首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In order to advance the application of antimicrobial peptides in aquaculture, transgenic zebrafish expressing the antimicrobial peptide, epinecidin-1, were developed and are reported on here. First, we cloned the zebrafish mylz2 promoter for this purpose. To characterize the activity of the mylz2 promoter, various fragments of it were analyzed using a firefly luciferase transient expression assay, in which maximum promoter activity was found with a 2.5-kb fragment. In addition, the 2.5-kb fragment also expressed considerable red fluorescent proteins in skeletal muscles of transgenic zebrafish. Second, in order to improve the translation efficiency of the Tol2 transposase, we constructed untranslated regions (UTRs) of zebrafish ba1 globin flanked by a transposase. A transient embryonic excision assay (TEEA) and in vivo fluorescent observations showed high transposition efficiency during embryonic development. After optimization of the promoter and transgene efficiencies, transgenic zebrafish with the Epi-1/DsRed plasmid (pTLR-m2.5 K-K.Epinecidin-1/DsRed vector) were developed, and expressions of Epi-1/DsRed in muscles and blood were demonstrated by immunohistochemical staining techniques. Moreover, we also found that the Epi-1/DsRed gene was efficiently and significantly expressed in vivo against Vibrio vulnificus and Streptococcus agalactiae after injecting the bacteria and determining bacterial counts. A gene expression study using real-time RT-PCR revealed that Epi-1/DsRed itself induced endogenous MyD88 expression in vivo. After Epi-1/DsRed transgenic zebrafish were infected with V. vulnificus 204, interleukin (IL)-10, IL-22, IL-26, lysozyme, toll-like receptor (TLR)1, TLR3, TLR4a, MyD88, and nuclear factor (NF)-κB activating protein-like were upregulated, but IL-1β and tumor necrosis factor-α were downregulated at 12 h post-infection; IL-21, complement component c3b, and NF-κB activating protein-like were downregulated, but MyD88 was upregulated at 24 h post-infection. These results suggest that using epinecidin-1 as a transgene in zebrafish can effectively inhibit bacterial growth for up to 24 h after infection.  相似文献   

3.
The medaka fish transposable element, Tol2, is a member of the hAT family of transposons. It has been directly demonstrated to be active and two mRNAs, differing in length, have been isolated. They cover exons 1-4 and exons 2-4 and the longer form has already been proven to catalyse transposition reactions. However, the function of the shorter mRNA in medaka cells has hitherto remained unclear. In the present study, first we constructed a quantitative system to detect Tol2 excision using an indicator plasmid carrying a non-autonomous Tol2 within its lacZ gene; second we injected mRNAs with the plasmid into medaka eggs. Excision of Tol2 was detected as E. coli blue colonies caused by the recovery of lacZ activity. Addition of the longer mRNA increased excision, but the shorter did not. Moreover, co-injection of both mRNAs greatly lowered the frequency compared with the case of treatment with the longer mRNA alone. These results indicate that the shorter mRNA has an inhibitory effect on the excision reaction, and that the N-terminal region of the transposase encoded by exon 1, including a BED zinc finger, presumably plays an important role in excision. Here, we suggest a regulatory mechanism of Tol2 transposition involving the expression of these mRNAs.  相似文献   

4.
正Amphioxus or lancelets are regarded as a promising model animals for studying developmental mechanisms in chordates, and the evolution of vertebrate characters, because of their important phylogenetic position and their genomic and anatomical simplicity(Bertrand and Escriva, 2011; Holland and Yu, 2004). Although several recent advances have made amphioxus more tractable as  相似文献   

5.
The goldfish (Carassius auratus) Tgf2 transposon is a vertebrate DNA transposon that belongs to the hAT transposon family. In this study, we constructed plasmids containing either the full-length Tgf2 transposon (pTgf2 plasmid) or a partially-deleted Tgf2 transposon (ΔpTgf2 plasmid), and microinjected these plasmids into fertilized zebrafish (Danio rerio) eggs at the one- to two-cell stage. DNA extracted from the embryos was analyzed by PCR to assess transient excision, if any, of the exogenous plasmid and to verify whether Tgf2 is an autonomous transposon. The results showed that excision-specific bands were not detected in embryos injected with the ΔpTgf2 plasmid, while bands of 300–500 bp were detected in embryos injected with pTgf2, which indicated that the full-length Tgf2-containing plasmid could undergo autonomous excision in zebrafish embryos. DNA cloned from 24 embryos injected with pTgf2 was sequenced, and the results suggested that Tgf2 underwent self-excision in zebrafish embryos. Cloning and PCR analysis of DNA extracted from embryos co-injected with ΔpTgf2 and in vitro-transcribed transposase mRNA indicated that partially-deleted-Tgf2-containing ΔpTgf2 plasmid also underwent excision, in the presence of functional transposase mRNA. DNA cloned from 25 embryos co-injected with ΔpTgf2 and transposase mRNA was sequenced, and the results suggested that partially-deleted Tgf2 transposons plasmids were excised. These results demonstrated that excisions of Tgf2 transposons were mediated by the Tgf2 transposase, which in turn confirmed that Tgf2 is an autonomous transposon.  相似文献   

6.
Evaluating the biological relevance of the myriad putative regulatory noncoding sequences in vertebrate genomes represents a huge challenge. Functional analyses in vivo have typically relied on costly and labor-intensive transgenic strategies in mice. Transgenesis has also been applied in nonrodent vertebrates, such as zebrafish, but until recently these efforts have been hampered by significant mosaicism and poor rates of germline transmission. We have developed a transgenic strategy in zebrafish based on the Tol2 transposon, a mobile element that was recently identified in another teleost, Medaka. This method takes advantage of the increased efficiency of genome integration that is afforded by this intact DNA transposon, activity that is mediated by the corresponding transposase protein. The approach described in this protocol uses a universal vector system that permits rapid incorporation of DNA that is tagged with sequence targets for site-specific recombination. To evaluate the regulatory potential of a candidate sequence, the desired interval is PCR-amplified using sequence-specific primers that are flanked by the requisite target sites for cloning, and recombined into a universal expression plasmid (pGW_cfosEGFP). Purified recombinant DNAs are then injected into 1-2-cell zebrafish embryos and the resulting reporter expression patterns are analyzed at desired timepoints during development. This system is amenable to large-scale application, facilitating rapid functional analysis of noncoding sequences from both mammalian and teleost species.  相似文献   

7.
Creating transgenic mice is an important technology for genetic studies and is currently performed by pronuclear microinjection of plasmid DNA into fertilized eggs. Since survival of injected embryos and integration of plasmid DNA are not efficient, total efficiency is only around 3% with a standard protocol. To circumvent this problem, here we describe a novel transgenesis method, the Tol2-mediated cytoplasmic injection method (Tol2:CI). We injected a foreign DNA cloned in a Tol2-transposon vector together with the transposase mRNA into the cytoplasm of fertilized eggs. As expected, the survival rate of the injected embryos was increased drastically. Also, the foreign DNA was transposed from the plasmid to the genome and transmitted to the next generation very efficiently. Together, the overall transgenic efficiency became more than 20%. Considering its simplicity and perfect compatibility with existing pronuclear microinjection facilities, we propose that the Tol2:CI method is applicable to high throughput functional genomics studies.  相似文献   

8.
Mutagenesis by transposon-mediated imprecise excision is the most extensively used technique for mutagenesis in Drosophila. Although P-element is the most widely used transposon in Drosophila to generate deletion mutants, it is limited by the insertion coldspots in the genome where P-elements are rarely found. The piggyBac transposon was developed as an alternative mutagenic vector for mutagenesis of non-P-element targeted genes in Drosophila because the piggyBac transposon can more randomly integrate into the genome. Previous studies suggested that the piggyBac transposon always excises precisely from the insertion site without initiating a deletion or leaving behind an additional footprint. This unique characteristic of the piggyBac transposon facilitates reversible gene-transfer in several studies, such as the generation of induced pluripotent stem (iPS) cells from fibroblasts. However, it also raised a potential limitation of its utility in generating deletion mutants in Drosophila. In this study, we report multiple imprecise excisions of the piggyBac transposon at the sepiapterin reductase (SR) locus in Drosophila. Through imprecise excision of the piggyBac transposon inserted in the 5'-UTR of the SR gene, we generated a hypomorphic mutant allele of the SR gene which showed markedly decreased levels of SR expression. Our finding suggests that it is possible to generate deletion mutants by piggyBac transposon-mediated imprecise excision in Drosophila. However, it also suggests a limitation of piggyBac transposon-mediated reversible gene transfer for the generation of induced pluripotent stem (iPS) cells.  相似文献   

9.
10.
Summary The transposable element Tc1 in Caenorhabditis elegans undergoes an excision reaction, which can be detected in a Southern hybridization as the appearance of empty chromosomal insertion sites. This excision reaction is under tissue-specific regulation in that it occurs at much higher frequency in somatic cells than in the germ line. We show here that this regulation is likely to be due to the action of tissue-specific factors that either promote excision in somatic tissues or repress it in the germ line. The rate of excision of elements at five distinct chromosomal sites has been measured by a method that avoids ambiguities due to cell division. All these elements are found to undergo excision at closely similar rates during the L1 larval stage. No distinct difference exists among the elements at different sites that would suggest regulation by flanking sequences.  相似文献   

11.
12.
Phenotypic rescue experiments have been commonly used in zebrafish since it is convenient to study the causality of mutant phenotypes just by injecting mRNA into embryos. However, this strategy is only effective for phenotypes at early embryonic stages due to mRNA instability. For later developmental stages, DNA constructs are used to express exogenous genes, while it is usually ineffective owing to the problem of mosaicism. This study attempted to solve the problem by using Tol2‐mediated transgenesis. As a model case, we used vlad tepes (vlt), a zebrafish gata1 mutant, whose phenotypes have never been able to be rescued at later stages by transient rescue experiments. Blood cell‐specific transgenic expression of gata1 was driven by its own promoter/enhancer elements. The co‐injection of a Tol2‐donor plasmid containing gata1 cDNA and transposase mRNA efficiently rescued the bloodless phenotypes of vlt even in day 12 larvae when definitive erythropoiesis took place with primitive erythropoiesis. This Tol2‐mediated rescue is therefore considered to be a quick and easy method for analyzing the mutant phenotypes in zebrafish.  相似文献   

13.
为了制备用于在斑马鱼心脏中特异表达目的基因的转基因载体,通过分子克隆的方法对能够在斑马鱼心脏中特异表达EGFP报告基因的Tol2载体进行了改造,在原有的CMLC2启动子与EGFP编码区之间插入带有多克隆位点的IRES序列,获得pTol2-CMLC2-IRES-EGFP转基因表达载体,该载体可以实现在同一个启动子CMLC2的驱动下分别同时表达目的基因和EGFP;为了验证该表达载体的有效性,进一步在CMLC2启动子与IRES序列之间插入DsRed-Monome编码区,利用得到的pTol2-CMLC2-RED-IRES-EGFP转基因载体显微注射到斑马鱼单细胞期胚胎中进行表达分析,结果表明外源目的基因DsRed-Monome和报告基因EGFP均能以相同的表达模式在斑马鱼心脏组织中特异表达。pTol2-CMLC2-IRES-EGFP转基因表达载体的成功构建对于建立心脏发育候选基因的斑马鱼转基因实验模型具有重要意义。  相似文献   

14.
The lys2-32 mutant allele resulted from Ty1 element insertion was identified and cloned. The expression and reversions of lys2-32 localized in an autonomous plasmid were studied. The insertion was shown to inactivate LYS2 gene incompletely. Spontaneous reversions to complete or almost complete prototrophy were also obtained. About 50% of revertants retained the insertion. Others arise as a result of imprecise excision events leading to deletions of adjacent LYS2 sequences.  相似文献   

15.
Summary We have demonstrated that precise excision of bacterial transposon Tn5 can occur in the yeast, Saccharomyces cerevisiae. Tn5 insertions in the yeast gene LYS2 were generated by transposon mutagenesis made in Escherichia coli by means of a ::Tn5 vector. Nine insertions of Tn5 into the structural part of the yeast LYS2 gene situated in a shuttle epsiomal plasmid were selected. All the plasmids with a Tn5 insertion were used to transform yeast strains carrying a deletion of the entire LYS2 gene or a deletion of the part of LYS2 overlapping the point of insertion.All insertions inactivated the LYS2 gene and were able to revert with low (about 10-8) frequencies to lysine prototrophy. Restriction analysis of revertant plasmids revealed them to be indistinguishable from the original plasmid without Tn5 insertion. DNA sequencing of the regions containing the points of insertions, made for two revertants, proved that Tn5 excision was completely precise.  相似文献   

16.
17.
The binding of Tn916 Xis protein to its specific sites at the left and right ends of the transposon was compared using gel mobility shift assays. Xis formed two complexes with different electrophoretic mobilities with both right and left transposon ends. Complex II, with a reduced mobility, formed at higher concentrations of Xis and appeared at an eightfold lower Xis concentration with a DNA fragment from the left end of the transposon rather than with a DNA fragment from the right end of the transposon, indicating that Xis has a higher affinity for the left end of the transposon. Methylation interference was used to identify two G residues that were essential for binding of Xis to the right end of Tn916. Mutations in these residues reduced binding of Xis. In an in vivo assay, these mutations increased the frequency of excision of a minitransposon from a plasmid, indicating that binding of Xis at the right end of Tn916 inhibits transposon excision. A similar mutation in the specific binding site for Xis at the left end of the transposon did not reduce the affinity of Xis for the site but did perturb binding sufficiently to alter the pattern of protection by Xis from nuclease cleavage. This mutation reduced the level of transposon excision, indicating that binding of Xis to the left end of Tn916 is required for transposon excision. Thus, Xis is required for transposon excision and, at elevated concentrations, can also regulate this process.  相似文献   

18.
B G?ttgens  L M Barton  D Grafham  M Vaudin  A R Green 《Gene》1999,239(2):373-379
We describe here Tdr2, a new class of Tc1-like transposons in zebrafish. Tdr2 was identified from the genomic sequence of a zebrafish PAC (P1 artificial chromosome) clone, and fragments of Tdr2 were found in several zebrafish EST (expressed sequence tag) sequences. Predicted translation of the Tdr2 transposase gene showed that it was most closely related to Caenorhabditis elegans Tc3A, suggesting an ancient origin of the Tdr2 transposon. Tdr2 spans 1. 1kb and is flanked by inverted repeats of approx. 100bp. The 5' repeat is itself composed of an inverted repeat, raising the possibility of the formation of a cruciform DNA structure. Tdr2 transposons may facilitate the development of novel transposon-based tools for the genetic analysis of zebrafish.  相似文献   

19.
Germline transformation systems for nearly 20 insect species have been derived from transposable elements, allowing the development of transgenic insects for basic and applied studies. These systems use a defective nonautonomous vector that results in stable vector integrations after the disappearance of transiently provided transposase helper plasmid, which is essential to maintain true breeding lines and consistent transgene expression that would otherwise be lost after vector remobilization. The risk of remobilization by an unintended transposase source has so far not been a concern for laboratory studies, but the prospective use of millions of transgenic insects in biocontrol programs will likely increase the risk, therefore making this a critical issue for the ecological safety of field release programs. Here we describe an efficient method that deletes a terminal repeat sequence of a transposon vector after genomic integration. This procedure prevents transposase-mediated remobilization of the other terminal sequence and associated genes, ensuring their genomic stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号