首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected.Adult plant root systems are relevant to the size and efficiency of seed yield. They supply water and nutrients for the plant to acquire biomass, which is positively correlated to the harvest index (allocation to seed grain), and the stages of flowering and grain development. Modeling in wheat (Triticum aestivum) suggested that an extra 10 mm of water absorbed by such adult root systems during grain filling resulted in an increase of approximately 500 kg grain ha−1 (Manschadi et al., 2006). This was 25% above the average annual yield of wheat in rain-fed environments of Australia. This number was remarkably close to experimental data obtained in the field in Australia (Kirkegaard et al., 2007). Together, these modeling and field experiments have shown that adult root systems are critical for water absorption and grain yield in cereals, such as wheat, emphasizing the importance of characterizing adult root systems to identify phenotypes for productivity improvements.Most root phenotypes, however, have been described for seedling roots. Seedling roots are essential for plant establishment, and hence, the plant’s potential to set seed. For technical reasons, seedlings are more often screened than adult plants because of the ease of handling smaller plants and the high throughput. Seedling-stage phenotyping may also improve overall reproducibility of results because often, growth media are soil free. Seedling soil-free root phenotyping conditions are well suited to dissecting fine and sensitive mechanisms, such as lateral root initiation (Casimiro et al., 2003; Péret et al., 2009a, 2009b). A number of genes underlying root processes have been identified or characterized using seedlings, notably with the dicotyledonous models Arabidopsis (Arabidopsis thaliana; Mouchel et al., 2004; Fitz Gerald et al., 2006; Yokawa et al., 2013) and Medicago truncatula (Laffont et al., 2010) and the cereals maize (Zea mays; Hochholdinger et al., 2001) and rice (Oryza sativa; Inukai et al., 2005; Kitomi et al., 2008).Extrapolation from seedling to adult root systems presents major questions (Hochholdinger and Zimmermann, 2008; Chochois et al., 2012; Rich and Watt, 2013). Are phenotypes in seedling roots present in adult roots given developmental events associated with aging? Is expression of phenotypes correlated in seedling and adult roots if time compounds effects of growth rates and growth conditions on roots? Watt et al. (2013) showed in wheat seedlings that root traits in the laboratory and field correlated positively but that neither correlated with adult root traits in the field. Factors between seedling and adult roots seemed to be differences in developmental stage and the time that growing roots experience the environment.Seedling and adult root differences may be larger in grasses than dicotyledons. Grass root systems have two developmental components: seed-borne (seminal) roots, of which a number emerge at germination and continue to grow and branch throughout the plant life, and stem-borne (nodal or adventitious) roots, which emerge from around the three-leaf stage and continue to emerge, grow, and branch throughout the plant life. Phenotypes and traits of adult root systems of grasses, which include the major cereal crops wheat, rice, and maize, are difficult to predict in seedling screens and ideally identified from adult root systems first (Gamuyao et al., 2012).Phenotyping of adult roots is possible in the field using trenches (Maeght et al., 2013) or coring (Wasson et al., 2014). A portion of the root system is captured with these methods. Alternatively, entire adult root systems can be contained within pots dug into the ground before sowing. These need to be large; field wheat roots, for example, can reach depths greater than 1.5 m depending on genotype and environment. This method prevents root-root interactions that occur under normal field sowing of a plant canopy and is also a compromise.A solution to the problem of phenotyping adult cereal root systems is a model for monocotyledon grasses: Brachypodium distachyon. B. distachyon is a small-stature grass with a small genome that is fully sequenced (Vogel et al., 2010). It has molecular tools equivalent to those available in Arabidopsis (Draper et al., 2001; Brkljacic et al., 2011; Mur et al., 2011). The root system of B. distachyon reference line Bd21 is more similar to wheat than other model and crop grasses (Watt et al., 2009). It has a seed-borne primary seminal root (PSR) that emerges from the embryo at seed germination and multiple stem-borne coleoptile node axile roots (CNRs) and leaf node axile roots (LNRs), also known as crown roots or adventitious roots, that emerge at about three leaves through to grain development. Branch roots emerge from all root types. There are no known anatomical differences between root types of wheat and B. distachyon (Watt et al., 2009). In a recent study, we report postflowering root growth in B. distachyon line Bd21-3, showing that this model can be used to answer questions relevant to the adult root systems of grasses (Chochois et al., 2012).In this study, we used B. distachyon to identify adult plant phenotypes related to the partitioning among seed-borne and stem-borne shoots and roots for the genetic improvement of well-watered and droughted cereals (Fig. 1; Krassovsky, 1926; Navara et al., 1994), nitrogen, phosphorus (Tennant, 1976; Brady et al., 1995), oxygen (Wiengweera and Greenway, 2004), soil hardness (Acuna et al., 2007), and microorganisms (Sivasithamparam et al., 1978). Of note is the study by Krassovsky (1926), which was the first, to our knowledge, to show differences in function related to water. Krassovsky (1926) showed that seminal roots of wheat absorbed almost 2 times the water as nodal roots per unit dry weight but that nodal roots absorbed a more diluted nutrient solution than seminal roots. Krassovsky (1926) also showed by removing seminal or nodal roots as they emerged that “seminal roots serve the main stem, while nodal roots serve the tillers” (Krassovsky, 1926). Volkmar (1997) showed, more recently, in wheat that nodal and seminal roots may sense and respond to drought differently. In millet (Pennisetum glaucum) and sorghum (Sorghum bicolor), Rostamza et al. (2013) found that millet was able to grow nodal roots in a dryer soil than sorghum, possibly because of shoot and root vigor.Open in a separate windowFigure 1.B. distachyon plant scanned at the fourth leaf stage, with the root and shoot phenotypes studied indicated. Supplemental Table S1.
PhenotypeAbbreviationUnitRange of Variation
All Experiments (79 Lines and 582 Plants)Experiment 6 (36 Lines)
Whole plant
TDWTDWMilligrams88.6–773.8 (×8.7)285.6–438 (×1.5)
Shoot
SDWSDWMilligrams56.4–442.5 (×7.8)78.2–442.5 (×5.7)
 No. of tillersTillerNCount2.8–20.3 (×7.4)10–20.3 (×2)
Total root system
TRLTRLCentimeters1,050–10,770 (×10.3)2,090–5,140 (×2.5)
RDWRDWMilligrams28.9–312.17 (×10.8)62.2–179.1 (×2.9)
RootpcRootpcPercentage (of TDW)20.5–60.6 (×3)20.5–44.3 (×2.2)
R/SR/SUnitless ratio0.26–1.54 (×6)0.26–0.80 (×3.1)
PSRs
 Length (including branch roots)PSRLCentimeters549.1–4,024.6 (×7.3)716–2,984 (×4.2)
PSRpcPSRpcPercentage (of TRL)14.9–94.1 (×6.3)31.3–72.3 (×2.3)
 No. of axile rootsPSRcountCount11
 Length of axile rootPSRsumCentimeters17.45–52 (×3)17.45–30.3 (×1.7)
 Branch rootsPSRbranchCentimeters · (centimeters of axile root)−119.9–109.3 (×5.5)29.3–104.3 (×3.6)
CNRs
 Length (including branch roots)CNRLCentimeters0–3,856.70–2,266.5
CNRpcCNRpcPercentage (of TRL)0–57.10–49.8
 No. of axile rootsCNRcountCount0–20–2
 Cumulated length of axile rootsCNRsumCentimeters0–113.90–47.87
 Branch rootsCNRbranchCentimeters · (centimeters of axile root)−10–77.80–77.8
LNRs
 Length (including branch roots)LNRLCentimeters99.5–5,806.5 (×58.5)216.1–2,532.4 (×11.7)
LNRpcLNRpcPercentage (of TRL)4.2–72.7 (×17.5)6–64.8 (×10.9)
LNRcountLNRcountCount2–22.2 (×11.1)3.3–15.3 (×4.6)
LNRsumLNRsumCentimeters25.9–485.548–232 (×4.8)
 Branch rootsLNRbranchCentimeters · (centimeters of axile root)−12.1–25.4 (×12.1)3.2–15.9 (×5)
Open in a separate windowThe third reason for dissecting the different root types in this study was that they seem to have independent genetic regulation through major genes. Genes affecting specifically nodal root growth have been identified in maize (Hetz et al., 1996; Hochholdinger and Feix, 1998) and rice (Inukai et al., 2001, 2005; Liu et al., 2005, 2009; Zhao et al., 2009; Coudert et al., 2010; Gamuyao et al., 2012). Here, we also dissect branch (lateral) development on the seminal or nodal roots. Genes specific to branch roots have been identified in Arabidopsis (Casimiro et al., 2003; Péret et al., 2009a), rice (Hao and Ichii, 1999; Wang et al., 2006; Zheng et al., 2013), and maize (Hochholdinger and Feix, 1998; Hochholdinger et al., 2001; Woll et al., 2005).This study explored the hypothesis that adult root systems of B. distachyon contain genotypic variation that can be exploited through phenotyping and genotyping to increase cereal yields. A selection of 79 wild lines of B. distachyon from various parts of the Middle East (Fig. 2 shows the geographic origins of the lines) was phenotyped. They were selected for maximum genotypic diversity from 187 diploid lines analyzed with 43 simple sequence repeat markers (Vogel et al., 2009). We phenotyped shoots and mature root systems concurrently because B. distachyon is small enough to complete its life cycle in relatively small pots of soil with minimal influence of pot size compared with crops, such as wheat. We further phenotyped a subset of this population under irrigation (well watered) and drought to assess genotype response to water supply. By conducting whole-plant studies, we aimed to identify phenotypes that described partitioning among shoot and root components and within seed-borne and stem-borne roots. Phenotypes that have the potential to be beneficial to shoot and root components may speed up genetic gain in future.Open in a separate windowFigure 2.B. distachyon lines phenotyped in this study and their geographical origin. Capital letters in parentheses indicate the country of origin: Turkey (T), Spain (S), and Iraq (I; Vogel et al., 2009). a, Adi3, Adi7, Adi10, Adi12, Adi13, and Adi15; b, Bd21 and Bd21-3 are the reference lines of this study. Bd21 was the first sequenced line (Vogel et al., 2010) and root system (described in detail in Watt et al., 2009), and Bd21-3 is the most easily transformed line (Vogel and Hill, 2008) and parent of a T-DNA mutant population (Bragg et al., 2012); c, Gaz1, Gaz4, and Gaz7; d, Kah1, Kah2, and Kah3. e, Koz1, Koz3, and Koz5; f, Tek1 and Tek6; g, exact GPS coordinates are unknown for lines Men2 (S), Mur2 (S), Bd2.3 (I), Bd3-1 (I), and Abr1 (T).  相似文献   

3.
The C4 photosynthesis carbon-concentrating mechanism in maize (Zea mays) has two CO2 delivery pathways to the bundle sheath (BS; via malate or aspartate), and rates of phosphoglyceric acid reduction, starch synthesis, and phosphoenolpyruvate regeneration also vary between BS and mesophyll (M) cells. The theoretical partitioning of ATP supply between M and BS cells was derived for these metabolic activities from simulated profiles of light penetration across a leaf, with a potential 3-fold difference in the fraction of ATP produced in the BS relative to M (from 0.29 to 0.96). A steady-state metabolic model was tested using varying light quality to differentially stimulate M or BS photosystems. CO2 uptake, ATP production rate (JATP; derived with a low oxygen/chlorophyll fluorescence method), and carbon isotope discrimination were measured on plants under a low light intensity, which is considered to affect C4 operating efficiency. The light quality treatments did not change the empirical ATP cost of gross CO2 assimilation (JATP/GA). Using the metabolic model, measured JATP/GA was compared with the predicted ATP demand as metabolic functions were varied between M and BS. Transamination and the two decarboxylase systems (NADP-malic enzyme and phosphoenolpyruvate carboxykinase) were critical for matching ATP and reduced NADP demand in BS and M when light capture was varied under contrasting light qualities.Interest in the C4 pathway has been increased by the potential for enhancing crop productivity and maintaining yield stability in the face of global warming and population pressure (Friso et al., 2010; Zhu et al., 2010; Covshoff and Hibberd, 2012). Maize (Zea mays), a C4 plant of the NADP-malic enzyme (ME) subtype, is a leading grain production cereal (www.fao.org). C4 photosynthesis is a shared activity between mesophyll (M; abbreviations are listed in BS) cells, coupled to allow the operation of a biochemical carbon-concentrating mechanism (CCM). The CCM effectively minimizes photorespiration by increasing the CO2 concentration in the bundle sheath (CBS), where Rubisco is exclusively expressed. Since BS and M are connected by plasmodesmata, some CO2 retrodiffuses. The refixation of that escaping CO2 by the CCM increases the activity of the CCM and the total ATP demand (ATPBS + ATPM) for gross CO2 assimilation (GA; [ATPBS + ATPM]/GA), from a theoretical minimum of five ATPs (Furbank et al., 1990). Leakiness (Φ), the amount of CO2 retrodiffusing relative to phosphoenolpyruvate (PEP) carboxylation rate, is therefore a proxy for the coordination between the CCM and assimilatory activity (Henderson et al., 1992; Tazoe et al., 2008; Kromdijk et al., 2010; Ubierna et al., 2011; Bellasio and Griffiths, 2013).

Table I.

Variables and acronyms described in the text
AbbreviationDefinitionUnit
ANet assimilationμmol m−2 s−1
ABAbsorbed light
AB BS/MPartitioning of absorbed lightDimensionless
ATPBSATP demand in BSμmol m−2 s−1
ATPMATP demand in Mμmol m−2 s−1
BSBundle sheath
CBSCO2 concentration in BSμmol mol−1
CCMCarbon-concentrating mechanism
CEFCyclic electron flow
DHAPDihydroxyacetone phosphate
ETRElectron transport rateμmol m−2 s−1
GAGross assimilation (A + RLIGHT)μmol m−2 s−1
gBSBundle sheath conductance to CO2, calculated by fitting JMOD to JATPmol m2 s−1
IRGAInfrared gas analyzer
JATPTotal ATP production rateμmol m−2 s−1
JATPBSATP production rate in BSμmol m−2 s−1
JATPMATP production rate in Mμmol m−2 s−1
JMODModeled ATP production rateμmol m−2 s−1
LEFLinear electron flow
LCPLight compensation point
MMesophyll
MALMalate
MDHMalate dehydrogenase
MDHBSMalate dehydrogenase reaction rate in BSμmol m−2 s−1
MDHMMalate dehydrogenase reaction rate in Mμmol m−2 s−1
MEMalic enzyme
MEMalic enzyme reaction rateμmol m−2 s−1
NADPHBSNADPH demand in BSμmol m−2 s−1
NADPHTOTTotal NADPH demandμmol m−2 s−1
OAAOxaloacetic acid
PARPhotosynthetically active radiationμE m−2 s−1
PEPPhosphoenolpyruvate
PEPCKPhosphoenolpyruvate carboxykinase
PEPCKPEPCK reaction rateμmol m−2 s−1
PGA3-Phosphoglyceric acid
PPDKPyruvate phosphate dikinase
PPDKPPDK reaction rateμmol m−2 s−1
PRPGA reduction
PRBSPR rate in BSμmol m−2 s−1
PRMPR rate in Mμmol m−2 s−1
RBSRespiration in the light in BSμmol m−2 s−1
RLIGHTRespiration in the lightμmol m−2 s−1
RPPReductive pentose phosphate
RuBPRibulose-1,5-bisphosphate
RuPRibulose-5-phosphate
SSStarch synthesis
SSBSStarch synthesis rate in BSμmol m−2 s−1
SSMStarch synthesis rate in Mμmol m−2 s−1
SSTOTTotal starch synthesis rateμmol m−2 s−1
TTransamination rateμmol m−2 s−1
VCRubisco carboxylation rateμmol m−2 s−1
VORubisco oxygenation rateμmol m−2 s−1
VPPEP carboxylation rateμmol m−2 s−1
Y(II)Yield of PSII
Δ13C isotopic discrimination
δ13C13C isotopic composition relative to Pee Dee Belemnite
ΦLeakinessDimensionless
Open in a separate windowRecently, the maize C4 subgroup has been shown to be complicated by the presence of two BS decarboxylation enzyme systems (NADP-ME and phosphoenolpyruvate carboxykinase [PEPCK]), presumably both acting as CO2 delivery pathways (via malate [MAL] and Asp, respectively; Furumoto et al., 1999, 2000; Wingler et al., 1999; Eprintsev et al., 2011; Furbank, 2011; Pick et al., 2011). There is also an extensive overlap between BS and M functions, since both cell types can synthesize starch (Spilatro and Preiss, 1987; Kanai and Edwards, 1999) and reduce phosphoglyceric acid (PGA; Majeran and van Wijk, 2009; see the overall scheme in Fig. 1). Additionally, energetic partitioning can also vary between cell types, since the total ATP produced (JATP) per CO2 fixed in GA (JATP/GA) may be produced in BS (mainly through cyclic electron flow [CEF] around PSI) or in M (mainly through linear electron flow [LEF]), depending on the light locally available in BS or M (Kramer and Evans, 2011; Yin and Struik, 2012). Furthermore, although all NADPH is produced in M, the only compartment operating linear electron transport and oxidizing water, some NADPH is exported to BS through MAL diffusion, to meet the reducing power demand therein (NADPHBS). To capture the complex C4 physiology, several models of C4 photosynthesis have been developed (Berry and Farquhar, 1978; Laisk and Edwards, 2000, 2009; von Caemmerer, 2000). The earlier approaches were developed into the von Caemmerer (2000) C4 model. In particular, the associated light-limited equations (referred to subsequently as the “C4 model”) are used to estimate the parameters needed to resolve the isotopic discrimination (Δ) model, widely employed to study Φ under low-light conditions (for review, see Ubierna et al., 2011). The C4 model partitions JATP into two fractions: (1) the ATP consumed by PEP carboxylase, and (2) the ATP consumed by the C3 activity (glyoxylate recycling, PGA reduction [PR], and ribulose 1,5-bisphosphate [RuBP] regeneration). These activities are located in M, BS, or both compartments (see the overall scheme in Fig. 1). However, the C4 model simplifies the spatial compartmentalization between BS and M, and in this paper, we now develop the energetic implications of the differential contribution of M and BS to C4 photosynthesis under different light regimes.Open in a separate windowFigure 1.Metabolic model of C4 assimilation, rates of reaction, and net fluxes between BS and M. The overall scheme reports the reactions of the CCM (Furbank, 2011), Rubisco carboxylation, the reactions of the RPP pathway, the synthesis of starch, respiration, and glyoxylate recycling reactions. The tables, with the corresponding enzyme names, show the actual reaction rates, expressed relative to GA (5.13 μmol m−2 s−1), per unit of substrate transformed. Rates were estimated by parameterizing the model equations (PAR = 125 μE m−2 s−1 (A = 3.96 μmol m−2 s−1; RLIGHT = 1.17 μmol m−2 s−1; JATP = 28.6 μmol m−2 s−1), the output of the C4 model (VC = 5.35 μmol m−2 s−1; VP = 5.89 μmol m−2 s−1; VO = 0.44 μmol m−2 s−1), and the output of the Δ model (Φ = 0.23) under three characteristic ratios of ATP partitionings. These were numbered 1, 2, and 3. Condition 1 corresponds to the lowest ATP available in BS (ATP partitioning similar to that under blue light; Fig. 4B), condition 2 corresponds to an intermediate ATP availability in BS (ATP partitioning equal to that under red light; Fig. 4B), and condition 3 corresponds to the highest ATP available in BS (ATP partitioning equal to that under green light; Fig. 4B). The inset shows net metabolite fluxes between M and BS in multiples of GA. The ATP demand in BS (ATPBS) and M (ATPM), the total NADPH demand (NADPHTOT), and the NADPHBS were also calculated in the same three relevant conditions. PYR, Pyruvic acid.Because of these anatomical, metabolic, and energetic complexities, C4 metabolism is highly sensitive to limiting light intensity (Bellasio and Griffiths, 2013) and, potentially, light quality (Evans et al., 2007). Light quality has a greater influence on C4 photosynthesis than on C3. Leaf pigments preferentially absorb the blue and red region of the spectra, and some wavelengths penetrate deeper into leaves. It was shown in C3 leaves that exposure to different wavelengths results in characteristic light penetration profiles, which, translated into different gradients in PSII yield, rates of ATP production, and assimilation (A) within the leaf (Terashima et al., 2009). In C4 leaves, because of the concentric anatomy, light reaches M cells before the deeper BS (Evans et al., 2007) and could alter the balance between light harvesting and energetic partitioning between BS and M.In this paper, we model the likely profiles of light penetration for specific wavelengths associated with red, green, and blue light within a maize M and BS leaf cross section and calculate the impact on potential ATP production for each cell type. We calculate the proportion of absorbed light (AB) for each wavelength, expressed as AB BS/M, the fraction of photons absorbed in BS relative to the photons absorbed in M, from which we derive JATPBS/JATPM, the fraction of ATP produced in BS relative to the ATP produced in M. Second, we developed a steady-state metabolic model (Fig. 1; von Caemmerer 2000), to capture the spatial separation between BS and M and partitions the ATP demand between BS and M cells in terms of PR, starch synthesis (SS), and PEP regeneration, so as to meet the ATP availability in each cell type (Evans et al., 2007). Third, photosynthetic characteristics (leaf-level ATP production rate, CO2 assimilation, stomatal conductance, and Φ derived from online carbon isotope discrimination [Δ]) were measured under red, green, and blue light, and red, green, and blue light in combination (RGB), using a decreasing photon flux density (from 500 to 50 μE m−2 s−1) to investigate the importance of metabolic plasticity under limiting light intensities.

Table II.

Steady-state equations for the metabolic model of C4 assimilationProcesses described by Equations 4 to 10 can be calculated directly from the measured data for A, RLIGHT, and the output of the von Caemmerer C4 model (VO, VP, and VC), while Equations 11 to 21 require prior allocation of SS, PR, and PEPCK. For simplicity, enzyme names in italics represent the enzyme reaction rate. For stoichiometric consistency, reaction rates are calculated as rates of substrate transformation.
ProcessSymbolReaction RateEquationLocalizationNotes
Gross assimilationGA(4)GA and RLIGHT rates are expressed per CO2.
RuP phosphorylation(5)BSRuP phosphorylation supplies Rubisco carboxylating activity (VC) together with oxygenating activity (VO).
Total PRPRTOT(6)BS and MThis equation calculates the total rate of PR on the basis of the PGA produced by Rubisco carboxylation (2VC), Rubisco oxygenation (VO), and glyoxylate recycling (0.5VO) and considers the PGA consumed by respiration; 1/3 is the stoichiometric conversion between respiration (expressed per CO2) and PR (expressed per triose).
Total NADPH demandNADPHTOT(7)BS and MPR consumes one NADPH per PGA; the total rate of PR is PRTOT (see note to Eq. 6); in glyoxylate regeneration (per glyoxylate), 0.5 NADH is produced by Gly decarboxylase, 0.5 NADH is consumed by hydroxypyruvate reductase, and one ferredoxin (equivalent to 0.5 NADPH) is consumed by Gln synthetase; in total, 0.5 NADPH is consumed per glyoxylate (equivalent to VO rate; Supplemental Table S1; Yoshimura et al., 2004).
DHAP entering RPP(8)BSThe DHAP entering the RPP pathway corresponds to the total PR rate minus the DHAP used for starch synthesis, which in this work is expressed per triose.
Total SSSSTOT(9)BS and MIn this model, assimilation is entirely converted to starch; this assumption does not influence energetics, as starch synthesis has the same ATP demand as phloem-loaded Suc; in Equation 9, 1/3 converts the stoichiometry of A (expressed per CO2) to the stoichiometry of SS (expressed per triose).
Total PEP regeneration(10)BS and MPEP regeneration rate equals PEP consumption rate VP at steady state; PEP can be regenerated either by PPDK (mainly in M but active also in BS) or by PEPCK in BS; in this study, PPDK activity was assumed to be zero in BS.
Total ATP demandATPBS + ATPM(11)BS and MEquation 11 calculates the total ATP demand as the sum of ATP demand for PR (one ATP per PGA, corresponding to PR), RuBP regeneration (one ATP per RuP, corresponding to VC + VO), glyoxylate recycling (one ATP per glyoxylate, corresponding to VO), starch synthesis (0.5 ATP per triose, corresponding to SS), and PEP regeneration (one ATP per PEPCK catalytic event or two ATP per PPDK catalytic event); compared with the original formulation of the C4 model, Equation 11 separates the ATP demand for PEPCK and PPDK, includes the ATP demand for SS, and considers the PGA utilized by respiration, which does not need to be reduced (see Eq. 6).
ATP demand in BSATPBS(12)BSThe ATP demand in BS is brought about by PR (at the rate of PRBS), RuBP regeneration (at the rate of VC + VO), glyoxylate recycling (at the rate of VO), starch synthesis (0.5 ATP per triose), and PEPCK activity (one ATP per OAA; see note to Eq. 11).
ATP demand in MATPM(13)MThe ATP demand in M is brought about by PR (at the rate of PRM), SS, and PPDK (two ATPs per pyruvic acid; see note to Eq. 11).
NADPH demand in BSNADPHBS(14)BSThe NADPH demand in BS is brought about by PR (one NADPH per PGA) and glyoxylate recycling, which consumes 0.5 NADPH per glyoxylate (corresponding to VO; see Supplemental Table S2).
NADPH supply to BSMDHM(15)BSAll NADPH available in BS is produced in M and exported through the MAL shuttle because we have assumed that no linear electron transport (i.e. water oxidation) occurred in BS; for this reason, the NADPH supply to BS corresponds to the NADPH consumed to reduce OAA to MAL in M, the process responsible for NADPH export, and not to the rate of MAL decarboxylation in BS, which depends on T, PEPCK, and MDHBS (Eq. 19).
MDH activity in MMDHM(16)MMDH activity supplies the NADPH demand in BS; Equation 16 was derived from Equations 14 and 15.
TransaminationT(17)BS and MEquation 17 expresses that, at steady state, all OAA is either transaminated or reduced; since T bypasses the MDHM reaction, which is the reaction responsible for NADPH export to BS (see note to Eq. 15), T has the function of balancing NADPH supply and demand, which becomes apparent when Equations 15 and 17 are combined.
MDHMDHBST − PEPCK(18)BSMDH is assumed to operate a fast conversion at equilibrium; therefore, it is passively regulated by the substrate availability: the OAA that is not used by PEPCK is reduced to MAL by MDH; MDH may use NADH, since no NADPH-dependent reduction of OAA has been observed in maize (Kanai and Edwards, 1999) and it is likely mitochondrial (Rathnam, 1978; Chapman and Hatch, 1981); the NADH regeneration may be carried out by chloroplastic ME, which is reported to react both with NADP and NAD (Chapman and Hatch, 1981); however, the process may be more complicated (Eprintsev et al., 2011, and refs. therein); note that in this study, we assumed that cells are decompartmentalized while PEPCK rate was manipulated to increase between zero and a maximum rate in response to ATP availability (see “Minimum and Maximum BS Allocation” for details).
MEMEMDHM + MDHBS19BSEquation 19 expresses that the rate of MAL oxidation by ME corresponds to the rate of MAL produced by MDH activity in M plus the rate of MAL produced by MDH activity in BS.
PPDKPPDKVP − PEPCK20MThe PEP regenerated by PEPCK in BS diffuses to M and reduces the requirement of PEP regenerated by PPDK in M.
PR in MPRMPRTOT − PRBS21MPR is a shared process between BS and M.
Open in a separate windowFor instance, AB BS/M and JATPBS/JATPM were both lower under the blue light (wavelength 460 nm), which is rapidly extinguished within the M leaf profile, than under white light, confirming that light quality perturbs C4 energetics. In spite of this shift, when maize plants were exposed to different light qualities, there was no change in Φ, indicating that, at steady state, the coordination between CCM activity and Rubisco assimilation was retained (Ubierna et al., 2011; Sun et al., 2012). The modeled metabolic plasticity projected a window for ATP demand partitioning (ATPBS/ATPM), which matched the values for JATPBS/JATPM supply estimated under red, green, and blue light. We show that the plasticity of C4 metabolism, and in particular the possibility of shifting between MAL and Asp as a primary carboxylase product, was of pivotal importance in allowing the plasticity of ATP and NADPH demand. In conclusion, our study explains the extensive overlap between BS and M functions and the requirement for at least two decarboxylase systems in NADP-ME subtype plants such as maize, providing an explanation for empirical observations on the diversity of decarboxylase activities and PEP regeneration pathways (Rathnam, 1978; Chapman and Hatch, 1981; Wingler et al., 1999; Eprintsev et al., 2011; Furbank, 2011; Pick et al., 2011).  相似文献   

4.
5.
6.
GTP cyclohydrolase I (GCYH-I) is an essential Zn2+-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in ∼25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e.g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn2+-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn2+ starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and active-site architecture. While GCYH-IA is a unimodular, homodecameric, Zn2+-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development.The Zn2+-dependent enzyme GTP cyclohydrolase I (GCYH-I; EC 3.5.4.16) is the first enzyme of the de novo tetrahydrofolate (THF) biosynthesis pathway (Fig. (Fig.1)1) (38). THF is an essential cofactor in one-carbon transfer reactions in the synthesis of purines, thymidylate, pantothenate, glycine, serine, and methionine in all kingdoms of life (38), and formylmethionyl-tRNA in bacteria (7). Recently, it has also been shown that GCYH-I is required for the biosynthesis of the 7-deazaguanosine-modified tRNA nucleosides queuosine and archaeosine produced in Bacteria and Archaea (44), respectively, as well as the 7-deazaadenosine metabolites produced in some Streptomyces species (33). GCYH-I is encoded in Escherichia coli by the folE gene (28) and catalyzes the conversion of GTP to 7,8-dihydroneopterin triphosphate (55), a complex reaction that begins with hydrolytic opening of the purine ring at C-8 of GTP to generate an N-formyl intermediate, followed by deformylation and subsequent rearrangement and cyclization of the ribosyl moiety to generate the pterin ring in THF (Fig. (Fig.1).1). Notably, the enzyme is dependent on an essential active-site Zn2+ that serves to activate a water molecule for nucleophilic attack at C-8 in the first step of the reaction (2).Open in a separate windowFIG. 1.Reaction catalyzed by GCYH-I, and metabolic fate of 7,8-dihydroneopterin triphosphate.A homologous GCYH-I is found in mammals and other higher eukaryotes, where it catalyzes the first step of the biopterin (BH4) pathway (Fig. (Fig.1),1), an essential cofactor in the biosynthesis of tyrosine and neurotransmitters, such as serotonin and l-3,4-dihydroxyphenylalanine (3, 52). Recently, a distinct class of GCYH-I enzymes, GCYH-IB (encoded by the folE2 gene), was discovered in microbes (26% of sequenced Bacteria and most Archaea) (12), including several clinically important human pathogens, e.g., Neisseria and Staphylococcus species. Notably, GCYH-IB is absent in eukaryotes.The distribution of folE (gene product renamed GCYH-IA) and folE2 (GCYH-IB) in bacteria is diverse (12). The majority of organisms possess either a folE (65%; e.g., Escherichia coli) or a folE2 (14%; e.g., Neisseria gonorrhoeae) gene. A significant number (12%; e.g., B. subtilis) possess both genes (a subset of 50 bacterial species is shown in Table Table1),1), and 9% lack both genes, although members of the latter group are mainly intracellular or symbiotic bacteria that rely on external sources of folate. The majority of Archaea possess only a folE2 gene, and the encoded GCYH-IB appears to be necessary only for the biosynthesis of the modified tRNA nucleoside archaeosine (44) except in the few halophilic Archaea that are known to synthesize folates, such as Haloferax volcanii, where GCYH-IB is involved in both archaeosine and folate formation (13, 44).

TABLE 1.

Distribution and candidate Zur-dependent regulation of alternative GCYH-I genes in bacteriaa
OrganismcPresence of:
folEfolE2
Enterobacteria
    Escherichia coli+
    Salmonella typhimurium+
    Yersinia pestis+
    Klebsiella pneumoniaeb++a
    Serratia marcescens++a
    Erwinia carotovora+
    Photorhabdus luminescens+
    Proteus mirabilis+
Gammaproteobacteria
    Vibrio cholerae+
    Acinetobacter sp. strain ADP1++a
    Pseudomonas aeruginosa++a
    Pseudomonas entomophila L48++a
    Pseudomonas fluorescens Pf-5++a
    Pseudomonas syringae++a
    Pseudomonas putida++a
    Hahella chejuensis KCTC 2396++a
    Chromohalobacter salexigens DSM 3043++a
    Methylococcus capsulatus++a
    Xanthomonas axonopodis++a
    Xanthomonas campestris++a
    Xylella fastidiosa++a
    Idiomarina loihiensis+
    Colwellia psychrerythraea++
    Pseudoalteromonas atlantica T6c++a
    Pseudoalteromonas haloplanktis TAC125++
    Alteromonas macleodi+
    Nitrosococcus oceani++
    Legionella pneumophila+
    Francisella tularensis+
Betaproteobacteria
    Chromobacterium violaceum+
    Neisseria gonorrhoeae+
    Burkholderia cepacia R18194++
    Burkholderia cenocepacia AU 1054++
    Burkholderia xenovorans+
    Burkholderia mallei+
    Bordetella pertussis+
    Ralstonia eutropha JMP134+
    Ralstonia metallidurans++
    Ralstonia solanacearum+
    Methylobacillus flagellatus+
    Nitrosomonas europaea+
    Azoarcus sp.++
Bacilli/Clostridia
    Bacillus subtilisd++
    Bacillus licheniformis++
    Bacillus cereus+
    Bacillus halodurans++
    Bacillus clausii+
    Geobacillus kaustophilus+
    Oceanobacillus iheyensis+
    Staphylococcus aureus+
Open in a separate windowaGenes that are preceded by candidate Zur binding sites.bZur-regulated cluster is on the virulence plasmid pLVPK.cExamples of organisms with no folE genes are in boldface type.dZn-dependent regulation of B. subtilis folE2 by Zur was experimentally verified (17).Expression of the Bacillus subtilis folE2 gene, yciA, is controlled by the Zn2+-dependent Zur repressor and is upregulated under Zn2+-limiting conditions (17). This led us to propose that the GCYH-IB family utilizes a metal other than Zn2+ to allow growth in Zn2+-limiting environments, a hypothesis strengthened by the observation that an archaeal ortholog from Methanocaldococcus jannaschii has recently been shown to be Fe2+ dependent (22). To test this hypothesis, we investigated the physiological role of GCYH-IB in B. subtilis, an organism that contains both isozymes, as well as the metal dependence of B. subtilis GCYH-IB in vitro. To gain a structural understanding of the metal dependence of GCYH-IB, we determined high-resolution crystal structures of Zn2+- and Mn2+-bound forms of the N. gonorrhoeae ortholog. Notably, although the GCYH-IA and -IB enzymes belong to the tunneling-fold (T-fold) superfamily, there are significant differences in their global and active-site architecture. These studies shed light on the physiological significance of the alternative folate biosynthesis isozymes in bacteria exposed to various metal environments, and offer a structural understanding of the differential metal dependence of GCYH-IA and -IB.  相似文献   

7.
8.
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.Cellular polarity is a fundamental principle in biology (6, 36, 62). The prototypical protein kinase originally identified as a regulator of polarity was termed partitioning defective (Par-1) due to early embryonic defects in Caenorhabditis elegans (52). Subsequent studies revealed that Par-1 is required for cellular polarity in worms, flies, frogs, and mammals (4, 17, 58, 63, 65, 71, 89). An integral role for Par-1 kinases in multiple signaling pathways has also been established, and although not formally addressed, multifunctionality for individual Par-1 family members is implied in reviews of the list of recognized upstream regulators and downstream substrates (Table (Table1).1). Interestingly, for many Par-1 substrates the phosphorylated residues generate 14-3-3 binding sites (25, 28, 37, 50, 59, 61, 68, 69, 78, 95, 101, 103). 14-3-3 binding in turn modulates both nuclear/cytoplasmic as well as cytoplasmic/membrane shuttling of target proteins, thus allowing Par-1 activity to establish intracellular spatial organization (15, 101). The phosphorylation of Par-1 itself promotes 14-3-3 binding, thereby regulating its subcellular localization (37, 59, 101).

TABLE 1.

Multifunctionality of Par-1 polarity kinase pathwaysa
Regulator or substrateFunctionReference(s)
Regulators (upstream function)
    LKB1Wnt signaling, Peutz-Jeghers syndrome, insulin signal transduction, pattern formation2, 63, 93
    TAO1MEK3/p38 stress-responsive mitogen-activated protein kinase (MAPK) pathway46
    MARKKNerve growth factor signaling in neurite development and differentiation98
    aPKCCa2+/DAG-independent signal transduction, cell polarity, glucose metabolism14, 37, 40, 45, 59, 75, 95
    nPKC/PKDDAG-dependent, Ca2+-independent signal transduction (GPCR)101
    PAR-3/PAR-6/aPKC(−); regulates Par-1, assembly of microtubules, axon-dendrite specification19
    GSK3β(−); tau phosphorylation, Alzheimer''s dementia, energy metabolism, body patterning54, 97
    Pim-1 oncogene(−); G2/M checkpoint, effector of cytokine signaling and Jak/STAT(3/5)5
    CaMKI(−); Ca2+-dependent signal transduction, neuronal differentiation99
Substrates (downstream function)
    Cdc25CRegulation of mitotic entry by activation of the cdc2-cyclin B complex25, 72, 78, 103
    Class II HDACControl of gene expression and master regulator of subcellular trafficking28, 50
    CRTC2/TORC2Gluconeogenesis regulator via LKB1/AMPK/TORC2 signaling, PPARγ1a coactivator49
    Dlg/PSD-95Synaptogenesis and neuromuscular junction, tumor suppressor (102)104
    DisheveledWnt signaling, translocation of Dsh from cytoplasmic vesicles to cortex73, 94
    KSR1Regulation of the Ras-MAPK pathway68, 69
    MAP2/4/TAUDynamic instability (67, 83) of microtubules, Alzheimer''s dementia (30)11, 31-33, 47, 70, 96
    Mib/NotchMind bomb (Mib degradation and repression of Notch signaling results in neurogenesis)57, 74, 81
    Par3/OSKAR/LglCytoplasmic protein segregation, cell polarity, and asymmetric cell division7, 10
    Pkp2Desmosome assembly and organization; nuclear shuttling68, 69
    PTPH1Linkage between Ser/Thr and Tyr phosphorylation-dependent signaling103
    Rab11-FIPRegulation of endocytosis (23), trafficking of E-cadherin (64)34
Open in a separate windowaLKB1 also is known as Par-4; MARKK also is known as Ste20-like; (−), inhibitory/negative regulation has been shown; GPCR, G protein-coupled receptors. MARKK is highly homologous to TAO-1 (thousand-and-one amino acid kinase) (46).The mammalian Par-1 family contains four members (Table (Table2).2). Physiological functions of the Par-1b kinase have been studied using targeted gene knockout approaches in mice (9, 44). Two independently derived mouse lines null for Par-1b have implicated this protein kinase in diverse physiological processes, including fertility (9), immune system homeostasis (44), learning and memory (86), the positioning of nuclei in pancreatic beta cells (35, 38), and growth and metabolism (43).

TABLE 2.

Terminology and localization of mammalian Par-1 family members
SynonymsaSubcellular localization
Par-1a, MARK3, C-TAK1, p78/KP78, 1600015G02Rik, A430080F22Rik, Emk2, ETK-1, KIAA4230, mKIAA1860, mKIAA4230, M80359Basolateralb/apicalc
Par-1b, EMK, MARK2, AU024026, mKIAA4207Basolateral
Par1c, MARK1Basolateral
Par1d, MARK4, MARKL1Not asymmetricd
Open in a separate windowaPar should not to be confused with protease-activated receptor 1 (PAR1 [29]); C-TAK1, Cdc twenty-five C-associated kinase 1; MARK, microtubule affinity regulating kinase; MARKL, MAP/microtubule affinity-regulating kinase-like 1.bBasolateral to a lesser degree than Par-1b (37).cHuman KP78 is asymmetrically localized to the apical surface of epithelial cells (76).dVariant that does not show asymmetric localization in epithelial cells when overexpressed (95).Beyond Par-1b, most information regarding the cell biological functions of the Par-1 kinases comes from studies of Par-1a. Specifically, Par-1a has been implicated in pancreatic (76) and hepatocarcinogenesis (51), as well as colorectal tumors (77), hippocampal function (100), CagA (Helicobacter pylori)-associated epithelial cell polarity disruption (82), and Peutz-Jeghers syndrome (48), although the latter association has been excluded recently (27). As a first step toward determining unique and redundant functions of Par-1 family members, mice disrupted for a second member of the family (Par-1a/MARK3/C-TAK1) were generated. We report that Par-1a−/− mice are viable and develop normally, and adult mice are hypermetabolic, have decreased white and brown adipose tissue mass, and unaltered glucose/insulin handling. However, when challenged by a high-fat diet (HFD), Par-1a−/− mice exhibit resistance to hepatic steatosis, resistance to glucose intolerance, and the delayed onset of obesity relative to that of control littermates. Strikingly, overnight starvation results in a complete depletion of glycogen and lipid stores along with an increase in autophagic vacuoles in the liver of Par-1a−/− but not Par-1b−/− mice. Correspondingly, Par-1a−/− mice develop hypoketotic hypoglycemia. These findings reveal unique metabolic functions of two Par-1 family members.  相似文献   

9.
Cj0859c variants fspA1 and fspA2 from 669 human, poultry, and bovine Campylobacter jejuni strains were associated with certain hosts and multilocus sequence typing (MLST) types. Among the human and poultry strains, fspA1 was significantly (P < 0.001) more common than fspA2. FspA2 amino acid sequences were the most diverse and were often truncated.Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and responsible for more than 90% of Campylobacter infections (7). Case-control studies have identified consumption or handling of raw and undercooked poultry meat, drinking unpasteurized milk, and swimming in natural water sources as risk factors for acquiring domestic campylobacteriosis in Finland (7, 9). Multilocus sequence typing (MLST) has been employed to study the molecular epidemiology of Campylobacter (4) and can contribute to virulotyping when combined with known virulence factors (5). FspA proteins are small, acidic, flagellum-secreted nonflagellar proteins of C. jejuni that are encoded by Cj0859c, which is expressed by a σ28 promoter (8). Both FspA1 and FspA2 were shown to be immunogenic in mice and protected against disease after challenge with a homologous strain (1). However, FspA1 also protected against illness after challenge with a heterologous strain, whereas FspA2 failed to do the same at a significant level. Neither FspA1 nor FspA2 protected against colonization (1). On the other hand, FspA2 has been shown to induce apoptosis in INT407 cells, a feature not exhibited by FspA1 (8). Therefore, our aim was to study the distributions of fspA1 and fspA2 among MLST types of Finnish human, chicken, and bovine strains.In total, 367 human isolates, 183 chicken isolates, and 119 bovine isolates (n = 669) were included in the analyses (3). PCR primers for Cj0859c were used as described previously (8). Primer pgo6.13 (5′-TTGTTGCAGTTCCAGCATCGGT-3′) was designed to sequence fspA1. Fisher''s exact test or a chi-square test was used to assess the associations between sequence types (STs) and Cj0859c. The SignalP 3.0 server was used for prediction of signal peptides (2).The fspA1 and fspA2 variants were found in 62.6% and 37.4% of the strains, respectively. In 0.3% of the strains, neither isoform was found. Among the human and chicken strains, fspA1 was significantly more common, whereas fspA2 was significantly more frequent among the bovine isolates (Table (Table1).1). Among the MLST clonal complexes (CCs), fspA1 was associated with the ST-22, ST-45, ST-283, and ST-677 CCs and fspA2 was associated with the ST-21, ST-52, ST-61, ST-206, ST-692, and ST-1332 CCs and ST-58, ST-475, and ST-4001. Although strong CC associations of fspA1 and fspA2 were found, the ST-48 complex showed a heterogeneous distribution of fspA1 and fspA2. Most isolates carried fspA2, and ST-475 was associated with fspA2. On the contrary, ST-48 commonly carried fspA1 (Table (Table1).1). In our previous studies, ST-48 was found in human isolates only (6), while ST-475 was found in both human and bovine isolates (3, 6). The strict host associations and striking difference between fspA variants in human ST-48 isolates and human/bovine ST-475 isolates suggest that fspA could be important in host adaptation.

TABLE 1.

Percent distributions of fspA1 and fspA2 variants among 669 human, poultry, and bovine Campylobacter jejuni strains and their associations with hosts, STs, and CCs
Host or ST complex/ST (no. of isolates)% of strains witha:
P valueb
fspA1fspA2
Host
    All (669)64.335.4
    Human (367)69.530.0<0.001
    Poultry (183)79.220.8<0.001
    Bovine (119)25.274.8<0.0001
ST complex and STs
    ST-21 complex (151)2.697.4<0.0001
        ST-50 (76)NF100<0.0001
        ST-53 (19)NF100<0.0001
        ST-451 (9)NF100<0.0001
        ST-883 (11)NF100<0.0001
    ST-22 complex (22)100NF<0.0001
        ST-22 (11)100NF<0.01
        ST-1947 (9)100NF0.03
    ST-45 complex (268)99.30.7<0.0001
        ST-11 (7)100NFNA
        ST-45 (173)99.40.6<0.0001
        ST-137 (22)95.54.50.001
        ST-230 (14)100NF<0.0001
    ST-48 complex (18)44.455.6NA
        ST-48 (7)100NFNA
        ST-475 (8)NF100<0.001
    ST-52 complex (5)NF100<0.01
        ST-52 (4)NF1000.02
    ST-61 complex (21)NF100<0.0001
        ST-61 (11)NF100<0.0001
        ST-618 (3)NF1000.04
    ST-206 complex (5)NF100<0.01
    ST-283 complex (24)100NF<0.0001
        ST-267 (23)100NF<0.0001
    ST-677 complex (59)100NF<0.0001
        ST-677 (48)100NF<0.0001
        ST-794 (11)100NF<0.001
    ST-692 complex (3)NF1000.04
    ST-1034 complex (5)NF80NA
        ST-4001 (3)NF1000.04
    ST-1287 complex/ST-945 (8)100NFNA
    ST-1332 complex/ST-1332 (4)NF1000.02
    Unassigned STs
        ST-58 (6)NF100<0.01
        ST-586 (6)100NFNA
Open in a separate windowaIn 0.3% of the strains, neither isoform was found. NF, not found.bNA, not associated.A total of 28 isolates (representing 6 CCs and 13 STs) were sequenced for fspA1 and compared to reference strains NCTC 11168 and 81-176. All isolates in the ST-22 CC showed the same one-nucleotide (nt) difference with both NCTC 11168 and 81-176 strains, resulting in a Thr→Ala substitution in the predicted protein sequence (represented by isolate FB7437, GenBank accession number HQ104931; Fig. Fig.1).1). Eight other isolates in different CCs showed a 2-nt difference (isolate 1970, GenBank accession number HQ104932; Fig. Fig.1)1) compared to strains NCTC 11168 and 81-176, although this did not result in amino acid substitutions. All 28 isolates were predicted to encode a full-length FspA1 protein.Open in a separate windowFIG. 1.Comparison of FspA1 and FspA2 isoforms. FspA1 is represented by 81-176, FB7437, and 1970. FspA2 is represented by C. jejuni strains 76763 to 1960 (GenBank accession numbers HQ104933 to HQ104946). Scale bar represents amino acid divergence.In total, 62 isolates (representing 7 CCs and 35 STs) were subjected to fspA2 sequence analysis. Although a 100% sequence similarity between different STs was found for isolates in the ST-21, ST-45, ST-48, ST-61, and ST-206 CCs, fspA2 was generally more heterogeneous than fspA1 and we found 13 predicted FspA2 amino acid sequence variants in total (Fig. (Fig.1).1). In several isolates with uncommon and often unassigned (UA) STs, the proteins were truncated (Fig. (Fig.1),1), with most mutations being ST specific. For example, all ST-58 isolates showed a 13-bp deletion (isolate 3074_2; Fig. Fig.1),1), resulting in a premature stop codon. Also, all ST-1332 CC isolates were predicted to have a premature stop codon by the addition of a nucleotide between nt 112 and nt 113 (isolate 1960; Fig. Fig.1),1), a feature shared with two isolates typed as ST-4002 (UA). A T68A substitution in ST-1960 (isolate T-73494) also resulted in a premature stop codon. Interestingly, ST-1959 and ST-4003 (represented by isolate 4129) both lacked one triplet (nt 235 to 237), resulting in a shorter FspA2 protein. SignalP analysis showed the probability of a signal peptide between nt 22 and 23 (ACA-AA [between the underlined nucleotides]). An A24C substitution in two other strains, represented by isolate 76580, of ST-693 and ST-993 could possibly result in a truncated FspA2 protein as well.In conclusion, our results showed that FspA1 and FspA2 showed host and MLST associations. The immunogenic FspA1 seems to be conserved among C. jejuni strains, in contrast to the heterogeneous apoptosis-inducing FspA2, of which many isoforms were truncated. FspA proteins could serve as virulence factors for C. jejuni, although their roles herein are not clear at this time.  相似文献   

10.
11.
Stomata control gaseous fluxes between the internal leaf air spaces and the external atmosphere and, therefore, play a pivotal role in regulating CO2 uptake for photosynthesis as well as water loss through transpiration. Guard cells, which flank the stomata, undergo adjustments in volume, resulting in changes in pore aperture. Stomatal opening is mediated by the complex regulation of ion transport and solute biosynthesis. Ion transport is exceptionally well understood, whereas our knowledge of guard cell metabolism remains limited, despite several decades of research. In this review, we evaluate the current literature on metabolism in guard cells, particularly the roles of starch, sucrose, and malate. We explore the possible origins of sucrose, including guard cell photosynthesis, and discuss new evidence that points to multiple processes and plasticity in guard cell metabolism that enable these cells to function effectively to maintain optimal stomatal aperture. We also discuss the new tools, techniques, and approaches available for further exploring and potentially manipulating guard cell metabolism to improve plant water use and productivity.Stomata are microscopic, adjustable pores on the leaf surface. The evolution of stomata more than 400 million years ago (Edwards et al., 1986, 1992, 1998) helped facilitate the adaptation of plants to a terrestrial environment, where water is typically a limiting resource. Each stoma is composed of two kidney- or dumbbell-shaped guard cells, whose volume changes to adjust pore aperture, allowing plants to simultaneously regulate CO2 uptake and water loss. This facilitation of gas exchange by stomatal opening is one of the most essential processes in plant photosynthesis and transpiration, affecting plant water use efficiency and agricultural crop yields (Lawson and Blatt, 2014).Plant physiologists have a long history of investigating the behavior of these fascinating structures, reaching back more than a century to the pioneering work of Sir Francis Darwin (Darwin, 1916) and the American botanist Francis Ernest Lloyd (Lloyd, 1908). Major contributions to stomatal research arose from inventing and improving equipment and methods for quantitatively measuring the effects of environmental factors on stomatal pore aperture. After Darwin’s work, it became clear that the stomatal aperture actively responds to changes in the environment and regulates leaf transpiration rates (Meidner, 1987). Over the past century, much has been learned about their structure, development, and physiology.Despite the anatomical simplicity of the stomatal valve, the surrounding guard cells are highly specialized. Guard cells are morphologically distinct from general epidermal cells and possess complex signal transduction networks, elevated membrane ion transport capacity, and modified metabolic pathways. These features allow rapid modulations in guard cell turgor in response to endogenous and environmental signals, promoting the opening and closure of the stomatal pore in time scales of seconds to hours (Assmann and Wang, 2001). A variety of osmotically active solutes contribute to the buildup of stomatal turgor. Potassium (K+) and chloride (Cl) act as the main inorganic ions, and malate2− and sucrose (Suc) function as the main organic solutes. Whereas K+ and Cl are taken up from the apoplast, Suc and malate2− can be imported or synthesized internally using carbon skeletons deriving from starch degradation and/or CO2 fixation in the guard cell chloroplast (Roelfsema and Hedrich, 2005; Vavasseur and Raghavendra, 2005; Lawson, 2009; Kollist et al., 2014). The accumulation of these osmotica lowers the water potential, promoting the inflow of water, the swelling of guard cells, and the opening of the stomatal pore. Most of the ions taken up, or synthesized by guard cells, are sequestered into the vacuole (Barbier-Brygoo et al., 2011). As a result, the guard cell vacuoles undergo dynamic changes in volume and structure, which are crucial for achieving the full amplitude of stomatal movements (Gao et al., 2005; Tanaka et al., 2007; Andrés et al., 2014). During stomatal closure, guard cells reduce their volume through the release of ions into the cell wall and the consequent efflux of water.The transport of osmolytes across the plasma and tonoplast guard cell membranes is energized by H+-ATPase activity, which generates a proton motive force by translocating H+ ions against their concentration gradient (Blatt, 1987a, 1987b; Thiel et al., 1992; Roelfsema and Hedrich, 2005; Gaxiola et al., 2007). After the pioneering work of Fischer demonstrated the importance of K+ uptake in stomatal opening (Fischer, 1968; Fischer and Hsiao, 1968), K+ transport became of central interest and has long been considered the essence of stomatal movement regulation. The development of the voltage clamp technique, along with the relative easy acquisition of knockout mutants and transgenics in the model plant Arabidopsis (Arabidopsis thaliana), helped to uncover the precise mechanism and function of K+ fluxes in guard cells. It is well established that changes in membrane potential in response to several stimuli (e.g. light/darkness, CO2, and abscisic acid [ABA]) alter the direction of K+ transport (Thiel et al., 1992; Blatt, 2000; Roelfsema et al., 2001, 2002, 2004). During stomatal opening, the activation of the proton pump generates a sufficiently negative electric potential to cause the uptake of K+ through the inward-rectifying K+ channels (K+in; Fig. 1). During stomatal closure, K+ outflow from outward-rectifying K+ channels (K+out) results from membrane depolarization (Fig. 2; Blatt, 1988; Schroeder, 1988; Anderson et al., 1992; Sentenac et al., 1992). Besides being gated by opposing changes in voltage, the activation of (K+out) channels is dependent on the extracellular K+ concentration, while that of K+in is not (Blatt, 1988, 1992; Roelfsema and Prins, 1997; Dreyer and Blatt, 2009). There is also strong evidence for H+-coupled K+ symport in guard cells, which could account for up to 50% of total K+ uptake during stomatal opening (Blatt and Clint, 1989; Clint and Blatt, 1989; Hills et al., 2012). At least for K+in, the loss of a single-channel gene in Arabidopsis has little or no impact on stomatal movement (Szyroki et al., 2001), showing the redundancy among the different K+in isoforms and of K+ transport in general.Open in a separate windowFigure 1.Integration of guard cell carbohydrate metabolism with membrane ion transport during stomatal opening. Sugars in guard cells can be imported from the apoplast, derive from starch breakdown, or be synthesized in the Calvin cycle. These sugars then can be stored as osmotically active solutes in the vacuole or metabolized in the cytosol to yield energy, reducing equivalents, and phosphoenolpyruvate (PEP). PEP can be further metabolized to pyruvate in the mitochondrial tricarboxylic acid (CAC) cycle or used as carbon skeletons for the biosynthesis of malate via PEP carboxylase (PEPC) and NAD-dependent malate dehydrogenase (NAD-MDH). Malate (which also can be imported from the apoplast) and the inorganic ions K+ and Cl accumulate in the vacuole, lowering the guard cell osmotic potential, thereby promoting stomatal opening. ABCB14, ATP-binding cassette transporter B14; AcetylCoA, acetyl-CoA; ALMT, aluminum-activated malate transporter; ATP-PFK, ATP-dependent phosphofructokinase; AttDT, dicarboxylate transporter; cINV, cytosolic invertase; cwINV, cell wall invertase; Fru6P, Fru-6-P; Fru1,6P2, fructose 1,6-bisphosphate; Gl6P, Glc-6-P; G3P, glyceraldehyde 3-phosphate; iPGAM, phosphoglycerate mutase isoforms; NRGA1, negative regulator of guard cell ABA signaling1; OAA, oxaloacetate; 2-PGA, 2-phosphoglycerate; 3-PGA, 3-phosphoglycerate; PPi-PFK, PPi-dependent Fru-6-P phosphotransferase; STP, monosaccharide/H+ cotransporter; SUC, Suc/H+ cotransporter; SuSy, Suc synthase; TPT, triose phosphate/phosphate translocator. Compartments are not to scale. The dotted line indicates multiple metabolic steps.Open in a separate windowFigure 2.Proposed pathways of osmolyte dissipation during stomatal closure. While the removal of Cl and K+ is well described in the literature, the fate of Suc and malate during stomatal closure is unclear. Suc can be cleaved by cytosolic invertase (cINV), and the resulting hexoses can be imported into the chloroplast in the form of Glc-6-P (Glc6P). Glc6P is used subsequently for starch biosynthesis. Malate can be removed from the cell via decarboxylation to pyruvate by malic enzyme (ME) and the subsequent complete oxidation in the mitochondrial tricarboxylic acid (CAC) cycle. Alternatively, malate can be converted to PEP via NAD+-dependent malate dehydrogenase (NAD-MDH) and PEP carboxykinase (PEPCK). Gluconeogenic conversion of PEP to Glc6P establishes a possible link between malate removal and starch synthesis. Compartments are not to scale. PEP, Phosphoenolpyruvate; OAA; oxaloacetate; STP, monosaccharide/H+ cotransporter; SUC, Suc/H+ cotransporter; SuSy, Suc synthase; cINV, cytosolic invertase; NRGA1, negative regulator of guard cell ABA signaling1; ALMT, aluminum-activated malate transporter; GPT, Glc-6-P/Pi translocator; cwINV, cell wall invertase; HK, hexokinase; QUAC1, quickly activating anion channel1.Despite the undisputed importance of K+ uptake in stomatal opening, the accumulation of K+ ions alone cannot account for the increase in osmotic pressure necessary to explain stomatal aperture. Studies from the 1980s by MacRobbie and Fischer demonstrated that Vicia faba guard cells take up approximately 2 pmol of K+ during stomatal opening. Assuming that K+ uptake is balanced by the accumulation of similar amounts of counter ions (Cl and/or malate2−), the expected increase in stomatal turgor to approximately 3 MPa is less than the 4.5 MPa expected for fully open stomata (Fischer, 1972; MacRobbie and Lettau, 1980a, 1980b; Chen et al., 2012). The realization that other solutes must accumulate in addition to K+ salts was one of the major paradigm shifts in stomatal physiology research in the last decades, equal to the discovery of ion channels. Suc was put forward as the most likely candidate for the additional osmoticum to support stomatal opening (MacRobbie, 1987; Tallman and Zeiger, 1988; Talbott and Zeiger, 1993, 1998). Nonetheless, this research area subsequently failed to attract notice commensurate with its importance.In the last few years, the metabolism of starch, sugars and, organic acids in guard cells has seen a rebirth, making this the perfect time to review the developments in this field. In this review, we focus on photosynthetic carbon assimilation and respiratory metabolism in guard cells and provide a historical overview of the subject that highlights the most up-to-date and novel discoveries in guard cell research. We describe the various metabolic pathways separately, but as metabolism is an integrated network, we also discuss their reciprocal and beneficial interactions. Finally, we highlight their connection with the metabolism in the subjacent mesophyll cells and how they integrate with guard cell signal transduction networks and membrane ion transport to regulate stomatal movements. The enzymes and transporters discussed in this review are listed in
Arabidopsis Genome Initiative CodeGeneProteinFunction
Malate transport
 AT1G28010ABCB14ATP-binding cassette transporter B14Import of apoplastic malate
 AT5G47560tDTDicarboxylate transporterTransport of carboxylates into the vacuole
 AT3G18440ALMT9Aluminum-activated malate transporter9Transport of Cl/malate2− into the vacuole
 AT2G17470ALMT6Aluminum-activated malate transporter6Transport of malate2− into the vacuole
 AT4G17970ALMT12/QUAC1Aluminum-activated malate transporter12Export of cytosolic Cl/malate2− to the apoplast
Malate metabolism
 –PEPCPhosphoenolpyruvate carboxylaseβ-Carboxylation of PEP to OAA
 –NAD-MDHNAD+-dependent malate dehydrogenaseReduction of OAA to malate
 –MEMalic enzymeOxidative decarboxylation of malate to pyruvate
 AT4G37870PEPCK1PEP carboxykinase1Conversion of OAA to PEP
 –PPDKPyruvate, orthophosphate dikinaseConversion of pyruvate to PEP
Other carboxylates
 –TPTTriose phosphate/phosphate translocatorExport of triose phosphate from the chloroplast to the cytosol
 AT4G05590NRGA1Negative regulator of guard cell ABA signaling1Putative mitochondrial pyruvate carrier
 –SDH2Succinate dehydrogenase2Oxidation of succinate to fumarate
 AT2G47510FUM1Fumarase1Hydration of fumarate to malate
 –iPGAMPhosphoglycerate mutaseInterconversion of 3-PGA to 2-PGA
 –PPi-PFKPPi-dependent Fru-6-P phosphotransferasePhosphorylation of Fru-6-P to Fru-1,6-bisphosphate
 –ATP-PFKATP-dependent phosphofructokinasePhosphorylation of Fru-6-P to Fru-1,6-bisphosphate
Calvin cycle
 –RubiscoRubiscoCarboxylation of ribulose 1,5-bisphosphate
 AT3G55800SBPaseSedoheptulose-bisphosphataseDephosphorylation of sedoheptulose-1,7-bisphosphate to sedoheptulose-7-phosphate
Sugar metabolism
 AT4G29130HK1Hexokinase1Phosphorylation of Glc to Glc-6-P
 AT4G02280SuSySuc synthase3Interconversion of Suc to Fru and UDP-Glc
 –cINVCytosolic invertaseHydrolysis of Suc to Fru and Glc
 –cwINVCell wall invertaseHydrolysis of Suc to Fru and Glc
Sugar transport
 AT1G11260STP1Monosaccharide/H+ cotransporter1Import of apoplastic hexose sugars
 AT3G19930STP4Monosaccharide/H+ cotransporter4Import of apoplastic hexose sugars
 AT1G71880SUC1Suc/H+ cotransporter1Import of apoplastic Suc
 AT2G02860SUC3Suc/H+ cotransporter3Import of apoplastic Suc
Starch degradation
 AT3G23920BAM1β-Amylase1Hydrolysis of α-1,4 external glucoside linkages in starch
 AT1G69830AMY3α-Amylase3Hydrolysis of α-1,4 internal glucoside linkages in starch
Starch synthesis
 –GPTGlc-6-P/Pi translocatorUptake of cytosolic Glc-6-P into the chloroplast
 AT4G24620PGIPhosphoglucose isomeraseConversion of Fru-6-P to Glc-6-P
 AT5G51820PGM1Phosphoglucomutase1Conversion of Glc-6-P to Glc-1-P
 AT5G48300APS1ADPGlc pyrophosphorylase small subunitConversion of Glc-1-P to ADPGlc, catalytic subunit
 –APLADPGlc pyrophosphorylase large subunitConversion of Glc-1-P to ADPGlc, regulatory subunit
Various
 AT3G45780PHOT1Phototropin1Blue light photoreceptor
 AT5G58140PHOT2Phototropin2Blue light photoreceptor
 AT4G14480BLUS1Blue light signaling1Protein kinase, regulator of blue light-induced stomatal opening
 –PP1Protein phosphatase1Regulator of blue light-induced stomatal opening
 AT3G01500CA1Carbonic anhydrase1Interconversion of CO2 and water into H2CO3
 AT1G70410CA4Carbonic anhydrase4Interconversion of CO2 and water into H2CO3
 AT1G62400HT1High leaf temperature1Protein kinase, regulator of CO2-induced stomatal closure
Open in a separate window  相似文献   

12.
Coordination of Leaf Photosynthesis,Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza)     
Rita Giuliani  Nuria Koteyeva  Elena Voznesenskaya  Marc A. Evans  Asaph B. Cousins  Gerald E. Edwards 《Plant physiology》2013,162(3):1632-1651
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thickleaf), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (Smes), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO2 diffusion (gm), stomatal conductance to gas diffusion (gs), and the gm/gs ratio. While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (Smes) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thickleaf and transpiration rate and a significant positive association between Thickleaf and leaf transpiration efficiency. Interestingly, high gm together with high gm/gs and a low Smes/gm ratio (M resistance to CO2 diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.Leaves have evolved in different environments into a multitude of sizes and shapes, showing great variation in morphology and anatomy (Evans et al., 2004). However, all leaf typologies share common functions associated with chloroplasts, namely to intercept sunlight, take up CO2 and inorganic nitrogen, and perform photosynthesis as a primary process for growth and reproduction.Investigating relationships between leaf anatomy and photosynthetic features (CO2 fixation, which involves physical and biochemical processes and loss of water by transpiration) could lead to the identification of structural features for enhancing crop productivity and improve our understanding of plant evolution and adaptation (Evans et al., 2004).Stomata, through which CO2 and water vapor diffuse into and out of the leaf, are involved in the regulation and control of photosynthetic and transpiration responses (Jarvis and Morison, 1981; Farquhar and Sharkey, 1982). Besides stomata distribution patterns between the abaxial and adaxial lamina surfaces (Foster and Smith, 1986), stomatal density and size are leaf anatomical traits contributing to build the leaf stomatal conductance to gas diffusion (gs). This is calculated as the reciprocal of the stomatal resistances to gas diffusion; stomatal control results in a lower concentration of CO2 in the leaf mesophyll (M) intercellular air space (Ci) than in the atmosphere (Ca; Nobel, 2009).Leaf M architecture greatly contributes to the pattern of light attenuation profiles within the lamina (Terashima and Saeki, 1983; Woolley, 1983; Vogelmann et al., 1989; Evans, 1999; Terashima et al., 2011) and affects CO2 diffusion from the intercellular air space (IAS) to the chloroplast stroma. Therefore, it influences photosynthetic activity (Flexas et al., 2007, 2008) and can have effects on leaf hydrology and transpiration (Sack et al., 2003; Brodribb et al., 2010; Ocheltree et al., 2012). In addition, M architecture sets boundaries for leaf photosynthetic responses to changing environmental conditions (Nobel et al., 1975).Fortunately, several methodologies are currently available (Flexas et al., 2008; Pons et al., 2009) to determine M conductance to CO2 diffusion (gm), expressed per unit of leaf surface area. It is calculated as the reciprocal of the cumulated partial resistances exerted by leaf structural traits and biochemical processes from the substomatal cavities to photosynthetic sites (Evans et al., 2009; Nobel, 2009). The resistance to CO2 diffusion in the liquid phase is 4 orders of magnitude higher than in the gaseous phase (Nobel, 2009); therefore, the changes in CO2 concentration in the leaf gas phase are small in comparison with the changes in the liquid phase (Niinemets, 1999; Aalto and Juurola, 2002; Nobel, 2009). In the liquid phase, the resistance to CO2 transfer is built from contributions by the cell walls, the plasmalemma, cytoplasm, chloroplast membranes, and stroma (Tholen and Zhu, 2011; Tholen et al., 2012); in addition, it involves factors associated with the carboxylation reaction (Kiirats et al., 2002; Evans et al., 2009). Thus, the concentration of CO2 in the chloroplasts (Cc) is lower than Ci and can limit photosynthesis.At steady state, the relationships between the leaf net photosynthetic rate (A), the concentrations of CO2, and the stomatal conductance to CO2 diffusion (gs_CO2) and gm are modeled based on Fick’s first law of diffusion (Nobel, 2009) as:(1)where Ca, Ci, and Cc are as defined above (Flexas et al., 2008).The magnitude of gm has been found to correlate with certain leaf structural traits in some species, in particular with the M cell surface area exposed to IAS per (one side) unit of leaf surface area (Smes) and its extent covered by chloroplasts (Schl; Evans and Loreto, 2000; Slaton and Smith, 2002; Tholen et al., 2012). From a physical modeling perspective, increasing Smes provides more pathways acting in parallel for CO2 diffusion (to and from the chloroplasts) per unit of leaf surface area; thus, it tends to reduce the resistance to CO2 movement into the M cells and to increase gm (Evans et al., 2009; Nobel, 2009). A number of leaf structural traits affect Smes, including leaf thickness, cell density, cell volume and shape, and the fraction of the M cell walls in contact with the IAS (Terashima et al., 2001, 2011), and the degree they are linked to Smes can vary between species (Slaton and Smith, 2002; Terashima et al., 2006). In particular, the presence of lobes on M cells, which are prominent in some Oryza species, may contribute to gm through increasing Smes (Sage and Sage, 2009; Terashima et al., 2011; Tosens et al., 2012). The M cell wall can provide resistance in series for M CO2 diffusion (Nobel, 2009); thicker cell walls may increase resistance to CO2 movement into the M cells and decrease gm (Terashima et al., 2006, 2011; Evans et al., 2009).Other leaf traits, such as M porosity (the fraction of M volume occupied by air spaces [VolIAS]), has been shown to have a positive correlation with gm in some species (Peña-Rojas et al., 2005), but the association may be mediated by light availability (Slaton and Smith, 2002). Leaf thickness (Thickleaf) tends to be negatively linked to gm, and it may set an upper limit for the maximum gm, according to Terashima et al. (2006), Flexas et al. (2008), and Niinemets et al. (2009).With respect to leaf structural traits and water relations, Thickleaf may increase the apoplast path length (resistances in series; Nobel, 2009) in the extra-xylem M (Sack and Holbrook, 2006; Brodribb et al., 2007) for water to reach the evaporation sites, which could decrease the conductance of water through the M and lower the transpiration rate. Interestingly, while thicker M cell walls may reduce gm, they can enable the development of higher water potential gradients between the soil and leaves, which can be decisive for plant survival and longevity under drought conditions (Steppe et al., 2011).The purpose of this study was to provide insight into how the diversity of leaf structure relates to photosynthesis and transpiration among representative cultivated species and wild relatives in the genus Oryza. This includes, in particular, identifying leaf structural features associated with the diffusion of CO2 from the atmosphere to the chloroplasts, photosynthesis, transpiration efficiency (A/E), and drought tolerance. The genus consists of 10 genomic groups and is composed of approximately 24 species (the number depending on taxonomic preferences; Kellogg, 2009; Brar and Singh, 2011), including the cultivated species Oryza sativa and Oryza glaberrima. Oryza species are distributed around the world, and they exhibit a wide range of phenotypes, with annual versus perennial life cycles and sun- versus shade-adapted species (Vaughan, 1994; Vaughan et al., 2008; Brar and Singh, 2011; Jagadish et al., 2011). This diversity in the genus is an important resource, which is being studied to improve rice yield, especially under unfavorable environmental conditions. In particular, O. glaberrima, Oryza australiensis, and Oryza meridionalis are of interest as drought-tolerant species (Henry et al., 2010; Ndjiondjop et al., 2010; Scafaro et al., 2011, 2012), while Oryza coarctata is salt tolerant (Sengupta and Majumder, 2010). In this study, a total of 43 leaf functional and structural parameters were collected on 24 accessions corresponding to 17 species within eight genomes (Brar and Singh (2011). Life cycle is as follows: A = annual; B = biennial; P = poliennial. Habitat is as follows: S = shade; S-Sh = sun-shade.
GenomeSpeciesLife CycleHabitatAccessionNo.
AAO. barthiiASPI 590400*1
AAO. glaberrimaASPI 450430*2
AAO. glumaepatulaPSPI 527362*3
AAO. longistaminataPSIRGC 101207*4
AAO. longistaminataPSIRGC 1017545
AAO. meridionalisA/PSIRGC 93265*6
AAO. nivaraA/BSPI 590405*7
AAO. rufipogonPSPI 1046408
AAO. rufipogonSPI 590421*9
AAO. sativaASIR64*10
AAO. sativaASIR7211
BBO. punctataAS-ShIRGC 105690*12
BBCCO. minutaPS-ShIRGC 101141*13
CCO. officinalisPS-ShPI 59412*14
CCO. rhizomatisPSIRGC 10160915
CCO. rhizomatisPSIRGC 105950*16
CCDDO. altaPS-ShPI 590398*17
CCDDO. latifoliaPS-ShIRGC 100959*18
CCDDO. latifoliaPS-ShIRGC 10517319
EEO. australiensisPSIRGC 101397*20
EEO. australiensisPSIRGC 105277*21
EEO. australiensisPSIRGC 8652722
FFO. brachyanthaBSIRGC 101232*23
HHKKO. coarctataPSIRGC 104502*24
Open in a separate windowFor evaluating aspects of photosynthesis, the model in Equation 1 was considered, and all the listed functional variables, A, gs_CO2, (CaCi), gm, and (CiCc), were determined. In addition, among the leaf functional traits, the M resistance to CO2 diffusion per unit of cell surface area exposed to IAS (reciprocal of gm/Smes) was calculated as described by Evans et al. (2009): it represents the resistance to CO2 diffusion from IAS to chloroplasts in a liquid solution through cell wall and membranes (Nobel, 2009). Leaf transpiration rate (E), A/E, the intrinsic A/E (ratio between A and stomatal conductance to water vapor diffusion [gs_H2O]), gm/gs_CO2 (representing the coordination between gm and gs), and the carbon isotope composition of leaf biomass (δ13C; calculated as 13C/12C) were determined. The value of δ13C has been recognized as a potential indicator of leaf A/E: increased limitations on photosynthesis by decreased gs can lead to higher A/gs_H2O ratios and less discrimination against assimilation of 13CO2 (for review, see Farquhar et al., 1989); the leaf A/E may also be positively linked to the gm/gs ratio (Flexas et al., 2008, 2013; Barbour et al., 2010). With respect to leaf structure, the stomatal density, stomatal pore length, and indices of stomatal pore area on both lamina sides (according to Sack et al., 2003), the Thickleaf, VolIAS, Smes, Schl, area of M cell section (acell) in leaf cross sections, cell wall thickness (Thickcw), and M cell surface lobing (Lobcell) were the principal traits estimated. A statistical multivariate analysis (Child, 2006) was employed to identify clusters of highly interrelated leaf traits; trait-to-trait correlation analysis was carried out to further examine leaf structural, functional, and structural-functional relationships.The following are the main hypotheses examined in this study. (1) Leaf thickness will be associated with certain M structural features. (2) gm will be coordinated with M structural traits. (3) A will be correlated with gs, gm, and E. (4) Leaf structural traits will be involved in the relationship between A and E, which will affect leaf A/E. (5) The gm/gs ratio will be positively correlated with leaf A/E; associations with high Thickcw could have implications for plant drought tolerance.  相似文献   

13.
Genetic Transformation and Mutagenesis via Single-Stranded DNA in the Unicellular,Diazotrophic Cyanobacteria of the Genus Cyanothece     
Hongtao Min  Louis A. Sherman 《Applied and environmental microbiology》2010,76(22):7641-7645
  相似文献   

14.
Characterization of a Thermostable Short-Chain Alcohol Dehydrogenase from the Hyperthermophilic Archaeon Thermococcus sibiricus     
Tatiana N. Stekhanova  Andrey V. Mardanov  Ekaterina Y. Bezsudnova  Vadim M. Gumerov  Nikolai V. Ravin  Konstantin G. Skryabin  Vladimir O. Popov 《Applied and environmental microbiology》2010,76(12):4096-4098
Short-chain alcohol dehydrogenase, encoded by the gene Tsib_0319 from the hyperthermophilic archaeon Thermococcus sibiricus, was expressed in Escherichia coli, purified and characterized as an NADPH-dependent enantioselective oxidoreductase with broad substrate specificity. The enzyme exhibits extremely high thermophilicity, thermostability, and tolerance to organic solvents and salts.Alcohol dehydrogenases (ADHs; EC 1.1.1.1.) catalyze the interconversion of alcohols to their corresponding aldehydes or ketones by using different redox-mediating cofactors. NAD(P)-dependent ADHs, due to their broad substrate specificity and enantioselectivity, have attracted particular attention as catalysts in industrial processes (5). However, mesophilic ADHs are unstable at high temperatures, sensitive to organic solvents, and often lose activity during immobilization. In this relation, there is a considerable interest in ADHs from extremophilic microorganisms; among them, Archaea are of great interest. The representatives of all groups of NAD(P)-dependent ADHs have been detected in genomes of Archaea (11, 12); however, only a few enzymes have been characterized, and the great majority of them belong to medium-chain (3, 4, 14, 16, 19) or long-chain iron-activated ADHs (1, 8, 9). Up to now, a single short-chain archaeal ADH from Pyrococcus furiosus (10, 18) and only one archaeal aldo-keto reductase also from P. furiosus (11) have been characterized.Thermococcus sibiricus is a hyperthermophilic anaerobic archaeon isolated from a high-temperature oil reservoir capable of growth on complex organic substrates (15). The complete genome sequence of T. sibiricus has been recently determined and annotated (13). Several ADHs are encoded by the T. sibiricus genome, including three short-chain ADHs (Tsib_0319, Tsib_0703, and Tsib_1998) (13). In this report, we describe the cloning and expression of the Tsib_0319 gene from T. sibiricus and the purification and the biochemical characterization of its product, the thermostable short-chain ADH (TsAdh319).The Tsib_0319 gene encodes a protein with a size of 234 amino acids and the calculated molecular mass of 26.2 kDa. TsAdh319 has an 85% degree of sequence identity with short-chain ADH from P. furiosus (AdhA; PF_0074) (18). Besides AdhA, close homologs of TsAdh319 were found among different bacterial ADHs, but not archaeal ADHs. The gene flanked by the XhoI and BamHI sites was PCR amplified using two primers (sense primer, 5′-GTTCTCGAGATGAAGGTTGCTGTGATAACAGGG-3′, and antisense primer, 5′-GCTGGATCCTCAGTATTCTGGTCTCTGGTAGACGG-3′) and cloned into the pET-15b vector. TsAdh319 was overexpressed, with an N-terminal His6 tag in Escherichia coli Rosetta-gami (DE3) and purified to homogeneity by metallochelating chromatography (Hi-Trap chelating HP column; GE Healthcare) followed by gel filtration on Superdex 200 10/300 GL column (GE Healthcare) equilibrated in 50 mM Tris-HCl (pH 7.5) with 200 mM NaCl. The homogeneity and the correspondence to the calculated molecular mass of 28.7 kDa were verified by SDS-PAGE (7). The molecular mass of native TsAdh319 was 56 to 60 kDa, which confirmed the dimeric structure in solution.The standard ADH activity measurement was made spectrophotometrically at the optimal pH by following either the reduction of NADP (in 50 mM Gly-NaOH buffer; pH 10.5) or the oxidation of NADPH (in 0.1 M sodium phosphate buffer; pH 7.5) at 340 nm at 60°C. The enzyme exhibited a strong preference for NADP(H) and broad substrate specificity (Table (Table1).1). The highest oxidation rates were found with pentoses d-arabinose (2.0 U mg−1) and d-xylose (2.46 U mg−1), and the highest reduction rates were found with dimethylglyoxal (5.9 U mg−1) and pyruvaldehyde (2.2 U mg−1). The enzyme did not reduce sugars which were good substrates for the oxidation reaction. The kinetic parameters of TsAdh319 determined for the preferred substrates are shown in Table Table2.2. The enantioselectivity of the enzyme was estimated by measuring the conversion rates of 2-butanol enantiomers. TsAdh319 showed an evident preference, >2-fold, for (S)-2-butanol over (RS)-2-butanol. The enzyme stereoselectivity is confirmed by the preferred oxidation of d-arabinose over l-arabinose (Table (Table1).1). The fact that TsAdh319 is metal independent was supported by the absence of a significant effect of TsAdh319 preincubation with 10 mM Me2+ for 30 min before measuring the activity in the presence of 1 mM Me2+ or EDTA (Table (Table3).3). TsAdh319 also exhibited a halophilic property, so the enzyme activity increased in the presence of NaCl and KCl and the activation was maintained even at concentration of 4 M and 3 M, respectively (Table (Table33).

TABLE 1.

Substrate specificity of TsAdh319
SubstrateaRelative activity (%)
Oxidation reactionb
    Methanol0
    2-Methoxyethanol0
    Ethanol36
    1-Butanol80
    2-Propanol100
    (RS)-(±)-2-Butanol86
    (S)-(+)-2-Butanol196
    2-Pentanol67
    1-Phenylmethanol180
    1.3-Butanediol91
    Ethyleneglycol0
    Glycerol16
    d-Arabinose*200
    l-Arabinose*17
    d-Xylose*246
    d-Ribose*35
    d-Glucose*146
    d-Mannose*48
    d-Galactose*0
    Cellobiose*71
Reduction reactionc
    Pyruvaldehyde100
    Dimethylglyoxal270
    Glyoxylic acid36
    Acetone0
    Cyclopentanone0
    Cyclohexanone4
    3-Methyl-2-pentanone*13
    d-Arabinose*0
    d-Xylose*0
    d-Glucose*0
    Cellobiose*0
Open in a separate windowaSubstrates were present in 250 mM or 50 mM (*) concentrations.bRelative rates, measured under standard conditions, were calculated by defining the activity for 2-propanol as 100%, which corresponds to 1.0 U mg−1. Data are averages from triplicate experiments.cRelative rates, measured under standard conditions, were calculated by defining the activity for pyruvaldehyde as 100%, which corresponds to 2.2 U mg−1. Data are averages from triplicate experiments.

TABLE 2.

Apparent Km and Vmax values for TsAdh319
Coenzyme or substrateApparent Km (mM)Vmax (U mg−1)kcat (s−1)
NADPa0.022 ± 0.0020.94 ± 0.020.45 ± 0.01
NADPHb0.020 ± 0.0033.16 ± 0.111.51 ± 0.05
2-Propanol168 ± 291.10 ± 0.090.53 ± 0.04
d-Xylose54.4 ± 7.41.47 ± 0.090.70 ± 0.04
Pyruvaldehyde17.75 ± 3.384.26 ± 0.402.04 ± 0.19
Open in a separate windowaActivity was measured under standard conditions with 2-propanol. Data are averages from triplicate experiments.bActivity was measured under standard conditions with pyruvaldehyde. Data are averages from triplicate experiments.

TABLE 3.

Effect of various ions and EDTA on TsAdh319a
CompoundConcn (mM)Relative activity (%)
None0100
NaCl400206
600227
4,000230
KCl600147
2,000200
3,000194
MgCl21078
CoCl210105
NiSO410100
ZnSO41079
FeSO41074
EDTA1100
580
Open in a separate windowaThe activity was measured under standard conditions with 2-propanol; relative rates were calculated by defining the activity without salts as 100%, which corresponds to 0.9 U mg−1. Data are averages from duplicate experiments.The most essential distinctions of TsAdh319 are the thermophilicity and high thermostability of the enzyme. The optimum temperature for the 2-propanol oxidation catalyzed by TsAdh319 was not achieved. The initial reaction rate of oxidation increased up to 100°C (Fig. (Fig.1).1). The Arrhenius plot is a straight line, typical of a single rate-limited thermally activated process, but there is no obvious transition point due to the temperature-dependent conformational changes of the protein molecule. The activation energy for the oxidation of 2-propanol was estimated at 84.0 ± 5.8 kJ·mol−1. The thermostability of TsAdh319 was calculated from residual TsAdh319 activity after preincubation of 0.4 mg/ml enzyme solution in 50 mM Tris-HCl buffer (pH 7.5) containing 200 mM NaCl at 70, 80, 90, or 100°C. The preincubation at 70°C or 80°C for 1.5 h did not cause a decrease in the TsAdh319 activity, but provoked slight activation. The residual TsAdh319 activities began to decrease after 2 h of preincubation at 70°C or 80°C and were 10% and 15% down from the control, respectively. The determined half-life values of TsAdh319 were 2 h at 90°C and 1 h at 100°C.Open in a separate windowFIG. 1.Temperature dependence of the initial rate of the 2-propanol reduction by TsAdh319. The reaction was initiated by enzyme addition to a prewarmed 2-propanol-NADP mixture. The inset shows the Arrhenius plot of the same data.Protein thermostability often correlates with such important biotechnological properties as increased solvent tolerance (2). We tested the influence of organic solvents at a high concentration (50% [vol/vol]) on TsAdh319 by using either preincubation of the enzyme at a concentration of 0.2 mg/ml with solvents for 4 h at 55°C or solvent addition into the reaction mixture to distinguish the effect of solvent on the protein stability and on the enzyme activity. TsAdh319 showed significant solvent tolerance in both cases (Table (Table4),4), and the effects of solvents could be modulated by salts, acting apparently as molecular lyoprotectants (17). Furthermore, TsAdh319 maintained 57% of its activity in 25% (vol/vol) 2-propanol, which could be used as the cosubstrate in cofactor regeneration (6).

TABLE 4.

Influence of various solvents on TsAdh319 activitya
SolventRelative activity (%)bRelative activity (%)c
Buffer without NaClBuffer with 600 mM NaCl
None100100100
DMSOd98040
DMFAe1011341
Methanol98259
Acetonitrile9500
Ethyl acetate470*33*
Chloroform10579*81*
n-Hexane10560*118*
n-Decane3691*107*
Open in a separate windowaThe activity measured at the standard condition with 2-propanol as a substrate. Data are averages from triplicate experiments.bPreincubation for 4 h at 55°C in the presence of 50% (vol/vol) of solvent prior the activity assay.cWithout preincubation, solvent addition to the reaction mixture up to 50% (vol/vol) or using the buffer saturated by a solvent (*).dDMSO, dimethyl sulfoxide.eDMFA, dimethylformamide.From all the aforesaid we may suppose TsAdh319 or its improved variant to be interesting both for the investigation of structural features of protein tolerance and for biotechnological applications.  相似文献   

15.
Identification of a Polyketide Synthase Coding Sequence Specific for Anatoxin-a-Producing Oscillatoria Cyanobacteria     
Sabrina Cadel-Six  Isabelle Iteman  Caroline Peyraud-Thomas  Stéphane Mann  Olivier Ploux  Annick Méjean 《Applied and environmental microbiology》2009,75(14):4909-4912
  相似文献   

16.
Presence and Prevalence of Viruses in Local and Migratory Honeybees (Apis mellifera) in Massachusetts   总被引:1,自引:0,他引:1  
Anna Welch  Francis Drummond  Sunil Tewari  Anne Averill  John P. Burand 《Applied and environmental microbiology》2009,75(24):7862-7865
  相似文献   

17.
Stress-induced flowering     
Kaede C Wada  Kiyotoshi Takeno 《Plant signaling & behavior》2010,5(8):944-947
Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering.Key words: flowering, stress, phenylalanine ammonia-lyase, salicylic acid, FLOWERING LOCUS T, Pharbitis nil, Perilla frutescensFlowering in many plant species is regulated by environmental factors, such as night-length in photoperiodic flowering and temperature in vernalization. On the other hand, a short-day (SD) plant such as Pharbitis nil (synonym Ipomoea nil) can be induced to flower under long days (LD) when grown under poor-nutrition, low-temperature or high-intensity light conditions.19 The flowering induced by these conditions is accompanied by an increase in phenylalanine ammonia-lyase (PAL) activity.10 Taken together, these facts suggest that the flowering induced by these conditions might be regulated by a common mechanism. Poor nutrition, low temperature and high-intensity light can be regarded as stress factors, and PAL activity increases under these stress conditions.11 Accordingly, we assumed that such LD flowering in P. nil might be induced by stress. Non-photoperiodic flowering has also been sporadically reported in several plant species other than P. nil, and a review of these studies suggested that most of the factors responsible for flowering could be regarded as stress. Some examples of these factors are summarized in 1214

Table 1

Some cases of stress-induced flowering
Stress factorSpeciesFlowering responseReference
high-intensity lightPharbitis nilinduction5
low-intensity lightLemna paucicostatainduction29
Perilla frutescens var. crispainduction14
ultraviolet CArabidopsis thalianainduction23
droughtDouglas-firinduction30
tropical pasture Legumesinduction31
lemoninduction3235
Ipomoea batataspromotion36
poor nutritionPharbitis nilinduction3, 4, 13
Macroptilium atropurpureumpromotion37
Cyclamen persicumpromotion38
Ipomoea batataspromotion36
Arabidopsis thalianainduction39
poor nitrogenLemna paucicostatainduction40
poor oxygenPharbitis nilinduction41
low temperaturePharbitis nilinduction9, 12
high conc. GA4/7Douglas-firpromotion42
girdlingDouglas-firinduction43
root pruningCitrus sp.induction44
Pharbitis nilinduction45
mechanical stimulationAnanas comosusinduction46
suppression of root elongationPharbitis nilinduction7
Open in a separate window  相似文献   

18.
Environmental Isolates of Burkholderia pseudomallei in Ceará State,Northeastern Brazil     
Dione B. Rolim  Marcos F. G. Rocha  Raimunda S. N. Brilhante  Rossana A. Cordeiro  Natanael P. Leit?o-Junior  Timothy J. J. Inglis  José J. C. Sidrim 《Applied and environmental microbiology》2009,75(4):1215-1218
Melioidosis has been considered an emerging disease in Brazil since the first cases were reported to occur in the northeast region. This study investigated two municipalities in Ceará state where melioidosis cases have been confirmed to occur. Burkholderia pseudomallei was isolated in 26 (4.3%) of 600 samples in the dry and rainy seasons.Melioidosis is an endemic disease in Southeast Asia and northern Australia (2, 4) and also occurs sporadically in other parts of the world (3, 7). Human melioidosis was reported to occur in Brazil only in 2003, when a family outbreak afflicted four sisters in the rural part of the municipality of Tejuçuoca, Ceará state (14). After this episode, there was one reported case of melioidosis in 2004 in the rural area of Banabuiú, Ceará (14). And in 2005, a case of melioidosis associated with near drowning after a car accident was confirmed to occur in Aracoiaba, Ceará (11).The goal of this study was to investigate the Tejuçuoca and Banabuiú municipalities, where human cases of melioidosis have been confirmed to occur, and to gain a better understanding of the ecology of Burkholderia pseudomallei in this region.We chose as central points of the study the residences and surrounding areas of the melioidosis patients in the rural areas of Banabuiú (5°18′35″S, 38°55′14″W) and Tejuçuoca (03°59′20″S, 39°34′50′W) (Fig. (Fig.1).1). There are two well-defined seasons in each of these locations: one rainy (running from January to May) and one dry (from June to December). A total of 600 samples were collected at five sites in Tejuçuoca (T1, T2, T3, T4, and T5) and five in Banabuiú (B1, B2, B3, B4, and B5), distributed as follows (Fig. (Fig.2):2): backyards (B1 and T1), places shaded by trees (B2 and T2), water courses (B3 and T3), wet places (B4 and T4), and stock breeding areas (B5 and T5).Open in a separate windowFIG. 1.Municipalities of Banabuiú (5°18′35″S, 38°55′14″W) and Tejuçuoca (03°59′20″S, 39°34′50″W).Open in a separate windowFIG. 2.Soil sampling sites in Banabuiú and Tejuçuoca.Once a month for 12 months (a complete dry/rainy cycle), five samples were gathered at five different depths: at the surface and at 10, 20, 30 and 40 cm (Table (Table1).1). The samples were gathered according to the method used by Inglis et al. (9). Additionally, the sample processing and B. pseudomallei identification were carried out as previously reported (1, 8, 9).

TABLE 1.

Distribution of samples with isolates by site and soil depth
Sitesa and depth (cm)No. of B. pseudomallei isolates in samples from:
Banabuiú (n = 300)Tejuçuoca (n = 300)Total (n = 600)
B1/T13
    Surface2
    10
    201
    30
    40
B2/T21
    Surface1
    10
    20
    30
    40
B3/T315
    Surface2
    102
    204
    303
    404
B4/T45
    Surface
    101
    201
    3011
    401
B5/T52
    Surface
    10
    20
    302
    40
Total62026
Open in a separate windowaSites designated with B are in Banabuiú, and sites designated with T are in Tejuçuoca. See the text for details.The data on weather and soil composition were obtained from specialized government institutions, such as FUNCEME, IPECE, and EMBRAPA. The average annual temperature in both municipalities is between 26 and 28°C. In 2007, the annual rainfall in Tejuçuoca was 496.8 mm, and that in Banabuiú was 766.8 mm. There are a range of soil types in both Tejuçuoca and Banabuiú: noncalcic brown, sodic planossolic, red-yellow podzolic, and litholic. In Banabuiú, there are also alluvial and cambisol soils. The characteristic vegetation in both municipalities is caatinga (scrublands).There were isolates of B. pseudomallei in 26 (4.3%) of the 600 samples collected. The bacterium was isolated at a rate (3%) similar to that previously reported (9). The bacterium isolation occurred in both the dry (53.8%) and the rainy (46.2%) seasons. Tejuçuoca represented 76.9% (20/26) of the strains isolated. Four sites in Tejuçuoca (T1, T3, T4, and T5) and three in Banabuiú (B1, B2, and B4) presented isolates of the bacterium (Table (Table1).1). The isolation of the B. pseudomallei strains varied from the surface down to 40 cm. However, 17 of the 26 positive samples (65.3%) were found at depths between 20 and 40 cm (Table (Table1).1). Only two isolates were found at the surface during the dry season.A study in Vietnam (13) and one in Australia (9) reported the presence of B. pseudomallei near the houses of melioidosis patients. In our study, the same thing happened. Site T3 (15/26; 57.6%) was located 290 m from the patient''s house, as reported by the Rolim group (14).B. pseudomallei was isolated from a sheep paddock in Australia, where animals sought shelter below mango and fig trees (17). In our study, the bacterium was isolated at site T5, a goat corral alongside the house where the outbreak occurred in Tejuçuoca. Four sites in places shaded by trees yielded positive samples (30.7%) in both Tejuçuoca (palm trees) and Banabuiú (mango trees). Additionally, B. pseudomallei was isolated on three occasions from a cornfield (site 4B) located alongside the house of the melioidosis patient in Banabuiú.In the main areas of endemicity, the disease is more prevalent in the rainy season (4, 5, 16). The outbreak in Tejuçuoca was related to rainfall (14). Besides the association of cases of the disease with rainfall itself, the isolation of B. pseudomallei in soil and water was also demonstrated during the dry season (12, 15). An Australian study isolated strains from soil and water during the dry and rainy seasons (17). A Thai study also reported B. pseudomallei in the dry season (18). In our study, the isolation of B. pseudomallei took place either at the end of the wet season or in the dry months. Fourteen of the positive samples (53.8%) were collected during the dry season, albeit near a river or reservoir (sites T3 and B4).Physical, biological, and chemical soil features appear to influence the survival of B. pseudomallei (6, 10). In the present study, the soil was classified as litholic with sandy or clayey textures. It is susceptible to erosion, and when there is a lack of water, it is subject to salinization. During the dry season, the clay layer becomes dried, cracked, and very hard. During the rainy season, it becomes soggy and sticky. The isolation of B. pseudomallei in the dry season is possibly related to the capacity for adaptation of this soil, since the extreme conditions of lithosols do not prevent the bacterial growth and survival.It has been shown that B. pseudomallei is more often isolated at depths between 25 and 45 cm (17). In our study, 65.3% of the positive samples were taken at depths between 20 and 40 cm. Moreover, of these 17 samples, 10 (58.8%) were collected during the dry months. Also, unlike in other regions, two positive samples were taken from the surface in the period without rainfall.The rainfall in Tejuçuoca and Banabuiú is generally low, and temperatures do not vary significantly during the year. Therefore, the isolation of B. pseudomallei in these places occurs outside the rainfall, temperature, and moisture conditions observed in other regions of endemicity. Our data thus suggest that peculiar environmental features, such as soil composition, might favor the multiplication of B. pseudomallei in northeast Brazil.  相似文献   

19.
Identification of Enhancer Binding Proteins Important for Myxococcus xanthus Development     
Krista M. Giglio  Jessica Eisenstatt  Anthony G. Garza 《Journal of bacteriology》2010,192(1):360-364
  相似文献   

20.
Repression of recA Induction by RecX Is Independent of the RecA Protein in Deinococcus radiodurans     
Duohong Sheng  Mingfeng Li  Jiandong Jiao  Xiehuang Sheng  Wenqiang Deng  Yuejin Hua 《Journal of bacteriology》2010,192(13):3540-3544
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号