutrophil chemotactic factor (NCF) corresponding to the C-terminal 72 amino acids of its precursor was directly produced in Escherichia coli by recombinant DNA technology. Human NCF was present in both the soluble and insoluble protein fractions of the homogenate of host cells, and it was partially purified as a water-soluble polypeptide from both fractions, separately. The partially purified NCF preparation was highly purified to an endotoxin-free homogeneous polypeptide by means of CM-Sepharose CL-6B column chromatography and gel filtration on Toyopearl HW-55. No difference between the human NCF preparations purified from both starting materials could be found concerning purity, primary structure, solubility, molecular weight, and chemotactic activity for human neutrophils. The amino acid sequence of recombinant human NCF was identical to the sequence deduced from the cDNA sequence. A methionine residue due to the translation initiation codon was removed. Recombinant human NCF was found to be biologically active and to exhibit chemotactic activity for human neutrophils in vitro and cause a neutrophil infiltration in vivo in mice.  相似文献   

20.
The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls), ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation). ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no reducing agent present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号