首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
植物分子群体遗传学研究动态   总被引:3,自引:0,他引:3  
王云生  黄宏文  王瑛 《遗传》2007,29(10):1191-1191―1198
分子群体遗传学是当代进化生物学研究的支柱学科, 也是遗传育种和关于遗传关联作图和连锁分析的基础理论学科。分子群体遗传学是在经典群体遗传的基础上发展起来的, 它利用大分子主要是DNA序列的变异式样来研究群体的遗传结构及引起群体遗传变化的因素与群体遗传结构的关系, 从而使得遗传学家能够从数量上精确地推知群体的进化演变, 不仅克服了经典的群体遗传学通常只能研究群体遗传结构短期变化的局限性, 而且可检验以往关于长期进化或遗传系统稳定性推论的可靠程度。同时, 对群体中分子序列变异式样的研究也使人们开始重新审视达尔文的以“自然选择”为核心的进化学说。到目前为止, 分子群体遗传学已经取得长足的发展, 阐明了许多重要的科学问题, 如一些重要农作物的DNA多态性式样、连锁不平衡水平及其影响因素、种群的变迁历史、基因进化的遗传学动力等, 更为重要的是, 在分子群体遗传学基础上建立起来的新兴的学科如分子系统地理学等也得到了迅速的发展。文中综述了植物分子群体遗传研究的内容及最新成果。  相似文献   

3.
We give a mathematical model of the evolution of enzymes, the molecular structure of which is like metalloporphyrins or chlorophylls. We show, for this model, that even a small amount of these enzymes at the first stage is sufficient to increase and dominate the majority in a cell (like phenomena of gene fixation). For this purpose we use Kimura's equation, which has been explored for the study of evolution of genetics and has been known as a neutral theory of molecular evolution. Our model is a non-linear, non-equilibrium and non-closed (open to the external world) model.  相似文献   

4.
Eyes provide a rich narrative for understanding evolution, having attracted the attention of preeminent scientists and communicators alike. Until recently, this narrative has focused primarily on the evolution of eye structure and far less on biochemistry or genetics. Although eye biochemistry was once likened to an unknown “black box;” the flood of discoveries in biochemistry is now allowing an increasingly detailed understanding of the processes involved in vision. As a result, evolutionary comparative (“tree-thinking”) analyses that use these data currently allow a new and still unfolding narrative, both richer in detail and more comprehensive in scope. Rather than toppling evolutionary theory by finding irreducibly complex molecular machines, eye evolution provides detailed accounts of how natural processes tinker with existing genetic components, duplicating and recombining them, to yield complex, intricate, and highly functional eyes. Understanding the new biochemical narrative is critical for researchers and teachers alike, in order to answer anti-evolutionist claims, and to provide an up-to-date account of the state of knowledge on the subject of eye evolution.  相似文献   

5.
Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.  相似文献   

6.
Population genetics was put forward as a mathematical theory between 1918 and 1932 and played a leading part in the rediscovery of the concept of natural selection. As an autonomous science developing Mendel's laws at the population scale and a key element of the Darwinian theory of evolution, its dual status led its practioners to initially overlook some consequences of Mendelism not accounted for by the Darwinian theory, including random drift and the cost of selection. The latter were put forward on purely theoretical grounds in the 1950s, but their importance was acknowledged only when empirical data on protein evolution and enzyme polymorphism (since 1965) and on DNA variation (since 1983) were obtained. The neutralist/selectionist debate that ensued involved disagreement over the scientific method as well as over the mechanisms of molecular evolution. Population genetics has long assumed the existence of natural selection a priori. It has since recentred around the null hypothesis that molecular evolution is neutral. This new approach, applied to sequence comparison and to the study of linkage disequilibrium, is logically more justified, yet empirical observations derived from it paradoxically show the overwhelming importance of selective effects within genomes.  相似文献   

7.
Kurić L 《Amino acids》2007,33(4):653-661
Summary. The subject of this paper is a digital approach to the investigation of the biochemical basis of genetic processes. The digital mechanism of nucleic acid and protein bio-syntheses, the evolution of biomacromolecules and, especially, the biochemical evolution of genetic language have been analyzed by the application of cybernetic methods, information theory and system theory, respectively. This paper reports the discovery of new methods for developing the new technologies in genetics. It is about the most advanced digital technology which is based on program, cybernetics and informational systems and laws. The results in the practical application of the new technology could be useful in bioinformatics, genetics, biochemistry, medicine and other natural sciences.  相似文献   

8.
This paper introduces point processes into fine‐scale spatial genetics and molecular ecology. Datasets given in the form of a complete map of individuals and their genotypes can be analyzed by means of the theory of marked or multivariate point processes. Beginning with reformulation of conventional spatial autocorrelation statistics in genetics by the language of point processes, this paper first shows an example of point process models that describe spatial patterns of both tree locations and their genotypes, on the assumption of limited seed dispersal and long pollen movement. The results show that isolation‐by‐distance slightly occurs from the assumption above, and more importantly, an increment of the degree of clustering of trees reduces the degree of genetic clustering. Next, the point process model is applied to field data of secondary forest regenerated after seed tree harvesting, and tests the hypothesis that the current population was formed only from a small number of seed trees. The hypothesis was not acceptable, instead, the alternative assuming advance reproduction conducted prior to the harvesting is supported. The results of this first trial of point process models suggest that point processes can provide a useful mathematical methodology in fine‐scale spatial genetics and molecular ecology.  相似文献   

9.
Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics).  相似文献   

10.
11.
Although parasitism is one of the most common lifestyles among eukaryotes, population genetics on parasites lag for behind those on free-living organisms. Yet, the advent of molecular markers offers great tools for studying important processes, such as dispersal, mating systems, adaptation to host and speciation. Here we highlight some studies that used molecular markers to address questions about the population genetics of fungal (including oomycetes) plant pathogens. We conclude that population genetics approaches have provided tremendous insights into the biology of a few fungal parasites and warrant more wide use in phytopathology. However, theoretical advances are badly needed to best apply the existing methods. Fungi are of prime interest not only because they are major parasites of plants and animals, but they also constitute tractable and highly useful models for understanding evolutionary processes. We hope that the emerging field of fungal evolution will attract more evolutionary biologists in the near future.  相似文献   

12.
Modern population genetics is involved largely with molecular processes and in particular with the observed outcome of an evolutionary molecular process. The investigation of data of this form requires a mathematical apparatus of conditional diffusion processes. The relevant theory is given in this paper. Many results can be obtained more or less directly: however, the complete theory requires formation of the conditional diffusion equation. The form of this equation, together with several consequences flowing from it, are given.  相似文献   

13.
Although evolution is a multifactorial process, theory posits that the speed of molecular evolution should be directly determined by the rate at which spontaneous mutations appear. To what extent these two biochemical and population-scale processes are related in nature, however, is largely unknown. Viruses are an ideal system for addressing this question because their evolution is fast enough to be observed in real time, and experimentally-determined mutation rates are abundant. This article provides statistically supported evidence that the mutation rate determines molecular evolution across all types of viruses. Properties of the viral genome such as its size and chemical composition are identified as major determinants of these rates. Furthermore, a quantitative analysis reveals that, as expected, evolution rates increase linearly with mutation rates for slowly mutating viruses. However, this relationship plateaus for fast mutating viruses. A model is proposed in which deleterious mutations impose an evolutionary speed limit and set an extinction threshold in nature. The model is consistent with data from replication kinetics, selection strength and chemical mutagenesis studies.  相似文献   

14.
Baker's yeast, Saccharomyces cerevisiae, is not only an extensively used model system in genetics and molecular biology, it is an upcoming model for research in ecology and evolution. The available body of knowledge and molecular techniques make yeast ideal for work in areas such as evolutionary and ecological genomics, population genetics, microbial biogeography, community ecology and speciation. As long as ecological information remains scarce for this species, the vast amount of data that is being generated using S. cerevisiae as a model system will remain difficult to interpret in an evolutionary context. Here we review the current knowledge of the evolution and ecology of S. cerevisiae and closely related species in the Saccharomyces sensu stricto group, and suggest future research directions.  相似文献   

15.
Rate of adaptive peak shifts with partial genetic robustness   总被引:2,自引:0,他引:2  
How adaptive evolution occurs with individually deleterious but jointly beneficial mutations has been one of the major problems in population genetics theory. Adaptation in this case is commonly described as a population's escape from a local peak to a higher peak on Sewall Wright's fitness landscape. Recent molecular genetic and computational studies have suggested that genetic robustness can facilitate such peak shifts. If phenotypic expressions of new mutations are suppressed under genetic robustness, mutations that are otherwise deleterious can accumulate in the population as neutral variants. When the robustness is perturbed by an environmental change or a major mutation, these variants become exposed to natural selection. It is argued that this process promotes adaptation because allelic combinations enriched under genetic robustness can then be positively selected. Here, I propose simple two- and three-locus models of adaptation with partial genetic robustness as suggested by recent studies. The waiting time until the fixation of an adaptive haplotype was observed in stochastic simulations and compared to the expectation without robustness. It is shown that peak shifts can be delayed or accelerated depending on the conditions of genetic robustness. The evolutionary significance of these processes is discussed.  相似文献   

16.
Genetic stability and flexibility are major determinants of organismic integrity and evolution, respectively. An intricate DNA repair network protects the genome from multiple environmental challenges, but complex specialized processes may also allow enhanced mutability in critical situations. The interdependence and interference of these two systems is best exemplified in the adaptive immune system. Here, the coordinated reprogramming of DNA processing pathways allows the adaptation of the antibody response to specific infections, but in parallel increases the risk of malignant transformation of the affected B cells. The respective decisions in DNA repair pathway choice have now been linked to damage bypass processes occurring at stalled replication forks. Future research in this area may shed light on fundamental questions of both immunology and genetics, and provide translational concepts for improved cancer prognosis and therapy.  相似文献   

17.
Karr TL 《Heredity》2008,100(2):200-206
Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.  相似文献   

18.
Anthropologists are increasingly turning to explicit model‐bound evolutionary approaches for understanding the morphological diversification of humans and other primate lineages. Such evolutionary morphological analyses rely on three interconnected conceptual frameworks; multivariate morphometrics for quantifying similarity and differences among taxa, quantitative genetics for modeling the inheritance and evolution of morphology, and neutral theory for assessing the likelihood that taxon diversification is due to stochastic processes such as genetic drift. Importantly, neutral theory provides a framework for testing more parsimonious explanations for observed morphological differences before considering more complex adaptive scenarios. However, the consistency with which these concepts are applied varies considerably, which mirrors some of the theoretical obstacles faced during the “modern synthesis” of classical population genetics in the early 20th century. Here, each framework is reviewed and some potential stumbling blocks to the full conceptual integration of multivariate morphometrics, quantitative genetics, and neutral theory are considered.  相似文献   

19.
We present an analysis of molecular evolution in a laboratory-generated phylogeny of the bacteriophage T7, a virus of 40 kilo-base pairs of double-stranded DNA. The known biology of T7 is used in concert with observed changes in restriction sites and in DNA sequences to produce a model of restriction-site convergence and divergence in the experimental lineages. During laboratory propagation in the presence of a mutagen, the phage lineages changed an estimated 0.5%-1.5% in base pairs; most change appears to have been G → A or C → T, presumably because of the mutagen employed. Some classes of restriction-site losses can be explained adequately as simple outcomes of random processes, given the mutation rate and the bias in mutation spectrum. However, some other classes of sites appear to have undergone accelerated rates of loss, as though the losses were selectively favored. Overall, the wealth of knowledge available for T7 biology contributes only modestly to these explanations of restriction-site evolution, but rates of restriction-site gains remain poorly explained, perhaps requiring an even deeper understanding of T7 genetics than was employed here. Having measured these properties of molecular evolution, we programmed computer simulations with the parameter estimates and pseudo-replicated the empirical study, thereby providing a data base for statistical evaluation of phylogeny reconstruction methods. By these criteria, replicates of the experimental phylogeny would be correctly reconstructed over 97% of the time for the three methods tested, but the methods differed significantly both in their ability to recover the correct topology and in their ability to predict branch lengths. More generally, the study illustrates how analyses of experimental evolution in bacteriophage can be exploited to reveal relationships between the basics of molecular evolution and abstract models of evolutionary processes.  相似文献   

20.
A growing bulk of recent data from different fields as molecular biology, developmental biology, genetics, paleontology and phylogenetics shows that organisms play a more active role in their evolution than what postulated by the random variation-natural selection paradigm of the neo-Darwinian synthesis. Organisms show during development and morphogenesis autopoietic processes which are related to their body-plan potentialities. These potentialities are expressed through regulatory networks in which a plastic genome participates together with proteins and other substances in an epigenetic space. The epigenetic systems which arise from this interaction may be inherited and then assume a significant role in evolution becoming the source of new acquired characters. The acquisition of new traits through the epigenetic systems is influenced directly by environmental cues. If this process is coherent with the environmental demands it co-operates with natural selection in organism adaptation. An outstanding role in this context may be played by phenotypic plasticity if, as emerges in recent views, it may constitute a general basis for genetic assimilation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号