首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proper identification of Anisakis species infecting host fishes is very important to both human health and fish disease diagnosis. The foremost problem in the identification of Anisakis larvae in fishes is that L3 larvae cannot be easily differentiated morphologically, especially between A. simplex (sensu stricto) (s.s.) (Rudolphi, 1809) and A. pegreffii Campana-Rouget et Biocca, 1955. Instead, molecular means such as allozyme, mitochondrial DNA (mtDNA) cox2 region and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses had been successfully used. In this study, morphological differences of L3 larvae collected from fishes and in vitro-cultured L4 larvae and adult A. simplex (s.s.) and A. pegreffii were evaluated. Anisakis larvae were collected from 7 different host fishes within Japan. Undamaged A. simplex (s.s.) and A. pegreffii collected from Oncorhynchus keta (Walbaum) and Scomber japonicus Houttuyn, respectively, were used for in vitro-culture in order to obtain L4 and adult stages. Species identification was confirmed by PCR-RFLP analysis of the ITS region (ITS1-5.8S-ITS2) of ribosomal DNA and by mtDNA cox2 gene sequencing. Results revealed that L3, L4 and adult stages of A. simplex (s.s.) and A. pegreffii are morphologically distinguishable based on ventriculus length, wherein the former has longer ventriculus (0.90–1.50 mm) than the latter (0.50–0.78 mm). For oesophagus/ventriculus ratio, these two species are distinguishable only during L4 and adult stages. Also, adult male A. simplex (s.s.) and A. pegreffii were found to be distinguishable by differences in the distribution pattern of the caudal papillae, particularly the 3rd pair of distal papillae.  相似文献   

2.
The nematode genera Anisakis s.l. and Pseudoterranova (Anisakidae) include causative agents of anisakiasis and pseudoterranovosis, parasitic diseases resulting from eating undercooked or raw fish or squid. Species in both genera have thus attracted considerable attention especially in public health and taxonomic studies. The phylogenetic relationships of these genera within the subfamily Anisakinae, however, remain to be investigated with dense taxonomic sampling. In this study, we collected an anisakid third-stage larva, and identified it morphologically and molecularly as Pseudoterranova ceticola. Phylogeny of 15 anisakine species, including the newly collected specimen of Ps. ceticola, was reconstructed based on sequences of three mitochondrial (cox1, cox2, and 12S rRNA) and two nuclear (ITS and 28S rRNA) regions. The obtained tree suggested the non-monophyly of Anisakis s.l. and Pseudoterranova. Anisakis s.l. was divided into two groups, which are distinguished from each other by the shape of the ventriculus. Based on phylogenetic relationships and morphology, three species with a shorter ventriculus (“A.brevispiculata, “A.paggiae, and “A.physeteris) were assigned to the genus Skrjabinisakis, as recently proposed. Pseudoterranova ceticola was distantly related to the monophyletic Ps. decipiens species complex. Although the phylogenetic position of the type species Ps. kogiae has not been investigated due to a lack of sequence data, this species may morphologically and ecologically resemble Ps. ceticola, inferring a close kinship between the two species.  相似文献   

3.
4.
The third-stage larvae of Anisakis simplex sensu lato (s.l.) are found in many marine fishes. To ensure food safety, it is important to determine whether these larvae are present in the body muscle of commercial fish species. However, there is little information regarding the tissue specificity of Anisakis and two of its sibling species, A. simplex sensu stricto (s.s.) and Anisakis pegreffii, that are common in marine fish in Japanese waters. We orally challenged rainbow trout (Oncorhynchus mykiss (Walbaum)), and olive flounder (Paralichthys olivaceus (Temminck and Schlegel)) with L3 larvae of these two sibling species and monitored infection for 5weeks. In rainbow trout, A. simplex s.s., but not A. pegreffii larvae, migrated into the body muscle. A small number of freely moving A. pegreffii larvae were recovered within the body cavity. In olive flounder, A. simplex s.s. larvae were found in both the body cavity and body muscle. A. pegreffii larvae were found only in the body cavity and primarily encapsulated in lumps. Our results indicate that there are differences in the sites of infection and host specificity between the two sibling species of A. simplex s.l.  相似文献   

5.
The histopathology, ultrastructure, and immunohistochemistry of the alimentary canal of flounder Platichthys flesus (L.), naturally infected with the nematode Anisakis simplex s.l. (Rudolphi 1809) from the River Forth (Scotland), were investigated and described. Eight of the 16 flounders were infected with A. simplex s.l. larvae (L3); parasites were encapsulated by serosa on the external surface of the host's digestive tract (intensity of infection 1-8 parasites per host), although nematode larvae were found encysted under the peritoneal visceral serosa of the host spleen and liver and, occasionally, in the liver parenchyma (intensity of infection 3-10 parasites per host). In all sites, different structural elements were recognized within the capsule surrounding larvae. Among the epithelial cells of the intestine of 5 flounders with larvae encysted on external surface of the gut, the presence of several rodlet cells (RCs) was observed. Furthermore, often the occurrence of macrophage aggregates (MAs) was noticed in infected liver and spleen, mainly around the parasite larvae. Eight neuropeptide antisera were tested with immunohistochemistry methods on gut sections of 4 P. flesus infected with extraintestinal nematodes. Sections from the gut of 5 uninfected flounder were used for comparative purposes. In the tunica mucosa of parasitized P. flesus, several endocrine epithelial cells were immunoreactive to anti-CCK-39 (cholecystokinin 39) and -NPY (neuropeptide Y) sera; furthermore, in the myenteric plexus, a high number of neurons were immunoreactive to antibombesin, -galanin, and several to -NPY and -PHI (peptide histidine isoleucine) sera.  相似文献   

6.
Parasites morphologically consistent with Anisakis simplex sensu lato collected from the coast of Japan and Western North Pacific Ocean were examined by PCR-RFLP of the ITS region (ITS1, 5.8 subunit rRNA gene and ITS2) and mtDNA cox1. The RFLP patterns of rDNA generated by HinfI and HhaI showed that 100% of the larvae collected from Hokkaido and 94% of adults collected from Western North Pacific Ocean were identified as A. simplex sensu stricto. On the other hand, 97% of the larvae collected from Fukuoka prefecture were identified as A. pegreffii. A hybrid genotype was found in adults in Western North Pacific Ocean and larva in Fukuoka prefecture. These findings revealed that A. simplexs. str. is primarily distributed in the North Pacific Ocean and A. pegreffii is primarily distributed in the southern Sea of Japan. RFLP analysis of mtDNA cox1 showed different patterns between A. simplex s. str. and A. pegreffii after digestion with HinfI. This polymorphism obtained by RFLP analysis of mtDNA cox1 proved the usefulness as new genetic markers to distinguish two sibling species.  相似文献   

7.
The genetic relationships among 9 taxa of Anisakis Dujardin, 1845 (A. simplex (sensu stricto), A. pegreffii, A. simplex C., A. typica, A. ziphidarum, A. physeteris, A. brevispiculata, A. paggiae, and Anisakis sp.) were inferred from sequence analysis (629 bp) of the mitochondrial cox2 gene. Genetic divergence among the considered taxa, estimated by p-distance, ranged from p = 0.055, between sibling species of the A. simplex complex, to p = 0.12, between morphologically differentiated species, i.e., A. ziphidarum and A. typica. The highest level was detected when comparing A. physeteris, A. brevispiculata, and A. paggiae versus A. simplex complex (on average p = 0.13) or versus A. typica (on average p = 0.14). Sequence data from the newly identified Anisakis sp. poorly aligned with other Anisakis species but was most similar to A. ziphidarum (p = 0.08). Phylogenetic analyses based upon Parsimony and Bayesian Inference, as well as phenetic analysis based upon Neighbor-Joining p-distance values, generated similar tree topologies, each well supported at major nodes. All analyses delineated two main claides, the first encompassing A. physeteris, A. brevispiculata, and A. paggiae as a sister group to all the remaining species, and the second comprising the species of the A. simplex complex (A. simplex (s.s.), A. pegreffii and A. simplex C), A. typica, A. ziphidarum, and Anisakis sp. In general, mtDNA-based tree topologies showed high congruence with those generated from nuclear data sets (19 enzyme-loci) and with morphological data delineating adult and larval stages of the Anisakis spp.; however, precise positioning of A. typica and A. ziphidarum remain poorly resolved, though they consistently clustered in the same clade as Anisakis sp. and the A. simplex complex. Comparison of anisakid data with those currently available for their cetacean-definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies.  相似文献   

8.
Genetic variation at 21 gene-enzyme systems was studied in a sample of an adult population of Anisakis typica (Diesing, 1860) recovered in the dolphin Sotalia fluviatilis from the Atlantic coast of Brazil. The characteristic alleles, detected in this population, made it possible to identify as A. typica, Anisakis larvae with a Type I morphology (sensu Berland, 1961) from various fishes: Thunnus thynnus and Auxis thazard from Brazil waters, Trachurus picturatus and Scomber japonicus from Madeiran waters, Scomberomorus commerson, Euthynnus affinis, Sarda orientalis and Coryphaena hippurus from the Somali coast of the Indian Ocean, and Merluccius merluccius from the Eastern Mediterranean. Characteristic allozymes are given for the identification, at any life-stage and in both sexes, of A. typica and the other Anisakis species so far studied genetically. The distribution of A. typica in warmer temperate and tropical waters is confirmed; the definitive hosts so far identified for this species belong to delphinids, phocoenids and pontoporids. The present findings represent the first established records of intermediate/paratenic hosts of A. typica and extend its range to Somali waters of the Indian Ocean and to the Eastern Mediterranean Sea. A remarkable genetic homogeneity was observed in larval and adult samples of A. typica despite their different geographical origin; interpopulation genetic distances were low, ranging from D Nei=0.004 (Eastern Mediterranean versus Somali) to D Nei=0.010 (Brazilian versus Somali). Accordingly, indirect estimates of gene flow gave a rather high average value of Nm = 6.00. Genetic divergence of A. typica was, on average, D Nei=1.12 from the members of the A. simplex complex (A. simplex s.s, A. pegreffii, A. simplex C) and D Nei=1.41 from A. ziphidarum, which all share Type I larvae; higher values were found from both A. physeteris (D Nei=2.77)  相似文献   

9.
The third-stage (L3) larvae of Anisakis, which are the etiological agents of human anisakiasis, have been categorized morphologically into Anisakis Type I larvae and Anisakis Type II larvae. Genetic analysis has allowed easy identification of these larvae: Anisakis Type I larvae include the species Anisakis simplex sensu stricto, Anisakis pegreffii, Anisakis simplex C, Anisakis typica, Anisakis ziphidarum, and Anisakis nascettii, whereas Anisakis Type II larvae include the species Anisakis physeteris, Anisakis brevispiculata, and Anisakis paggiae. Since human consumption of raw fish and squid is common in Japan, we investigated Anisakis L3 larvae in 44 specimens of Beryx splendens from Japanese waters. A total of 730 Anisakis L3 larvae collected from B. splendens were divided morphologically into 4 types: Type I, Type II, and 2 other types that were similar to Anisakis Type III and Type IV described by Shiraki (1974). Anisakis Type II, Type III, and Type IV larvae all had a short ventriculus, but their tails were morphologically different. In addition, data from genetic analysis indicated that Anisakis Type II, Type III, and Type IV larvae could be identified as A. physeteris, A. brevispiculata, and A. paggiae, respectively. Therefore, A. physeteris, A. brevispiculata, and A. paggiae can be readily differentiated not only by genetic analysis but also by morphological characteristics of L3 larvae.  相似文献   

10.
Urbanelli S 《Heredity》2002,88(5):333-341
The reproductive isolation in hydrenid beetles of the Ochthebius complex was studied by analysing gene exchange in natural populations of O. quadricollis, Ochthebius sp. A and O. brevicollis steinbuehleri collected along the Mediterranean coasts. The ranges of these three species are largely allopatric, but sympatric areas were detected between contiguous taxa, ie, O. quadricollis and Ochthebius sp. A; Ochthebius sp. A and O. b. steinbuehleri. Three levels of reproductive isolation and genetic divergence were observed. One level involves extensive intraspecific genetic divergence within the biological species O. quadricollis, Ochthebius sp. A and O. brevicollis, associated with both physical barriers (eg, sea and sand stretches) and the low dispersal capacity of larvae and adults. The finding of transitional samples between the most differentiated population groups should indicate, however, that there is still some gene flow between the populations of the three taxa. Another level is found between Ochthebius sp. A and O. b. steinbuehleri, whose gene pools appear to be fairly distinct in spite of the fact that reproductive isolation is still incomplete: in their few syntopic sites, some F1 hybrids appeared indeed to have lower fitness, since backcrosses or recombinant genotypes were never observed. The final level in the evolution of reproductive isolation (full reproductive isolation) has been achieved by the species O. quadricollis and Ochthebius sp. A. No F1 or F(n) hybrids, nor backcrosses were found in their sympatric areas. The relative importance of ecological factors and evolutionary forces in the prevention of gene exchange between taxa are discussed.  相似文献   

11.
Reproductive isolation is the defining characteristic of a biological species, and a common, but often untested prediction is a positive correlation between reproductive isolation and genetic divergence. Here, we test for this correlation in odonates, an order characterized by strong sexual selection. First, we measure reproductive isolation and genetic divergence in eight damselfly genera (30 species pairs) and test for a positive correlation. Second, we estimate the genetic threshold preventing hybrid formation and empirically test this threshold using wild populations of species within the Ischnura genus. Our results indicate a positive and strong correlation between reproductive isolation and genetic distance using both mitochondrial and nuclear genes cytochrome oxidase II (COII: r = 0.781 and 18S–28S: r = 0.658). Hybridization thresholds range from ?0.43 to 1.78% for COII and ?0.052–0.71% for 18S–28S, and both F1‐hybrids and backcrosses were detected in wild populations of two pairs of Ischnura species with overlapping thresholds. Our study suggests that threshold values are suitable to identify species prone to hybridization and that positive isolation–divergence relationships are taxonomically widespread.  相似文献   

12.
To resolve the taxonomic relationship between two types of parasitic nematode larvae (Type I and II) and two species of parasitic nematode adults (Anisakis simplex and A. physeteris) of the aquatic ascarid genus Anisakis, collected in Japanese coastal water, a comparison was made of their hemoglobins' physicochemical properties. The larval hemoglobins were more similar to each other in electrophoretic pattern than to either adult, indeed there were few similarities whatsoever in these patterns of larval and adult hemoglobins. However, isoelectric points were 6.2 for the Type I larva and for A. simplex and 5.4 for the Type II larva and for A. physeteris. All samples showed identical patterns in spectrophotometric scanning. The circular dichroic spectra of the samples were also virtually identical, although slight differences were noted in the oxygenated hemoglobins; the Type II larva and A. physeteris exhibited a small positive peak at 575 nm but the Type I larva and A. simplex exhibited a much smaller peak (negative position). The sedimentation coefficients of the samples possessed essentially identical values (11.2–12.4). The molecular weights of the samples were estimated, roughly, to be in the range 33 to 43 × 104 by thin-layer chromatography on Sephadex G-200. The evidence suggests that a relationship may exist between the Type I larva and A. simplex, and between the Type II larva and A. physeteris.  相似文献   

13.
Larvae and adults of Anisakis, recovered from the beaked whales Mesoplodon layardii and Ziphius cavirostris from the Mediterranean Sea and South African waters, were analysed morphologically and by molecular markers (allozymes). A new Anisakis species was identified, showing fixed allele differences at a number of loci from the other Anisakis spp. tested (A. simplex complex, A. physeteris). The lack of hybrid or recombinant genotypes in mixed infections with A. pegreffii, A. simplex C and A. physeteris, as well as the high values of genetic distance (average DNei = 1.65 from the members of the A. simplex complex, and DNei = 3.09 from A. physeteris) showed that the new species is reproductively isolated. This new Anisakis species is morphologically different from the other Anisakis retained by Davey (1971) as either good species or species inquirendae. The name Anisakis ziphidarum n. sp. is proposed for the new species.  相似文献   

14.
Effects of temperature on development of eggs, recently hatched larvae and L3 larvae of the marine parasitic nematodes Anisakis simplex sensu stricto (s.s.) and A. pegreffii were examined in vitro. The eggs of A. simplex s.s. hatched at 3–25 °C and those of A. pegreffii hatched at 3–27 °C. Days before hatching varied between 2 days at 25 °C and 35–36 days at 3 °C in A. simplex s.s. and between 2 and 3 days at 27 °C and 65 days at 3 °C in A. pegreffii. Hatching rates of A. simplex s.s. were maintained high at temperatures between 3 and 25 °C but decreased to 0% at 27 °C. In contrast, those of A. pegreffii were lowest particularly at 3 °C, but also at 27 °C. The mean 50% survivals of hatched larvae ranged from 5.3 days at 25 °C to 82.3 days at 9 °C in A. simplex s.s., while in A. pegreffii it ranged from 1.2 days at 27 °C to 77.2 days at 9 °C. L3 larvae of A. pegreffii exhibited higher survival rates and activity than those of A. simplex s.s., particularly at 20 and 25 °C. These results suggest that the early stages of A. simplex s.s. are more adapted to lower temperatures whereas those of A. pegreffii are more tolerant to warm environments, which may correspond to their distribution patterns in Japan and Europe.  相似文献   

15.
The relationships between larvae and adults of Anisakis from the Mediterranean Sea and North-East Atlantic Ocean were analysed by multilocus electrophoresis. The correspondence of type I larvae with the A. simplex complex, including the sibling species A. simplex A and B, and of type II larvae with A. physeteris is confirmed. 19 of the 22 loci studied discriminated between the two larval types. Biochemical keys are given for the electrophoretic identification of A. simplex A, A. simplex B and A. physeteris, at both the larval and adult stages.  相似文献   

16.
The red scorpionfish Scorpaena scrofa (Scorpaenidae) is a high commercial value marine fish species along the Mediterranean coasts. Anisakiasis is a fish–borne parasitic zoonoses caused by Anisakis larvae in consumers. To date, there are only a few epidemiological studies on the presence and molecular identification of Anisakis larvae infecting S. scrofa. A total of 272 S. scrofa captured from the Gulf of Izmir in the Turkish Aegean coasts (FAO 37.3.1) were examined for Anisakis larvae between March 2019 and March 2020. The prevalence, mean intensity and mean abundance of Anisakis larvae were 9.6% (95% CI 6.5–13.7%), 2.8 (95% CI 1.88–5.19), and 0.27 (95% CI 0.15–0.56), respectively. All Anisakis larvae were collected from the viscera and body cavity of S. scrofa. Anisakis pegreffii, A. typica, and A. ziphidarum were genetically identified by RFLP analysis of the ITS region. These species were also confirmed by cox2 sequence analysis. A weak positive and statistically significant correlation between the total length (ρS 0.204; p = 0.001) and total weight (ρS 0.200; p = 0.001) of S. scrofa and the number of Anisakis larvae was observed. This survey presents the first molecular detection of A. typica and A. ziphidarum in S. scrofa. Thus, this fish species is a new host for A. typica and A. ziphidarum. This is also the first report of the presence of A. ziphidarum in the Aegean Sea.  相似文献   

17.
Natural infections with Hysterothylacium haze in the Japanese common goby, Acanthogobius flavimanus, were observed in detail. In gobies in which no worm eggs were deposited, second-stage larvae were found in the digestive tract wall, and third-stage larvae occurred in the digestive tract wall, mesentery, and body cavity, whereas fourth-stage larvae and adults were found in the body cavity. This stage-habitat relationship demonstrates the infectivity of second-stage larvae to the goby and the larval migration. In heavily infected gobies, eggs and all worm stages, from hatched second-stage larvae to adults, often were found together in the body cavity of one individual host, suggesting that hatched second-stage larvae can develop in the body cavity. It was shown experimentally that H. haze develops to the second stage in the egg and does not hatch spontaneously. When a goby was fed the viscera of heavily infected gobies containing eggs and various stages of worms or artificially incubated eggs containing second-stage larvae, second- and third-stage larvae were recovered from the digestive tract wall, and fourth-stage larvae and adults were found in the body cavity. When polychaetes or crustaceans were placed in contact with infected goby viscera or incubated eggs, only second-stage larvae were recovered from the body cavity of the invertebrates. The experimental results were consistent with observations on natural infections and indicate that the direct life cycle of H. haze may involve invertebrates as transport hosts.  相似文献   

18.
The study of the beryciform Anoplogaster cornuta from the Irminger Sea (north Atlantic) revealed the presence of the anisakid nematode Anisakis paggiae inside the body cavity, representing a new host and locality record. This deep-sea fish was infected with Anisakis larvae at a prevalence of 57.1% and a mean intensity of 2.2, with no correlation between the fish standard length and the number of accumulated A. paggiae. Kogiid whales (Kogia breviceps, K. sima), the typical final hosts of this parasitic nematode, have not yet been recorded so far in the north. Because A. cornuta does not migrate outside the Irminger Sea, and by using the parasite as an indicator for the presence of the final hosts, A. paggiae must have been introduced through migratory kogiid final hosts. This would extend their range of distribution into the Irminger Sea. The depth range of the meso- and bathypelagic A. cornuta and the frequent occurrence of Anisakis inside this deep-sea fish demonstrate an oceanic deep-water life cycle for A. paggiae in the north Atlantic.  相似文献   

19.
20.
The threespine stickleback ( Gasterosteus aculeatus ) species complex is well suited for identifying the types of phenotypic divergence and isolating barriers that contribute to reproductive isolation at early stages of speciation. In the present study, we characterize the patterns of genetic and phenotypic divergence as well as the types of isolating barriers that are present between two sympatric pairs of threespine sticklebacks in Hokkaido, Japan. One sympatric pair consists of an anadromous and a resident freshwater form and shows divergence in body size between the forms, despite the lack of genetic differentiation between them. The second sympatric pair consists of two anadromous forms, which originated before the last glacial period and are currently reproductively isolated. These two anadromous forms have diverged in many morphological traits as well as in their reproductive behaviours. Both sexual isolation and hybrid male sterility contribute to reproductive isolation between the anadromous species pair. We discuss the shared and unique aspects of phenotypic divergence and reproductive isolation in the Japanese sympatric pairs compared with postglacial stickleback species pairs. Further studies of these divergent species pairs will provide a deeper understanding of the mechanisms of speciation in sticklebacks.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 671–685.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号