首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous reports have suggested that human CD4+ CD25hiFOXP3+ T regulatory cells (Tregs) have functional plasticity and may differentiate into effector T cells under inflammation. The molecular mechanisms underlying these findings remain unclear. Here we identified the residue serine 422 of human FOXP3 as a phosphorylation site that regulates its function, which is not present in murine Foxp3. PIM1 kinase, which is highly expressed in human Tregs, was found to be able to interact with and to phosphorylate human FOXP3 at serine 422. T cell receptor (TCR) signaling inhibits PIM1 induction, whereas IL-6 promotes PIM1 expression in in vitro expanded human Tregs. PIM1 negatively regulates FOXP3 chromatin binding activity by specifically phosphorylating FOXP3 at Ser422. Our data also suggest that phosphorylation of FOXP3 at the Ser418 site could prevent FOXP3 phosphorylation at Ser422 mediated by PIM1. Knockdown of PIM1 in in vitro expanded human Tregs promoted FOXP3-induced target gene expression, including CD25, CTLA4, and glucocorticoid-induced tumor necrosis factor receptor (GITR), or weakened FOXP3-suppressed IL-2 gene expression and enhanced the immunosuppressive activity of Tregs. Furthermore, PIM1-specific inhibitor boosted FOXP3 DNA binding activity in in vitro expanded primary Tregs and also enhanced their suppressive activity toward the proliferation of T effector cells. Taken together, our findings suggest that PIM1 could be a new potential therapeutic target in the prevention and treatment of human-specific autoimmune diseases because of its ability to modulate the immunosuppressive activity of human Tregs.  相似文献   

2.
Suppressors of cytokine signaling (SOCSs) are key regulators of cytokine-induced responses in hematopoietic as well as nonhematopoietic cells. SOCS1 and SOCS3 have been shown to modulate T-cell responses, whereas the roles of other SOCS family members in the regulation of lymphocyte function are less clear. Here, we report the generation of mice with a targeted disruption of the Socs5 gene. Socs5−/− mice were born in a normal Mendelian ratio and were healthy and fertile. We found that SOCS5 is expressed in primary B and T cells in wild-type mice. However, no abnormalities in the lymphocyte compartment were seen in SOCS5-deficient mice. We examined antigen- and cytokine-induced proliferative responses in B and T cells in the absence of SOCS5 and found no deviations from the responses seen in wild-type cells. Because SOCS5 has been implicated in Th1 differentiation, we also investigated the importance of SOCS5 in T helper cell responses. Unexpectedly, SOCS5-deficient CD4 T cells showed no abnormalities in Th1/Th2 differentiation and Socs5−/− mice showed normal resistance to infection with Leishmania major. Therefore, although SOCS5 is expressed in primary B and T cells, it appears to be dispensable for the regulation of lymphocyte function.  相似文献   

3.
PIM kinases are a family of three serine/threonine kinases expressed following T cell activation. Using potent selective small molecule antagonists of PIM-1/3 kinases, we demonstrate a potential role for these enzymes in naïve and effector CD4+ T cell activation. PIM-1/3 inhibition prevented CD4+ T cell proliferation by inducing a G0/G1 cell cycle arrest without affecting cellular survival. In the absence of PIM-1/3 kinase activity, naïve CD4+ T cells failed to fully differentiate into effector cells both in vitro and in vivo. Therapeutic dosing of a PIM-1/3 inhibitor was efficacious in a CD4+ T cell-mediated model of inflammatory bowel disease suggesting that PIM-1 and PIM-3 kinase activity contributes to sustained disease severity. These results demonstrate that PIM-1/3 kinases have an important role in CD4+ T cell responses and inhibition of this activity may provide a therapeutic benefit in T cell-mediated diseases.  相似文献   

4.
Tuberculosis (TB) is the leading cause of mortality among those infected with human immunodeficiency virus (HIV-1) worldwide. HIV-1 load and heterogeneity are increased both locally and systemically in active TB. Mycobacterium tuberculosis (MTB) infection supports HIV-1 replication through dysregulation of host cytokines, chemokines, and their receptors. However the possibility that mycobacterial molecules released from MTB infected macrophages directly interact with CD4+ T cells triggering HIV-1 replication has not been fully explored. We studied the direct effect of different MTB molecules on HIV-1 replication (R5-tropic strain Bal) in anti-CD3- stimulated CD4+ T cells from healthy donors in an antigen presenting cell (APC)-free system. PIM6, a major glycolipid of the mycobacterial cell wall, induced significant increases in the percent of HIV-1 infected T cells and the viral production in culture supernatants. In spite of structural relatedness, none of the other three major MTB cell wall glycolipids had significant impact on HIV-1 replication in T cells. Increased levels of IFN-γ in culture supernatants from cells treated with PIM6 indicate that HIV-1 replication is likely dependent on enhanced T cell activation. In HEK293 cells transfected with TLR2, PIM6 was the strongest TLR2 agonist among the cell wall associated glycolipids tested. PIM6 increased the percentage of HIV infected cells and viral particles in the supernatant in a T-cell-based reporter cell line (JLTRg-R5) transfected with TLR1 and TLR2 but not in the cells transfected with the empty vector (which lack TLR2 expression) confirming that PIM6-induced HIV-1 replication depends at least partially on TLR2 signaling.  相似文献   

5.
A key modulator of immune homeostasis, TGFβ has an important role in the differentiation of regulatory T cells (Tregs) and IL-17-secreting T cells (Th17). How TGFβ regulates these functionally opposing T cell subsets is not well understood. We determined that an ADAM family metalloprotease called ADAM12 is specifically and highly expressed in both Tregs and CCR6+ Th17 cells. ADAM12 is induced in vitro upon differentiation of naïve T cells to Th17 cells or IL-17-secreting Tregs. Remarkably, silencing ADAM12 expression in CCR6+ memory T cells enhances the production of Th17 cytokines, similar to suppressing TGFβ signaling. Further, ADAM12 knockdown in naïve human T cells polarized towards Th17/Treg cells, or ectopically expressing RORC, greatly enhances IL-17-secreting cell differentiation, more potently then inhibiting TGFβ signals. Together, our findings reveal a novel regulatory role for ADAM12 in Th17 cell differentiation or function and may have implications in regulating their aberrant responses during immune pathologies.  相似文献   

6.
《PloS one》2014,9(11)
Currently, there is no efficient therapy for patients with peripheral T cell lymphoma (PTCL). The Proviral Integration site of Moloney murine leukemia virus (PIM) kinases are important mediators of cell survival. We aimed to determine the therapeutic value of PIM kinases because they are overexpressed in PTCL patients, T cell lines and primary tumoral T cells. PIM kinases were inhibited genetically (using small interfering and short hairpin RNAs) and pharmacologically (mainly with the pan-PIM inhibitor (PIMi) ETP-39010) in a panel of 8 PTCL cell lines. Effects on cell viability, apoptosis, cell cycle, key proteins and gene expression were evaluated. Individual inhibition of each of the PIM genes did not affect PTCL cell survival, partially because of a compensatory mechanism among the three PIM genes. In contrast, pharmacological inhibition of all PIM kinases strongly induced apoptosis in all PTCL cell lines, without cell cycle arrest, in part through the induction of DNA damage. Therefore, pan-PIMi synergized with Cisplatin. Importantly, pharmacological inhibition of PIM reduced primary tumoral T cell viability without affecting normal T cells ex vivo. Since anaplastic large cell lymphoma (ALK+ ALCL) cell lines were the most sensitive to the pan-PIMi, we tested the simultaneous inhibition of ALK and PIM kinases and found a strong synergistic effect in ALK+ ALCL cell lines. Our findings suggest that PIM kinase inhibition could be of therapeutic value in a subset of PTCL, especially when combined with ALK inhibitors, and might be clinically beneficial in ALK+ ALCL.  相似文献   

7.
The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4+ T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4+ T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4+ T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2ΔCD4Cre) were infected with the protozoan parasite Leishmania major. N1N2ΔCD4Cre mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4+ T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4+ T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.  相似文献   

8.
A growing body of literature indicates that the Notch pathway can influence the activation and differentiation of peripheral murine T cells, though comparatively little is known about the effects of Notch signaling in human T cells. In the present report we demonstrate that Jagged-1-induced Notch signaling (using immobilized Jagged-1 fusion protein) during stimulation of purified human CD4+ and CD8+ T cells potently inhibits T cell proliferation and effector function, including both Th1- and Th2-associated cytokines. Inhibition of T cell activation is not due to apoptosis or disruption of proximal TCR signaling, but is associated with up-regulation of GRAIL (gene related to anergy in lymphocytes) in CD4+ T cells, with modest effects on other E3 ubiquitin ligases such as c-Cbl and Itch. When evaluated for its effects on CD4+ T cell differentiation, Jagged-1-mediated signaling inhibits T cell cytokine secretion with no significant effect on proliferative responses. Collectively, these data demonstrate that Notch signaling in human T cells induced by Jagged-1 promotes a novel form of T cell hyporesponsiveness that differs from anergy, whereby primary T cell proliferation and cytokine secretion are potently inhibited, and effector function but not proliferative capacity are ameliorated upon secondary stimulation.  相似文献   

9.
Mycobacterium tuberculosis modulates host immune responses through proteins and complex glycolipids. Here, we report that the glycosylphosphatidylinositol anchor phosphatidyl-myo-inositol hexamannosides PIM6 or PIM2 exert potent anti-inflammatory activities. PIM strongly inhibited the Toll-like receptor (TLR4) and myeloid differentiation protein 88 (MyD88)-mediated release of NO, cytokines, and chemokines, including tumor necrosis factor (TNF), interleukin 12 (IL-12) p40, IL-6, keratinocyte-derived chemokine, and also IL-10 by lipopolysaccharide (LPS)-activated macrophages. This effect was independent of the presence of TLR2. PIM also reduced the LPS-induced MyD88-independent, TIR domain-containing adaptor protein inducing interferon β (TRIF)-mediated expression of co-stimulatory receptors. PIM inhibited LPS/TLR4-induced NFκB translocation. Synthetic PIM1 and a PIM2 mimetic recapitulated these in vitro activities and inhibited endotoxin-induced airway inflammation, TNF and keratinocyte-derived chemokine secretion, and neutrophil recruitment in vivo. Mannosyl, two acyl chains, and phosphatidyl residues are essential for PIM anti-inflammatory activity, whereas the inosityl moiety is dispensable. Therefore, PIM exert potent antiinflammatory effects both in vitro and in vivo that may contribute to the strategy developed by mycobacteria for repressing the host innate immunity, and synthetic PIM analogs represent powerful anti-inflammatory leads.Multifold interactions between Mycobacterium tuberculosis and host phagocytes determine immune responses to M. tuberculosis and tuberculosis pathogenesis (for review, see Refs. 1 and 2). Alveolar macrophages, the primary host cells for M. tuberculosis, and dendritic cells that carry mycobacterial antigens from the infection site to the draining lymph nodes to establish a T cell-mediated immune response contribute to modulate the innate immune response by secreting cytokines after recognition of microbial motives. Among them, TNF2 is an essential mediator for granuloma formation and containment of M. tuberculosis infection. Similarly, IL-12, interferon γ, but also IL-1, IL-18, IL-23, and nitric oxide are required for host defense (16). Phagocytes are also a source of immuno-modulatory cytokines, such as IL-10 and transforming growth factor-β, which dampen the immune response and inflammation. Mycobacteria-derived molecules down-modulating the immune system have been described, including the protein ESAT-6, mannose-capped lipoarabinomannan (ManLAM), and lipomannans (LM) (712). Here, we report that phosphatidyl-myo-inositol mannosides (PIM), the glycosylphosphatidylinositol (GPI) anchor structure of LAM and LM, exert strong anti-inflammatory activities.Mycobacterial cell wall LAM, LM, and PIM are recognized by macrophages and dendritic cells through various pattern recognition receptors, including Toll-like receptors (TLRs) (1316) and C-type lectins such as mannose receptor (MR/CD206) and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN/CD209), central to M. tuberculosis binding and internalization by human dendritic cells (1720). DC-SIGN and mannose receptor were proposed to mediate ManLAM inhibition of LPS-induced IL-12 production in dendritic cells, an activity ascribed to the mannosylated cap (8, 9). We showed recently that mycobacterial LM have a dual potential for pro-inflammatory and anti-inflammatory effects (11), tri- and tetra-acylated LM fractions exerting stimulatory effects through TLR2, TLR4, and MyD88 (21), whereas diacylated LM inhibit LPS-induced cytokine response independently of TLR2, SIGN-R1, and mannose receptor (12).PIM are biosynthetic precursors of LM and LAM (2225). Dimannoside (PIM2) and hexamannoside (PIM6) PIM are the two most abundant classes of PIM found in M. tuberculosis H37Rv and Mycobacterium bovis BCG (see Fig. 1). PIM purification and molecular chemical characterization revealed four major acyl forms, mono- to tetra-acylated (lyso-PIM for one acyl, PIM for two acyl, Ac1PIM for three acyl, and Ac2PIM for four acyl, respectively; see Fig. 1) for both PIM2 and PIM6 (2629). Higher order PIM with mannose cap-like structures were found to preferentially associate with human MR and to contribute to phagosome-lysosome fusion (20). The degree of acylation influenced higher order PIM association with the MR, whereas PIM2 was recognized by DC-SIGN independently of its acylation degree. The complete synthesis of the different PIM has recently been reported (3033).Open in a separate windowFIGURE 1.Natural PIM and synthetic PIM1 and PIM2 mimetics used in the study. Shown is a schematic representation of natural lyso-PIM6, PIM6, Ac1PIM6, Ac2PIM6, and PIM2 (A) and synthetic PIM1 (B) showing the C16 and C18 acyl groups on glycerol chain positions sn-2 and sn-1, the precursor PI, a synthetic mimetic of PIM2 (PIM2 mimetic) bearing C16 and C18 acyl chains, the de-acylated control molecule precursor of the PIM2 mimetic (de-AcPIM2 mimetic), and a PIM2 mimetic with replacement of the phosphodiester moiety by a carbonate.Here, we analyzed isolated acyl forms of PIM and identified PIM2 and PIM6 but also synthetic PIM1 and a mimetic of PIM2 as strong inhibitors of endotoxin-induced proinflammatory responses in vitro and in vivo. Using macrophages from genetically modified mice, we characterized PIM inhibitory effects on MyD88, TRIF, and NFκB signaling pathways. Hence, not only complex mycobacterial lipoglycans like ManLAM and LM but also small molecular weight PIM analogues are potent inhibitors of host inflammatory responses.  相似文献   

10.
Itk and Txk/Rlk are Tec family kinases expressed in T cells. Itk is expressed in both Th1 and Th2 cells. By contrast, Txk is preferentially expressed in Th1 cells. Although Itk is required for Th2 responses in vivo and Txk is suggested to regulate IFN-gamma expression and Th1 responses, it remains unclear whether these kinases have distinct roles in Th cell differentiation/function. We demonstrate here that Txk-null CD4(+) T cells are capable of producing both Th1 and Th2 cytokines similar to those produced by wild-type CD4(+) T cells. To further examine whether Itk and Txk play distinct roles in Th cell differentiation and function, we examined Itk-null mice carrying a transgene that expresses Txk at levels similar to the expression of Itk in Th2 cells. Using two Th2 model systems, allergic asthma and schistosome egg-induced lung granulomas, we found that the Txk transgene rescued Th2 cytokine production and all Th2 symptoms without notable enhancement of IFN-gamma expression. These results suggest that Txk is not a specific regulator of Th1 responses. Importantly, they suggest that Itk and Txk exert their effects on Th cell differentiation/function at the level of expression.  相似文献   

11.
The Pim family of proto-oncogenes encodes a distinct class of serine/threonine kinases consisting of PIM1, PIM2, and PIM3. Although the Pim genes are evolutionarily highly conserved, the contribution of PIM proteins to mammalian development is unclear. PIM1-deficient mice were previously described but showed only minor phenotypic aberrations. To assess the role of PIM proteins in mammalian physiology, compound Pim knockout mice were generated. Mice lacking expression of Pim1, Pim2, and Pim3 are viable and fertile. However, PIM-deficient mice show a profound reduction in body size at birth and throughout postnatal life. In addition, the in vitro response of distinct hematopoietic cell populations to growth factors is severely impaired. In particular, PIM proteins are required for the efficient proliferation of peripheral T lymphocytes mediated by synergistic T-cell receptor and interleukin-2 signaling. These results indicate that members of the PIM family of proteins are important but dispensable factors for growth factor signaling.  相似文献   

12.
13.
Th17 cells, which have been implicated in autoimmune diseases, require IL-6 and TGF-β for early differentiation. To gain pathogenicity, however, Th17 cells require IL-1β and IL-23. The underlying mechanism by which these confer pathogenicity is not well understood. Here we show that Sprouty4, an inhibitor of the PLCγ-ERK pathway, critically regulates inflammatory Th17 (iTh17) cell differentiation. Sprouty4-deficient mice, as well as mice adoptively transferred with Sprouty4-deficient T cells, were resistant to experimental autoimmune encephalitis (EAE) and showed decreased Th17 cell generation in vivo. In vitro, Sprouty4 deficiency did not severely affect TGF-β/IL-6-induced Th17 cell generation but strongly impaired Th17 differentiation induced by IL-1/IL-6/IL-23. Analysis of Th17-related gene expression revealed that Sprouty4-deficient Th17 cells expressed lower levels of IL-1R1 and IL-23R, while RORγt levels were similar. Consistently, overexpression of Sprouty4 or pharmacological inhibition of ERK upregulated IL-1R1 expression in primary T cells. Thus, Sprouty4 and ERK play a critical role in developing iTh17 cells in Th17 cell-driven autoimmune diseases.  相似文献   

14.
Inhibitors of the JAK family of nonreceptor tyrosine kinases have demonstrated clinical efficacy in rheumatoid arthritis and other inflammatory disorders; however, the precise mechanisms by which JAK inhibition improves inflammatory immune responses remain unclear. In this study, we examined the mode of action of tofacitinib (CP-690,550) on JAK/STAT signaling pathways involved in adaptive and innate immune responses. To determine the extent of inhibition of specific JAK/STAT-dependent pathways, we analyzed cytokine stimulation of mouse and human T cells in vitro. We also investigated the consequences of CP-690,550 treatment on Th cell differentiation of naive murine CD4(+) T cells. CP-690,550 inhibited IL-4-dependent Th2 cell differentiation and interestingly also interfered with Th17 cell differentiation. Expression of IL-23 receptor and the Th17 cytokines IL-17A, IL-17F, and IL-22 were blocked when naive Th cells were stimulated with IL-6 and IL-23. In contrast, IL-17A production was enhanced when Th17 cells were differentiated in the presence of TGF-β. Moreover, CP-690,550 also prevented the activation of STAT1, induction of T-bet, and subsequent generation of Th1 cells. In a model of established arthritis, CP-690,550 rapidly improved disease by inhibiting the production of inflammatory mediators and suppressing STAT1-dependent genes in joint tissue. Furthermore, efficacy in this disease model correlated with the inhibition of both JAK1 and JAK3 signaling pathways. CP-690,550 also modulated innate responses to LPS in vivo through a mechanism likely involving the inhibition of STAT1 signaling. Thus, CP-690,550 may improve autoimmune diseases and prevent transplant rejection by suppressing the differentiation of pathogenic Th1 and Th17 cells as well as innate immune cell signaling.  相似文献   

15.
16.
17.
Tyrosine kinases of the Csk family play an important role in cell growth regulation and normal cell differentiation. They are also involved in carcinogenesis as oncoproteins. The main function of these tyrosine kinases is phosphorylation of tyrosine kinases of the Src family at their C-terminal regions to negatively regulate their activity. Disturbance of csk expression increases the Src tyrosine kinase activity. The full-length coding sequence of the csk cDNA was cloned from human lymphocytes. The 1624-bp cDNA consists of 12 exons and encodes a protein that has conserved SH2 and SH3 domains and is similar to human Csk tyrosine kinase by 99%. The full-length cDNA can be used to analyze the csk structure in normal or illdefined human cells.  相似文献   

18.
The differentiation of human CD4+ T cells into T helper cell subtypes and regulatory T cells is crucial to the immune response. Among subtypes, Th1 cells are dominant, representing approximately 50% of all lymphocytes. Thus far, most global proteomic studies have used only partially purified T helper cell subpopulations and/or have employed artificial protocols for inducing specific T helper cell subtypes and/or used gel‐based approaches. These studies have shed light on molecular details of certain aspects of the proteome; nevertheless a global analysis of high purity primary naïve and Th1 cells by LC‐MS/MS is required to provide a reference dataset for proteome‐based T cell subtype characterization. The utilization of highly purified Th1 cells for a global proteome assessment and the bioinformatic comparison to naïve cells reveals changes in cell metabolism and the ubiquitination pathway upon T cell differentiation. All MS data have been deposited in the ProteomeXchange with identifier PXD001066 ( http://proteomecentral.proteomexchange.org/dataset/PXD001066 ).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号