首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gypsy insulator is thought to play a role in nuclear organization and the establishment of higher order chromatin domains by bringing together several individual insulator sites to form rosette-like structures in the interphase nucleus. The Su(Hw) and Mod(mdg4) proteins are components of the gypsy insulator required for its effect on enhancer-promoter interactions. Using the yeast two-hybrid system, we show that the Mod(mdg4) protein can form homodimers, which can then interact with Su(Hw). The BTB domain of Mod(mdg4) is involved in homodimerization, whereas the C-terminal region of the protein is involved in interactions with the leucine zipper and adjacent regions of the Su(Hw) protein. Analyses using immunolocalization on polytene chromosomes confirm the involvement of these domains in mediating the interactions between these proteins. Studies using diploid interphase cells further suggest the contribution of these domains to the formation of rosette-like structures in the nucleus. The results provide a biochemical basis for the aggregation of multiple insulator sites and support the role of the gypsy insulator in nuclear organization.  相似文献   

2.
Pai CY  Lei EP  Ghosh D  Corces VG 《Molecular cell》2004,16(5):737-748
Chromatin insulators, or boundary elements, affect promoter-enhancer interactions and buffer transgenes from position effects. The gypsy insulator of Drosophila is bound by a protein complex with two characterized components, the zinc finger protein Suppressor of Hairy-wing [Su(Hw)] and Mod(mdg4)2.2, which is one of the multiple spliced variants encoded by the modifier of mdg4 [mod(mdg4)] gene. A genetic screen for dominant enhancers of the mod(mdg4) phenotype identified the Centrosomal Protein 190 (CP190) as an essential constituent of the gypsy insulator. The function of the centrosome is not affected in CP190 mutants whereas gypsy insulator activity is impaired. CP190 associates physically with both Su(Hw) and Mod(mdg4)2.2 and colocalizes with both proteins on polytene chromosomes. CP190 does not interact directly with insulator sequences present in the gypsy retrotransposon but binds to a previously characterized endogenous insulator, and it is necessary for the formation of insulator bodies. The results suggest that endogenous gypsy insulators contain binding sites for CP190, which is essential for insulator function, and may or may not contain binding sites for Su(Hw) and Mod(mdg4)2.2.  相似文献   

3.
Ramos E  Ghosh D  Baxter E  Corces VG 《Genetics》2006,172(4):2337-2349
Chromatin insulators have been implicated in the regulation of higher-order chromatin structure and may function to compartmentalize the eukaryotic genome into independent domains of gene expression. To test this possibility, we used biochemical and computational approaches to identify gypsy-like genomic-binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein, a component of the gypsy insulator. EMSA and FISH analyses suggest that these are genuine Su(Hw)-binding sites. In addition, functional tests indicate that genomic Su(Hw)-binding sites can inhibit enhancer-promoter interactions and thus function as bona fide insulators. The insulator strength is dependent on the genomic location of the transgene and the number of Su(Hw)-binding sites, with clusters of two to three sites showing a stronger effect than individual sites. These clusters of Su(Hw)-binding sites are located mostly in intergenic regions or in introns of large genes, an arrangement that fits well with their proposed role in the formation of chromatin domains. Taken together, these data suggest that genomic gypsy-like insulators may provide a means for the compartmentalization of the genome within the nucleus.  相似文献   

4.
Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila   总被引:2,自引:0,他引:2  
CTCF plays a central role in vertebrate insulators and forms part of the Fab-8 insulator in Drosophila. dCTCF is present at hundreds of sites in the Drosophila genome, where it is located at the boundaries between bands and interbands in polytene chromosomes. dCTCF colocalizes with CP190, which is required for proper binding of dCTCF to chromatin, but not with the other gypsy insulator proteins Su(Hw) or Mod(mdg4)2.2. Mutations in the CP190 gene affect Fab-8 insulator activity, suggesting that CP190 is an essential component of both gypsy and dCTCF insulators. dCTCF is present at specific nuclear locations, forming large insulator bodies that overlap with those formed by Su(Hw), Mod(mdg4)2.2, and CP190. The results suggest that Su(Hw) and dCTCF may be the DNA-binding components of two different subsets of insulators that share CP190 and cooperate in the formation of insulator bodies to regulate the organization of the chromatin fiber in the nucleus.  相似文献   

5.
6.
7.
Chromatin insulators are gene regulatory elements implicated in the establishment of independent chromatin domains. The gypsy insulator of D. melanogaster confers its activity through a protein complex that consists of three known components, Su(Hw), Mod(mdg4)2.2, and CP190. We have identified a factor, Drosophila Topoisomerase I-interacting RS protein (dTopors) that interacts with the insulator protein complex and is required for gypsy insulator function. In the absence of Mod(mdg4)2.2, nuclear clustering of insulator complexes is disrupted and insulator activity is compromised. Overexpression of dTopors in the mod(mdg4)2.2 null mutant rescues insulator activity and restores the formation of nuclear insulator bodies. dTopors associates with the nuclear lamina, and mutations in lamin disrupt dTopors localization as well as nuclear organization and activity of the gypsy insulator. Thus, dTopors appears to be involved in the establishment of chromatin organization through its ability to mediate the association of insulator complexes with a fixed nuclear substrate.  相似文献   

8.
9.
10.
The Drosophila gypsy insulator contains binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein. Enhancer and silencer blocking require Su(Hw) recruitment of Mod(mdg4)-67.2, a BTB/POZ domain protein that interacts with Su(Hw) through a carboxyl-terminal acidic domain. Here we conducted mutational analyses of the Mod(mdg4)-67.2 BTB domain. We demonstrate that this domain is essential for insulator function, in part through direction of protein dimerization. Our studies revealed the presence of a second domain (DD) that contributes to Mod(mdg4)-67.2 dimerization when the function of the BTB domain is compromised. Additionally, we demonstrate that mutations in amino acids of the charged pocket in the BTB domain that retain dimerization of the mutated protein cause a loss of insulator function. In these cases, the mutant proteins failed to localize to chromosomes, suggesting a role for the BTB domain in chromosome association. Interestingly, replacement of the Mod(mdg4)-67.2 BTB domain with the GAF BTB domain produced a nonfunctional protein. Taken together, these data suggest that the Mod(mdg4)-67.2 BTB domain confers novel activities to gypsy insulator function.  相似文献   

11.
12.
The Drosophila mod(mdg4) gene products counteract heterochromatin-mediated silencing of the white gene and help activate genes of the bithorax complex. They also regulate the insulator activity of the gypsy transposon when gypsy inserts between an enhancer and promoter. The Su(Hw) protein is required for gypsy-mediated insulation, and the Mod(mdg4)-67.2 protein binds to Su(Hw). The aim of this study was to determine whether Mod(mdg4)-67.2 is a coinsulator that helps Su(Hw) block enhancers or a facilitator of activation that is inhibited by Su(Hw). Here we provide evidence that Mod(mdg4)-67.2 acts as a coinsulator by showing that some loss-of-function mod(mdg4) mutations decrease enhancer blocking by a gypsy insert in the cut gene. We find that the C terminus of Mod(mdg4)-67.2 binds in vitro to a region of Su(Hw) that is required for insulation, while the N terminus mediates self-association. The N terminus of Mod(mdg4)-67.2 also interacts with the Chip protein, which facilitates activation of cut. Mod(mdg4)-67.2 truncated in the C terminus interferes in a dominant-negative fashion with insulation in cut but does not significantly affect heterochromatin-mediated silencing of white. We infer that multiple contacts between Su(Hw) and a Mod(mdg4)-67.2 multimer are required for insulation. We theorize that Mod(mdg4)-67.2 usually aids gene activation but can also act as a coinsulator by helping Su(Hw) trap facilitators of activation, such as the Chip protein.  相似文献   

13.
14.
'Insulator bodies' are aggregates of proteins but not of insulators   总被引:2,自引:0,他引:2  
Chromatin insulators are thought to restrict the action of enhancers and silencers. The best-known insulators in Drosophila require proteins such as Suppressor of Hairy wing (Su(Hw)) and Modifier of mdg4 (Mod(mdg4)) to be functional. The insulator-related proteins apparently colocalize as nuclear speckles in immunostained cells. It has been asserted that these speckles are 'insulator bodies' of many Su(Hw)-insulator DNA sites held together by associated proteins, including Mod(mdg4). As we show here using flies, larvae and S2 cells, a mutant Mod(mdg4) protein devoid of the Q-rich domain supports the function of Su(Hw)-dependent insulators and efficiently binds to correct insulator sites on the chromosome, but does not form or enter the Su(Hw)-marked nuclear speckles; conversely, the latter accumulate another (C-truncated) Mod(mdg4) mutant that cannot interact with Su(Hw) or with the genuine insulators. Hence, it is not the functional genomic insulators but rather aggregated proteins that make the so-called 'insulator bodies'.  相似文献   

15.
SUMO conjugation attenuates the activity of the gypsy chromatin insulator   总被引:1,自引:0,他引:1  
Chromatin insulators have been implicated in the establishment of independent gene expression domains and in the nuclear organization of chromatin. Post-translational modification of proteins by Small Ubiquitin-like Modifier (SUMO) has been reported to regulate their activity and subnuclear localization. We present evidence suggesting that two protein components of the gypsy chromatin insulator of Dorsophila melanogaster, Mod(mdg4)2.2 and CP190, are sumoylated, and that SUMO is associated with a subset of genomic insulator sites. Disruption of the SUMO conjugation pathway improves the enhancer-blocking function of a partially active insulator, indicating that SUMO modification acts to regulate negatively the activity of the gypsy insulator. Sumoylation does not affect the ability of CP190 and Mod(mdg4)2.2 to bind chromatin, but instead appears to regulate the nuclear organization of gypsy insulator complexes. The results suggest that long-range interactions of insulator proteins are inhibited by sumoylation and that the establishment of chromatin domains can be regulated by SUMO conjugation.  相似文献   

16.
Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization.  相似文献   

17.
The Suppressor of the Hairy wing [Su(Hw)] binding region within the gypsy retrotransposon is the best known chromatin insulator in Drosophila melanogaster. According to previous data, two copies of the gypsy insulator inserted between an enhancer and a promoter neutralize each other's actions, which is indicative of an interaction between the protein complexes bound to the insulators. We have investigated the role of pairing between the gypsy insulators located on homologous chromosomes in trans interaction between yellow enhancers and a promoter. It has been shown that trans activation of the yellow promoter strongly depends on the site of the transposon insertion, which is evidence for a role of surrounding chromatin in homologous pairing. The presence of the gypsy insulators in both homologous chromosomes even at a distance of 9 kb downstream from the promoter dramatically improves the trans activation of yellow. Moreover, the gypsy insulators have proved to stabilize trans activation between distantly located enhancers and a promoter. These data suggest that gypsy insulator pairing is involved in communication between loci in the Drosophila genome.  相似文献   

18.
This study is devoted to clarifying the role of Mod(mdg4)-67.2 and Su(Hw) proteins in the interaction between Su(Hw)-dependent insulator complexes and identifying the specific domains of the Su(Hw) protein required for insulation or mutual neutralization of insulators. Using genetic techniques and experiments in yeast two-hybrid system, we have demonstrated that the zinc finger domain of the Su(Hw) protein is involved in forming a functional insulator complex and cannot be replaced with the DNA-binding domain of the GAL4 protein.  相似文献   

19.
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP–chip the genome-wide binding sites of 6 insulator-associated proteins—dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF—to obtain the first comprehensive map of insulator elements in Drosophila embryos. We identify over 14,000 putative insulators, including all classically defined insulators. We find two major classes of insulators defined by dCTCF/CP190/BEAF-32 and Su(Hw), respectively. Distributional analyses of insulators revealed that particular sub-classes of insulator elements are excluded between cis-regulatory elements and their target promoters; divide differentially expressed, alternative, and divergent promoters; act as chromatin boundaries; are associated with chromosomal breakpoints among species; and are embedded within active chromatin domains. Together, these results provide a map demarcating the boundaries of gene regulatory units and a framework for understanding insulator function during the development and evolution of Drosophila.  相似文献   

20.
Insulators might regulate gene expression by establishing and maintaining the organization of the chromatin fiber within the nucleus. Biochemical fractionation and in situ high salt extraction of lysed cells show that two known protein components of the gypsy insulator are present in the nuclear matrix. Using FISH with DNA probes located between two endogenous Su(Hw) binding sites, we show that the intervening DNA is arranged in a loop, with the two insulators located at the base. Mutations in insulator proteins, subjecting the cells to a brief heat shock, or destruction of the nuclear matrix lead to disruption of the loop. Insertion of an additional gypsy insulator in the center of the loop results in the formation of paired loops through the attachment of the inserted sequences to the nuclear matrix. These results suggest that the gypsy insulator might establish higher-order domains of chromatin structure and regulate nuclear organization by tethering the DNA to the nuclear matrix and creating chromatin loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号