共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of wild birds in the spread of influenza H5N1 virus remains speculative and the ecology of influenza A viruses in nature is largely unstudied. There is an urgent need for multidisciplinary studies to explore the ecology of avian influenza viruses in wild birds and the environment to support ecological interpretation of the source of disease outbreaks in poultry. 相似文献
3.
4.
Kreijtz JH de Mutsert G van Baalen CA Fouchier RA Osterhaus AD Rimmelzwaan GF 《Journal of virology》2008,82(11):5161-5166
Since the number of human cases of infection with avian H5N1 influenza viruses is ever increasing, a pandemic outbreak caused by these viruses is feared. Therefore, in addition to virus-specific antibodies, there is considerable interest in immune correlates of protection against these viruses, which could be a target for the development of more universal vaccines. After infection with seasonal influenza A viruses of the H3N2 and H1N1 subtypes, individuals develop virus-specific cytotoxic T-lymphocyte responses, which are mainly directed against the relatively conserved internal proteins of the virus, like the nucleoprotein (NP). Virus-specific cytotoxic T lymphocytes (CTL) are known to contribute to protective immunity against infection, but knowledge about the extent of cross-reactivity with avian H5N1 influenza viruses is sparse. In the present study, we evaluated the cross-reactivity with H5N1 influenza viruses of polyclonal CTL obtained from a group of well-defined HLA-typed study subjects. To this end, the recognition of synthetic peptides representing H5N1 analogues of known CTL epitopes was studied. In addition, the ability of CTL specific for seasonal H3N2 influenza virus to recognize the NP of H5N1 influenza virus or H5N1 virus-infected cells was tested. It was concluded that, apart from some individual epitopes that displayed amino acid variation between H3N2 and H5N1 influenza viruses, considerable cross-reactivity exists with H5N1 viruses. This preexisting cross-reactive T-cell immunity in the human population may dampen the impact of a next pandemic. 相似文献
5.
Auewarakul P Suptawiwat O Kongchanagul A Sangma C Suzuki Y Ungchusak K Louisirirotchanakul S Lerdsamran H Pooruk P Thitithanyanont A Pittayawonganon C Guo CT Hiramatsu H Jampangern W Chunsutthiwat S Puthavathana P 《Journal of virology》2007,81(18):9950-9955
Avian influenza viruses preferentially recognize sialosugar chains terminating in sialic acid-alpha2,3-galactose (SAalpha2,3Gal), whereas human influenza viruses preferentially recognize SAalpha2,6Gal. A conversion to SAalpha2,6Gal specificity is believed to be one of the changes required for the introduction of new hemagglutinin (HA) subtypes to the human population, which can lead to pandemics. Avian influenza H5N1 virus is a major threat for the emergence of a pandemic virus. As of 12 June 2007, the virus has been reported in 45 countries, and 312 human cases with 190 deaths have been confirmed. We describe here substitutions at position 129 and 134 identified in a virus isolated from a fatal human case that could change the receptor-binding preference of HA of H5N1 virus from SAalpha2,3Gal to both SAalpha2,3Gal and SAalpha2,6Gal. Molecular modeling demonstrated that the mutation may stabilize SAalpha2,6Gal in its optimal cis conformation in the binding pocket. The mutation was found in approximately half of the viral sequences directly amplified from a respiratory specimen of the patient. Our data confirm the presence of H5N1 virus with the ability to bind to a human-type receptor in this patient and suggest the selection and expansion of the mutant with human-type receptor specificity in the human host environment. 相似文献
6.
7.
Lam TT Hon CC Lemey P Pybus OG Shi M Tun HM Li J Jiang J Holmes EC Leung FC 《Molecular ecology》2012,21(12):3062-3077
Understanding how pathogens invade and become established in novel host populations is central to the ecology and evolution of infectious disease. Influenza viruses provide unique opportunities to study these processes in nature because of their rapid evolution, extensive surveillance, large data sets and propensity to jump species boundaries. H5N1 highly pathogenic avian influenza virus (HPAIV) is a major animal pathogen and public health threat. The virus is of particular importance in Indonesia, causing severe outbreaks among poultry and sporadic human infections since 2003. However, little is known about how H5N1 HPAIV emerged and established in Indonesia. To address these questions, we analysed Indonesian H5N1 HPAIV gene sequences isolated during 2003-2007. We find that the virus originated from a single introduction into East Java between November 2002 and October 2003. This invasion was characterized by an initially rapid burst of viral genetic diversity followed by a steady rate of lineage replacement and the maintenance of genetic diversity. Several antigenic sites in the haemagglutinin gene were subject to positive selection during the early phase, suggesting that host-immune-driven selection played a role in host adaptation and expansion. Phylogeographic analyses show that after the initial invasion of H5N1, genetic variants moved both eastwards and westwards across Java, possibly involving long-distance transportation by humans. The phylodynamics we uncover share similarities with other recently studied viral invasions, thereby shedding light on the ecological and evolutionary processes that determine disease emergence in a new geographical region. 相似文献
8.
Penghui Yang Dongmei Chong Tang Deyan Luo Yueqiang Duan Daxin Peng Xiliang Wang 《Biochemical and biophysical research communications》2010,396(4):973-977
The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among poultry and wild birds has posed a potential threat to human public health. An influenza pandemic happens, when a new subtype that has not previously circulated in humans emerges. Almost all of the influenza pandemics in history have originated from avian influenza viruses (AIV). Birds are significant reservoirs of influenza viruses. In the present study, we performed a survey of avian influenza virus in ostriches and H5N1 virus (A/Ostrich/SuZhou/097/03, China097) was isolated. This H5N1 virus is highly pathogenic to both chickens and mice. It is also able to replicate in the lungs of, and to cause death in, BALB/c mice following intranasal administration. It forms plaques in chicken embryo fibroblast (CEF) cells in the absence of trypsin. The hemagglutinin (HA) gene of the virus is genetically similar to A/Goose/Guangdong/1/96(H5N1) and belongs to clade 0. The HA sequence contains multiple basic amino acids adjacent to the cleavage site, a motif associated with HPAI viruses. More importantly, the existence of H5N1 isolates in ostriches highlights the potential threat of wild bird infections to veterinary and public health. 相似文献
9.
The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian-human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. 相似文献
10.
WeiFeng Shi Mark J. Gibbs YanZhou Zhang DongMing Zhuang AiShe Dun GuangFu Yu NaNa Yang Robert W. Murphy ChaoDong Zhu 《中国科学C辑(英文版)》2008,51(11):987-993
We investigated the selection pressures on the haemagglutinin genes of H5N1 avian influenza viruses using fixed effects likelihood
models. We found evidence of positive selection in the sequences from isolates from 1997 to 2007, except viruses from 2000.
The haemagglutinin sequences of viruses from southeast Asia, Hong Kong and mainland China were the most polymorphic and had
similar nonsynonymous profiles. Some sites were positively selected in viruses from most regions and a few of these sites
displayed different amino acid patterns. Selection appeared to produce different outcomes in viruses from Europe, Africa and
Russia and from different host types. One position was found to be positively selected for human isolates only. Although the
functions of some positively selected positions are unknown, our analysis provided evidence of different temporal, spatial
and host adaptations for H5N1 avian influenza viruses. 相似文献
11.
Highly pathogenic avian influenza A virus subtype H5N1 has been endemic in some bird species since its emergence in 1996 and its ecology, genetics and antigenic properties have continued to evolve. This has allowed diverse virus strains to emerge in endemic areas with altered receptor specificity, including a new H5 sublineage with enhanced binding affinity to the human-type receptor. The pandemic potential of H5N1 viruses is alarming and may be increasing. We review here the complex dynamics and changing nature of the H5N1 virus that may contribute to the emergence of pandemic strains. 相似文献
12.
Since the identification of the novel reassortant avian influenza A (H7N9) virus in China in 2013, until Jun 30, 2017, the virus has caused five epidemic waves leading to a total of 1,552 human infections, with a fatality rate of about 40%. In the spring of 2017, highly pathogenic avian influenza (HPAI) H7N9 virus emerged and has caused 25 human infections. The HPAI H7N9 virus has some biological differences from the LPAI one, such as its multiple basic amino acid residues on HA leading to its independence on trypsin for replication. The pathogenicity of the HPAI H7N9 virus to experimental animals or humans is still unclear. A(H7N9) vaccine development for pandemic preparedness is ongoing, including the reassortment (H7N9/PR8) reverse genetic based vaccine, the virus like particle (VLP) vaccine, the intranasal live attenuated influenza vaccine (LAIV), the non-adjuvant Vero cell culture-derived inactivated whole-virus vaccine, the MDCK culture-derived vaccine, the H7 DNA vaccine and the recombinant replicative H7N9 virus (H7N9-53TM) vaccine. Five neuramidinase resistant sites of A(H7N9) virus isolated from patients have been reported. Some alternative drugs have been studied, such as DAS181 (Fludase), ribavirin, troglitazone and minocycline. Persistent surveillance and enhanced global control are essential to fight against human infections with A(H7N9) virus. 相似文献
13.
Park SY Kim S Yoon H Kim KB Kalme SS Oh S Song CS Kim DE 《Nucleic acid therapeutics》2011,21(6):395-402
Avian influenza is an acute viral respiratory disease caused by RNA viruses of the family Orthomyxoviridae. The influenza A virus subtype H5 can cause severe illness and results in almost 100% mortality rate among livestock. Hemagglutinin (HA) present in the virus envelope plays an essential role in the initiation of viral infection. In this study, we investigated the efficacy of using HA as a target for antiviral therapy through nucleic acid aptamers. After purification of the receptor binding domain (HA1) of HA protein, activity of recombinant HA1 was confirmed by using hemagglutination assay. We selected RNA aptamer candidates after 15 rounds of iterative Systematic Evolution of Ligands by EXponential enrichment (SELEX) targeting the biologically active HA protein. The selected RNA aptamer HAS15-5, which specifically binds to HA1, exhibited significant antiviral efficacy according to the results of a hemagglutination inhibition assay using egg allantoic fluids harboring the virus. Thus, the RNA aptamer HAS15-5, which acts by blocking and inhibiting the receptor-binding domain of viral HA, can be developed as a novel antiviral agent against type H5 avian influenza virus. 相似文献
14.
Source of high pathogenicity of an avian influenza virus H5N1: why H5 is better cleaved by furin
下载免费PDF全文

Decha P Rungrotmongkol T Intharathep P Malaisree M Aruksakunwong O Laohpongspaisan C Parasuk V Sompornpisut P Pianwanit S Kokpol S Hannongbua S 《Biophysical journal》2008,95(1):128-134
The origin of the high pathogenicity of an emerging avian influenza H5N1 due to the -RRRKK- insertion at the cleavage loop of the hemagglutinin H5, was studied using the molecular dynamics technique, in comparison with those of the noninserted H5 and H3 bound to the furin (FR) active site. The cleavage loop of the highly pathogenic H5 was found to bind strongly to the FR cavity, serving as a conformation suitable for the proteolytic reaction. With this configuration, the appropriate interatomic distances were found for all three reaction centers of the enzyme-substrate complex: the arrangement of the catalytic triad, attachment of the catalytic Ser368 to the reactive S1-Arg, and formation of the oxyanion hole. Experimentally, the -RRRKK- insertion was also found to increase in cleavage of hemagglutinin by FR. The simulated data provide a clear answer to the question of why inserted H5 is better cleaved by FR than the other subtypes, explaining the high pathogenicity of avian influenza H5N1. 相似文献
15.
Characterization of a highly pathogenic H5N1 avian influenza A virus isolated from duck meat 总被引:11,自引:0,他引:11
下载免费PDF全文

Tumpey TM Suarez DL Perkins LE Senne DA Lee JG Lee YJ Mo IP Sung HW Swayne DE 《Journal of virology》2002,76(12):6344-6355
Since the 1997 H5N1 influenza virus outbreak in humans and poultry in Hong Kong, the emergence of closely related viruses in poultry has raised concerns that additional zoonotic transmissions of influenza viruses from poultry to humans may occur. In May 2001, an avian H5N1 influenza A virus was isolated from duck meat that had been imported to South Korea from China. Phylogenetic analysis of the hemagglutinin (HA) gene of A/Duck/Anyang/AVL-1/01 showed that the virus clustered with the H5 Goose/Guandong/1/96 lineage and 1997 Hong Kong human isolates and possessed an HA cleavage site sequence identical to these isolates. Following intravenous or intranasal inoculation, this virus was highly pathogenic and replicated to high titers in chickens. The pathogenesis of DK/Anyang/AVL-1/01 virus in Pekin ducks was further characterized and compared with a recent H5N1 isolate, A/Chicken/Hong Kong/317.5/01, and an H5N1 1997 chicken isolate, A/Chicken/Hong Kong/220/97. Although no clinical signs of disease were observed in H5N1 virus-inoculated ducks, infectious virus could be detected in lung tissue, cloacal, and oropharyngeal swabs. The DK/Anyang/AVL-1/01 virus was unique among the H5N1 isolates in that infectious virus and viral antigen could also be detected in muscle and brain tissue of ducks. The pathogenesis of DK/Anyang/AVL-1/01 virus was characterized in BALB/c mice and compared with the other H5N1 isolates. All viruses replicated in mice, but in contrast to the highly lethal CK/HK/220/97 virus, DK/Anyang/AVL-1/01 and CK/HK/317.5/01 viruses remained localized to the respiratory tract. DK/Anyang/AVL-1/01 virus caused weight loss and resulted in 22 to 33% mortality, whereas CK/HK/317.5/01-infected mice exhibited no morbidity or mortality. The isolation of a highly pathogenic H5N1 influenza virus from poultry indicates that such viruses are still circulating in China and may present a risk for transmission of the virus to humans. 相似文献
16.
Ming Jun Deng Xi Zhi Xiao Yan Ming Zhang Xin Hai Wu Lai Hua Zhu Xue Qian Xin Dong Lai Wu 《Molecular biology reports》2011,38(3):1941-1948
With an aim at detecting the ultra-low concentration of avian influenza virus (AIV), a highly sensitive hybrid assay based
on immunology and polymerase chain reaction was developed. The TopYield microtiter plates were coated with ten-fold serial
dilutions of H5N1 subtype AIV ranging from 10 EID50 ml−1~10−4 EID50 ml−1,which was recognized by mouse anti-AIV H5 monoclonal antibody (MAb) that was directly linked with reporter DNA using a heterobifunctional
cross-linker. After extensive washing, the reporter DNA including a BamH I-restriction site was released by a specific enzymatic restriction, then transferred to PCR tubes, amplified, and used
as the signal for detection of AIV. Under the optimized condition, MAb-based immuno-PCR (IPCR) method could measure 100 μl
of AIV H5N1 with 10−4 EID50 ml−1.To evaluate the sensitivity of IPCR, the same concentration and volume of AIV H5N1 were detected by conventional RT–PCR and
sandwich ELISA. The results showed that IPCR had an approximately 1,000-fold improvement over the conventional ELISA, and
a 100-fold enhancement compared with RT–PCR in detection sensitivity. To further evaluate the specificity of IPCR for AIV
H5 subtype, the tracheal swab specimens, taken from chickens which were infected with H9N2, and the allantoic fluid from eggs
inoculated by AIV H3N2, H7N1, H9N2, were detected by IPCR. To mimic clinical samples, pharyngeal–tracheal swab specimens were
collected from healthy chickens and spiked with H5N1, H5N2, H5N3 for analysis by immuno-PCR. The results demonstrated that
IPCR was a highly sensitive and specific assay for AIV H5, and could be applied to clinical detection for low amount of AIV
H5 subtype. This MAb-based immuno-PCR method provided a platform capable of mass screening of clinical samples for AIV H5
subtype and could serve as a model for other immuno-PCR assays. 相似文献
17.
Shinya K Hatta M Yamada S Takada A Watanabe S Halfmann P Horimoto T Neumann G Kim JH Lim W Guan Y Peiris M Kiso M Suzuki T Suzuki Y Kawaoka Y 《Journal of virology》2005,79(15):9926-9932
In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans. 相似文献
18.
Poetranto ED Yamaoka M Nastri AM Krisna LA Rahman MH Wulandari L Yudhawati R Ginting TE Makino A Shinya K Kawaoka Y 《Microbiology and immunology》2011,55(9):666-672
The isolation of an H5N1 influenza A virus from a tree sparrow (Passer montanus) captured in East Java, Indonesia in 2010 is reported here. Its hemagglutinin and neuraminidase were genetically similar to those of human isolates from 2006-2007 in Indonesia. The finding of a tree sparrow H5N1 virus that possesses genetically similar surface molecules to those of human viruses highlights the importance of monitoring resident wild birds, as well as migratory birds, for pandemic preparedness. 相似文献
19.
Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation 总被引:10,自引:0,他引:10
Shan S Ko LS Collins RA Wu Z Chen J Chan KY Xing J Lau LT Yu AC 《Biochemical and biophysical research communications》2003,302(2):377-383
Nucleic acid sequence-based amplification with electrochemiluminescent detection (NASBA/ECL) of avian influenza virus was compared with viral culture in embryonated chicken eggs. Virus was isolated from blood or anal swabs of chickens artificially infected with highly pathogenic avian influenza A/Chicken/Hong Kong/1000/97 (H5N1). Viral nucleic acid was detected in blood samples by NASBA/ECL immediately prior to death, whilst nucleic acid extracted from anal swabs was detected from the day following artificial infection until death. Thus, blood and/or anal swabs are a suitable source of material for the detection of avian influenza in dead birds, but anal swabs are more suitable for detection of viral genetic material in live birds. Dilution of a known viral standard was used to determine the limit of sensitivity for both NASBA/ECL and egg culture detection methods. The NASBA/ECL method was equivalent in sensitivity to egg culture. The NASBA/ECL results agreed with egg culture data in 71/94 (75.5%) tissue samples obtained from artificially infected birds. 相似文献
20.
Chungen Pan Ming Liao Shibo Jiang 《Biochemical and biophysical research communications》2009,385(3):402-407
In late April of 2009, a global outbreak of human influenza was reported. The causative agent is a highly unusual reassortant H1N1 influenza virus carrying genetic segments derived from swine, human and avian influenza viruses. In this study, we compared the HA, NA and other gene segments of a swine H3N2 influenza A virus, A/Swine/Guangdong/z5/2003, which was isolated from pigs in 2003 in Guangdong Province, China, to the predominant human and swine H3N2 viruses. We found that the similarity of gene segments of A/Swine/Guangdong/z5/2003 was closer to Moscow/99-like human H3N2 virus than Europe swine H3N2 viruses during 1999-2002. These results suggest that A/Swine/Guangdong/z5/2003 may be porcine in origin, possibly being driven by human immune pressure induced by either natural H3N2 virus infection or use of A/Moscow/10/99 (H3N2)-based human influenza vaccine. The results further confirm that swine may play a dual role as a “shelter” for hosting influenza virus from humans or birds and as a “mixing vessel” for generating reassortant influenza viruses, such as the one causing current influenza pandemic. 相似文献