首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Butanol, a four-carbon primary alcohol (C4H10O), is an important industrial chemical and has a good potential to be used as a superior biofuel. Bio-based production of butanol from renewable feedstock is a promising and sustainable alternative to substitute petroleum-based fuels. Here, we report the development of a process for butanol production from glycerol, which is abundantly available as a byproduct of biodiesel production. First, a hyper butanol producing strain of Clostridium pasteurianum was isolated by chemical mutagenesis. The best mutant strain, C. pasteurianum MBEL_GLY2, was able to produce 10.8 g l−1 butanol from 80 g l−1 glycerol as compared to 7.6 g l−1 butanol produced by the parent strain. Next, the process parameters were optimized to maximize butanol production from glycerol. Under the optimized batch condition, the butanol concentration, yield, and productivity of 17.8 g l−1, 0.30 g g−1, and 0.43 g l−1 h−1 could be achieved. Finally, continuous fermentation of C. pasteurianum MBEL_GLY2 with cell recycling was carried out using glycerol as a major carbon source at several different dilution rates. The continuous fermentation was run for 710 h without strain degeneration. The acetone–butanol–ethanol productivity and the butanol productivity of 8.3 and 7.8 g l−1 h−1, respectively, could be achieved at the dilution rate of 0.9 h−1. This study reports continuous production of butanol with reduced byproducts formation from glycerol using C. pasteurianum, and thus could help design a bioprocess for the improved production of butanol.  相似文献   

2.
An investigation of a virulent Bacillus phage-K2 (named Bp-K2) isolated from chungkookjang (a fermented soybean foodstuff) was made. Bp-K2 differed in infectivity against a number of Bacillus subtilis strains including starter strains of chungkookjang and natto, being more infectious to Bacillus strains isolated from the chungkookjang, but much less active against a natto strain. Bp-K2 is a small DNA phage whose genome size is about 21 kb. Bp-K2 is a tailed bacteriophage with an isometric icosahedral head (50 nm long on the lateral side, 80 nm wide), a long contractile sheath (85–90 nm × 28 nm), a thin tail fiber (80–85 nm long, 10 nm wide), and a basal plate (29 nm long, 47 nm wide) with a number of spikes, but no collar. The details of the structures of Bp-K2 differ from natto phage ϕBN100 as well as other known Bacillus phages such as SPO1-like or ϕ 29-like viruses. These data suggest that Bp-K2 would be a new member of the Myoviridae family of Bacillus bacteriophages.  相似文献   

3.
Bradyrhizobium japonicum bacteroids in soybean nodules expressed fibrillar appendages during senescence. In both scanning and transmission electron microscopy (SEM and TEM), these structures were observed to connect adjacent bacteroids, and bacteroids to symbiotic membranes. They were 20–25 nm in diameter, 100–2,500 nm in length and were linear, branched, or part of a web-like matrix. Bacteroids expressing appendages were not uniformly distributed, but were abundant within localized regions in the senescing nodule. The root systems of nodulated greenhouse-grown plants flushed with argon induced the appendages at earlier plant ages, and they were more prolific and wide spread than those in untreated nodules. Bradyrhizobium japonicum symbiotic appendages appear to be a response to an environmental niche within senescing nodules.  相似文献   

4.
Nannochloropsis, a green microalga, is a source for commercially valuable compounds as extensively described and, in particular, is recognised as a good potential source of eicosapentaenoic acid (20:5ϖ3), an important polyunsaturated fatty acid for human consumption for prevention of several diseases. Climate change might include variation in the ultraviolet (UV) levels as one of the consequences derived from the anthropogenic activity. This paper shows the response of Nannochloropsis cultures exposed for 7 days to UV-A (320–400 nm) added to photosynthetically active radiation (PAR; 400–700 nm). Growth rates and photosynthetic activity were assessed to determine the impact of UV-A increased levels on the cell growth and basic metabolism activity. Xanthophyll pigments (zeaxanthin and violaxanthin), carotenoids (canthaxanthin and β-carotene) and polyunsaturated fatty acids (myristic, palmitic, palmitoleic, arachidonic and eicosapentaenoic acids) were measured for assessing the antioxidant response of the microalgae to added UV-A radiation to PAR. The results show that the modulated use of UV-A radiations can lead to increased growth rates, which are sustained in time by an increased light transduction activity. The expected antioxidant response to the incident UV-A radiation consisted of increases in zeaxanthin and β-carotene contents—synthesis of antioxidant carotenoids—and increases in the saturated fatty acids to polyunsaturated fatty acids ratio. The results suggest that modulated UV-A radiation can be used as a tool to stimulate value molecules accumulation in microalgae through an enhanced both light transduction process and antioxidant response, while sustaining cell growth.  相似文献   

5.
 Soybean, Glycine max (L.) Merr., genotypes are known to differ in chlorimuron ethyl sensitivity (CS). Earlier we have reported two putatively independent marker loci linked to two quantitative trait loci (QTLs) controlling CS in a soybean population derived from a cross of PI97100 (sensitive to chlorimuron ethyl) and ‘Coker 237’ (tolerant to chlorimuron ethyl). The objective of the present study was to quantify the association of the two marker loci with seed yield and related traits in this soybean population following application of chlorimuron ethyl. Phenotypic data were collected for 111 F2-derived lines of the cross grown in replicated plots at Athens, G.A., in 1994 and 1995, and at Blackville, S.C., in 1995. The two CS marker loci explained as much as 50% of the genetic variation in seed yield and seed number m-2, but had no association with seed weight, plant height, lodging, seed protein, and seed oil. There were no epistatic interactions between the two marker loci for any of the traits. The marker locus (cr168-1 on USDA linkage group E) linked to the major CS QTL explained between 13 and 23% of the variation in seed yield. The Coker 237 allele at this locus was associated with decreased CS and increased seed yield. The marker locus (Blt015-2 on an unknown linkage group) linked to the minor CS QTL accounted for a maximum of 11% of the variation in seed yield. The Coker 237 allele at this locus was associated with an increase in CS and a decrease in seed yield. The association of the two marker loci with seed number m-2 strongly resembled their association with seed yield. Seed yield had a strong positive correlation (r=0.74 – 0.94) with seed number m-2, and the effect of chlorimuron ethyl on seed yield was due mainly to its effect on seed number m-2 rather than seed weight. Received: 6 August 1996 / Accepted: 28 February 1997  相似文献   

6.
Lipase-catalyzed transesterification of soybean oil and methanol for biodiesel production in tert-amyl alcohol was investigated. The effects of different organic medium, molar ratio of substrate, reaction temperature, agitation speed, lipase dosage and water content on the total conversion were systematically analyzed. Under the optimal conditions identified (6 mL tert-amyl alcohol, three molar ratio of methanol to oil, 2% Novozym 435 lipase based on the soybean oil weight, temperature 40°C, 2% water content based on soybean oil weight, 150 rpm and 15 h), the highest biodiesel conversion yield of 97% was obtained. With tert-amyl alcohol as the reaction medium, the negative effects caused by excessive molar ratio of methanol to oil and the by-product glycerol could be reduced. Furthermore, there was no evident loss in the lipase activity even after being repeatedly used for more than 150 runs.  相似文献   

7.
The production of l-phenylalanine is conventionally carried out by fermentations that use glucose or sucrose as the carbon source. This work reports on the use of glycerol as an inexpensive and abundant sole carbon source for producing l-phenylalanine using the genetically modified bacterium Escherichia coli BL21(DE3). Fermentations were carried out at 37°C, pH 7.4, using a defined medium in a stirred tank bioreactor at various intensities of impeller agitation speeds (300–500 rpm corresponding to 0.97–1.62 m s−1 impeller tip speed) and aeration rates (2–8 L min−1, or 1–4 vvm). This highly aerobic fermentation required a good supply of oxygen, but intense agitation (impeller tip speed ~1.62 m s−1) reduced the biomass and l-phenylalanine productivity, possibly because of shear sensitivity of the recombinant bacterium. Production of l-phenylalanine was apparently strongly associated with growth. Under the best operating conditions (1.30 m s−1 impeller tip speed, 4 vvm aeration rate), the yield of l-phenylalanine on glycerol was 0.58 g g−1, or more than twice the best yield attainable on sucrose (0.25 g g−1). In the best case, the peak concentration of l-phenylalanine was 5.6 g L−1, or comparable to values attained in batch fermentations that use glucose or sucrose. The use of glycerol for the commercial production of l-phenylalanine with E. coli BL21(DE3) has the potential to substantially reduce the cost of production compared to sucrose- and glucose-based fermentations.  相似文献   

8.
Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines (Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280–320 nm) can affect plant–disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280–400 nm), spectral UV-B and UV-A (320–400 nm), the biological effective UVBE, as well as the PAR (400–700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.  相似文献   

9.
Effect of soybean oil on mycelial biomass and pleuromutilin biosynthesis by Pleurotus mutilis-04 was investigated in shake flask culture. The maximum pleuromutilin production and mycelial biomass were 8.32 ± 0.02 g l−1 and 49.10 ± 1.00 g l−1 when 20 g l−1 soybean oil was fed at 24 and 96 h respectively. A repeated fed-batch fermentation strategy with feeding 3 g l−1 soybean oil from 96 to 144 h at 24 h intervals was developed successfully to maintain mycelial growth and provide abundant fatty acids for pleuromutilin biosynthesis. Compared with glucose as the sole carbon source, soybean oil was obviously beneficial for the production of pleuromutilin. The results suggested that manipulation of metabolic regulation by soybean oil was an effective way to enhance the production pleuromutilin.  相似文献   

10.
Effects of cerium ion (Ce(III)) on water relations of soybean seedlings (Glycine max L.) under ultraviolet B radiation (UV-B, 280–320 nm) stress were investigated under laboratory conditions. UV-B radiation not only affected the contents of two osmolytes (proline, soluble sugar) in soybean seedlings, but also inhibited the transpiration in soybean seedlings by decreasing the stomatal density and conductance. The two effects caused the inhibition in the osmotic and metabolic absorption of water, which decreased the water content and the free water/bound water ratio. Obviously, UV-B radiation led to water stress, causing the decrease in the photosynthesis in soybean seedlings. The pretreatment with 20 mg L−1 Ce(III) could alleviate UV-B-induced water stress by regulating the osmotic and metabolic absorption of water in soybean seedlings. The alleviated effect caused the increase in the photosynthesis and the growth of soybean seedlings. It is one of the protective effect mechanisms of Ce(III) against the UV-B radiation-induced damage to plants.  相似文献   

11.
The dynamic state of antioxidant capacity of flavonoid was investigated for a further demonstration of alleviating the damage of the ultraviolet (UV)-B radiation in the La-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum on the contents of flavonoid and its ability of antioxidant under elevated ultraviolet-B radiation (280–320 nm) was studied. The results showed flavonoid content in soybean seedlings with UV-B treatment during the stress and convalescent period was increased initially and then decreased, compared with control. Membrane permeability and MDA contents increase at first (first to fifth day) and then decrease (6th–11th day). A similar change of flavonoid content and clearance of flavonoid scavenging and ·OH in soybean seedlings occurred. Flavonoid content and ability of flavonoid scavenging and ·OH in soybean seedlings with La(III) + UV-B treatment were higher than those of UV-B treatment. Meanwhile, membrane permeability and MDA contents in soybean seedlings were lower than those of UV-B treatment. Compared with control, phenylalanine content in soybean seedlings with UV-B treatment is depressed, phenylalanine content in soybean seedlings with La(III) treatment was enhanced. However, phenylalanine content in La(III) + UV-B treatment is not decreased but slightly increased, compared with UV-B treatment. It suggested that the regulative effect of La(III) of the optimum concentration on flavonoid improved the metabolism of ROS, diminished the concentration of MDA and maintained normal plasma membrane permeability, and that its protective effect against low UV-B radiation is superior to that of high UV-B radiation. The defensive effect of La(III) on soybean seedlings under UV-B stress is carried out on the layer of defense system.  相似文献   

12.
Marine bacteria have recently attracted attention as potentially useful candidates for the production of practical materials from marine ecosystems, including the oceanic carbon dioxide cycle. The advantages of using marine bacteria for the biosynthesis of poly(hydroxyalkanoate) (PHA), one of the eco-friendly bioplastics, include avoiding contamination with bacteria that lack salt-water resistance, ability to use filtered seawater as a culture medium, and the potential for extracellular production of PHA, all of which would contribute to large-scale industrial production of PHA. A novel marine bacterium, Vibrio sp. strain KN01, was isolated and characterized in PHA productivity using various carbon sources under aerobic and aerobic–anaerobic marine conditions. The PHA contents of all the samples under the aerobic–anaerobic condition, especially when using soybean oil as the sole carbon source, were enhanced by limiting the amount of dissolved oxygen. The PHA accumulated using soybean oil as a sole carbon source under the aerobic–anaerobic condition contained 14% 3-hydroxypropionate (3HP) and 3% 5-hydroxyvalerate (5HV) units in addition to (R)-3-hydroxybutyrate (3HB) units and had a molecular weight of 42 × 103 g/mol. The present result indicates that the activity of the beta-oxidation pathway under the aerobic–anaerobic condition is reduced due to a reduction in the amount of dissolved oxygen. These findings have potential for use in controlling the biosynthesis of long main-chain PHA by regulating the activity of the beta-oxidation pathway, which also could be regulated by varying the dissolved oxygen concentration.  相似文献   

13.
Microspore culture for the purpose of developing doubled haploid plants is routine for numerous plant species; however, the embryo yield is still very low compared with the total available microspore population. The ability to select and isolate highly embryogenic microspores would be desirable for high embryo yield in microspore culture. To maximize the efficiency of canola microspore culture, a combination of bud size selection and microspore fractionation using a Percoll gradient was followed. This approach has consistently given high embryo yields and uniform embryo development. Microspores isolated from buds 1.5 to 4.4 mm in length of Brassica napus genotypes Topas 4079, DH12075, Westar and 0025 formed embryos at different frequencies. The most embryogenic bud size range varied with each cultivar: Topas 4079 3.5–3.9 mm, DH12075 2.0–2.4 mm, and Westar and 0025 2.5–2.9 mm. When the microspores from 2.0 to 2.4 mm buds of DH12075 were carefully layered on top of a discontinuous Percoll gradient of 10, 20 and 40%, and subsequently spun through the Percoll layers by centrifugation, bands were formed containing populations of microspores of uniform developmental stage. The middle layer of the gradient contained the late uninucleate and early binucleate microspores that were the most embryogenic. In addition, the relationship between the bud size, developmental stage of isolated microspores, Percoll gradient concentration and the embryogenic frequency of each cultivar were studied. Optimization of these factors is required for each genotype evaluated.  相似文献   

14.
Brassinolide (BR) is a relatively new plant growth regulator. To test whether BR could be used to increase tolerance to water deficits in soybean, the effects of BR application on photosynthesis, assimilate distribution, antioxidant enzymes and seed yield were studied. BR at 0.1 mg l−1 was foliar applied at the beginning of bloom. Two levels of soil moisture (80% field capacity for well-watered control and 35% for drought-stressed treatment) were applied at pod initiation. BR treatment increased biomass accumulation and seed yield for both treatments. Drought stress inhibited translocation of assimilated 14C from the labeled leaf, but BR increased the translocation for both treatments. Drought stress depressed chlorophyll content and assimilation rate (A), while chlorophyll content and A of BR-treated plants were greater than that of drought-stressed plants. BR treatment increased maximum quantum yield of PS II, the activity of ribulose-1,5-bisphosphate carboxylase, and the leaf water potential of drought-stressed plants. Treatment with BR also increased the concentration of soluble sugars and proline, and the activities of peroxidase and superoxide dismutase of soybean leaves when drought-stressed. However, it decreased the malondialdehyde concentration and electrical conductivity of leaves under drought stress. This study show that BR can be used as a plant growth regulator to enhance drought tolerance and minimize the yield loss of soybean caused by water deficits.  相似文献   

15.
To assess the short- and long-term impacts of Ultraviolet radiation (UVR, 280–400 nm) on the red tide alga Chaetoceros curvisetus, we exposed cells to three different solar radiation treatments–PAB:280–700 nm, PA:320–700 nm, and P:400–700 nm under 20°C incubated temperature. Short-term exposures were investigated: the photochemical efficiency (ΦPSII) versus irradiance curves under six levels of solar radiation by covering the incubators with a variable number of neutral density screens (the irradiance thus varied from 100 to 3%) lasting 1 h, and long-term exposures were designed to assess how the cells acclimate to solar radiation (the growth, UVabc and ratio of repair to damage rates of D1 protein were detected). A significant decrease in the photochemical efficiency (ΦPSII) at high irradiance (100% of incident solar radiation, 261.6 Wm−2) was observed in short-term exposure (1 h). UVR-induced photoinhibition was reduced to 7% in 3% solar radiation (4.08 Wm−2), compared with 66% in 100% solar radiation (261.6 Wm−2). In long-term experiments (11 days) using batch cultures, cell densities during the first 6 days were relatively constant for treatment P, and decreased slightly under PA and PAB treaments, reflecting a change in the irradiance experienced in the laboratory to that of incident solar irradiance. Thereafter, cell density increased and UV-induced photoinhibition decreased with the following days, indicating acclimation to solar UV. At the end of experiment, cells were found to exhibit both higher ratios of repair to UV-related damage and increased concentrations of UV-absorbing compounds, whose maximum absorption was found to be at 329 nm. Our data indicate that C. curvisetus is sensitive to ultraviolet radiation, but was able to acclimate relatively rapidly (ca. 6 days) by synthesizing UV-absorbing compounds and by increasing the rates of repair processes of D1 protein in PSII.  相似文献   

16.
Zengling Ma  Kunshan Gao 《Planta》2009,230(2):329-337
The spiral structure of the cyanobacterium Arthrospira (Spirulina) platensis (Nordst.) Gomont was previously found to be altered by solar ultraviolet radiation (UVR, 280–400 nm). However, how photosynthetic active radiation (PAR, 400–700 nm) and UVR interact in regulating this morphological change remains unknown. Here, we show that the spiral structure of A. platensis (D-0083) was compressed under PAR alone at 30°C, but that at 20°C, the spirals compressed only when exposed to PAR with added UVR, and that UVR alone (the PAR was filtered out) did not tighten the spiral structure, although its presence accelerated morphological regulation by PAR. Their helix pitch decreased linearly as the cells received increased PAR doses, and was reversible when they were transferred back to low PAR levels. SDS-PAGE analysis showed that a 52.0 kDa periplasmic protein was more abundant in tighter filaments, which may have been responsible for the spiral compression. This spiral change together with the increased abundance of the protein made the cells more resistant to high PAR as well as UVR, resulting in a higher photochemical yield.  相似文献   

17.

Background  

Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper.  相似文献   

18.
There are some reports that low doses of γ-irradiation could induce antioxidant activities in plant material, including soybean. Irradiation, required for the inactivation of some pathogens and induction of mutations, may have adverse effects on sensorial, nutritional and antioxidant qualities. The effects of different γ-irradiation doses (100–200 Gy) on antioxidant properties of soybean seeds was investigated. In this study, we report the results obtained by analysis of antioxidant enzyme activities, reduced glutathione, malonyldialdehyde (MDA) and hydroxyl (HO) radical quantities, soluble protein content, and total antioxidant activity in irradiated soybean seeds. Antioxidant enzyme activities were affected due to high irradiation intensity. Significant changes of total antioxidant activity and MDA and HO.quantities were observed only under the highest irradiation dose, with a 15.7% reduction in total antioxidant activity, MDA quantity increase of 21.6%, and HO radical quantity increase of 79.3% compared to the non-irradiated control. The total soluble protein content increased slightly.  相似文献   

19.
Different groups of biosurfactants exhibit diverse properties and display a variety of physiological functions in producer microorganisms; these include enhancing the solubility of hydrophobic/water-insoluble compound, heave metal binding, bacterial pathogenesis, cell adhesion and aggregation, quorum sensing and biofilm formation. Candida sphaerica was grown in a low cost medium, consisting of distilled water supplemented with 9% refinery residue of soybean oil and 9% corn steep liquor, for 144 h at 28°C and 150 rpm. The cell-free supernatant obtained at the end of the experiments was submitted to extraction, and afterward the biosurfactant was isolated using methanol with a yield of 9 g l−1. The critical micelle concentration of the biosurfactant was found to be 0.25 mg ml−1 with a surface tension of 25 mN m−1. Several concentrations of the biosurfactant (0.625–10 mg ml−1) were used to evaluate its antimicrobial and antiadhesive activities against a variety of microorganisms. The biosurfactant showed antimicrobial activity against Streptococcus oralis (68%), Candida albicans (57%), and Staphylococcus epidermidis(57.6%) for the highest concentration tested. Furthermore, the biosurfactant at a concentration of 10 mg ml−1 inhibited the adhesion between 80 and 92% of Pseudomonas aeruginosa, Streptococcus agalactiae, Streptococcus sanguis12. Inhibition of adhesion with percentages near 100% occurred for the higher concentrations of biosurfactant used. Results gathered in this study point to a potential use of the biosurfactant in biomedical applications.  相似文献   

20.
Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate high-value compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This microalga accumulates high concentrations of lutein, a very well-known natural antioxidant. The aim of this study is to assess use of different carbon sources (CO2, glucose, glycerol, starch, urea, and glycine) for efficient growth of and carotenoid production by C. acidophila. Our results reveal that growth of the microalga on different carbon sources resulted in different algal biomass productivities, urea being as efficient as CO2 when used as sole carbon source (~20 g dry biomass m–2 day–1). Mixotrophic growth on glucose was also efficient in terms of biomass production (~14 g dry biomass m–2 day–1). In terms of carotenoid accumulation, mixotrophic growth on urea resulted in even higher productivity of carotenoids (mainly lutein, probably via α-carotene) than obtained with photoautotrophic cultures (70% versus 65% relative abundance of lutein, respectively). The accumulated lutein concentrations of C. acidophila reported in this work (about 10 g/kg dry weight, produced in batch systems) are among the highest reported for a microalga. Glycerol and glycine seem to enhance β-carotene biosynthesis, and when glycine is used as carbon source, zeaxanthin becomes the most accumulated carotenoid in the microalga. Strategies for production of lutein and zeaxanthin are suggested based on the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号