首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
脱乙酰壳多糖处理可以诱导人参细胞产生H2 O2 ,增加人参皂苷的累积 ,提高鲨烯合酶 (squalenesynthase,GSS)与鲨烯环氧酶 (squaleneepoxidase,GSE)基因的转录水平。质膜NADPH氧化酶的抑制剂DPI,H2 O2 的淬灭剂DMTU与DHC可以抑制脱乙酰壳多糖的这些效应 ,暗示脱乙酰壳多糖可以活化质膜NADPH氧化酶而产生H2 O2 ,H2 O2 进而作为第二信使诱导gss与gse基因转录以及皂苷的合成。质膜钙通道抑制剂LaCl3与内质网钙通道抑制剂RR ,以及蛋白激酶抑制剂K2 5 2a都能削弱脱乙酰壳多糖促进皂苷积累和gss、gse转录的效应 ,说明胞内Ca2 浓度的升高与蛋白质磷酸化都参与了脱乙酰壳多糖诱导的gss、gse的转录以及皂苷的合成  相似文献   

3.
Nitric oxide (NO), produced by the inducible isoform of the NO synthase (iNOS), plays an important role in the pathophysiology of arthritic diseases. This work aimed at elucidating the role of the mitogen-activated protein kinases (MAPK), p38MAPK and p42/44MAPK, and of protein tyrosine kinases (PTK) on interleukin-1beta (IL-1)-induced iNOS expression in bovine articular chondrocytes. The specific inhibitor of the p38MAPK, SB 203580, effectively inhibited IL-1-induced iNOS mRNA and protein synthesis, as well as NO production, while the specific inhibitor of the p42/44MAPK, PD 98059, had no effect. These responses to IL-1 were also inhibited by treatment of the cells with the tyrosine kinase inhibitors, genistein and tyrphostin B42, which also prevented IL-1-induced NF-kappaB activation. The p38MAPK inhibitor, SB 203580, had no effect on IL-1-induced NF-kappaB activation. Finally, the p42/44MAPK inhibitor, PD 98059, prevented IL-1-induced AP-1 activation in a concentration that did not inhibit iNOS expression. In conclusion, this study shows that (1) PTK are part of the signaling pathway that leads to IL-1-induced NF-kappaB activation and iNOS expression; (2) the p38MAPK cascade is required for IL-1-induced iNOS expression; (3) the p42/44MAPK and AP-1 are not involved in IL-1-induced iNOS expression; and (4) NF-kappaB and the p38MAPK lie on two distinct pathways that seem to be independently required for IL-1-induced iNOS expression. Hence, inhibition of any of these two signaling cascades is sufficient to prevent iNOS expression and the subsequent production of NO in articular chondrocytes.  相似文献   

4.
Singlet oxygen is a high-energy molecular oxygen species. As one of the most active intermediates involved in chemical and biochemical reactions, singlet oxygen plays essential roles in plant responses to UV and strong light. Here, we report that Cle, an elicitor derived from fungal cell walls, induces the generation of singlet oxygen in cell cultures of ginseng, Panax ginseng. Cle treatment also triggers the activation of plasma membrane NADPH oxidase and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), subsequently leading to ethylene release and increased saponin synthesis, as shown by increased mRNA expression of squalene synthase (SQS) and squalene epoxidase (SQE), and accumulation of beta-amyrin synthase (beta-AS). Suppression of Cle-induced singlet oxygen generation or inhibition of ethylene production blocks saponin synthesis, whereas treatment of ginseng cells with ethylene or singlet oxygen induces the synthesis of saponin. Together, these results indicate that Cle-induced production of both singlet oxygen and ethylene is required for saponin synthesis, and that singlet oxygen may function upstream of ethylene during Cle-induced saponin synthesis.  相似文献   

5.
在人参(Panax ginseng C.A.Meyer)悬浮细胞质膜上测出了NAD(P)H氧化酶活性。这类NAD(P)H氧化酶活性可以被金瓜炭疽细胞壁激发子(Cle)诱导。Cle处理还能诱导人参悬浮细胞的氧进发、促进人参悬浮细胞的皂苷合成、提高苯丙氨酸解氨酶(PAL)的活力、以及诱导查尔式酮酶(CHS)的累积和细胞壁上抗性相关蛋白基因脯氨酸富裕蛋白基因hrgp(Hydroxyprolin-rich glycoproleins)的表达。当用哺乳动物白细胞质膜NADPH氧化酶的特异性抑制剂二亚苯基碘(Diphenylene iodonium,DPI)与奎吖因(quinacrine)预处理人参悬浮细胞30 min 后,Cle诱导的H2O2释放与Cle激活的质膜NAD(P)H氧化酶活性被抑制,同时Cle诱导的PAL活性及CHS的积累下降,皂苷合成与hrgp的表达被抑制。由此推测:人参细胞质膜NAD(P)H氧化酶与哺乳动物白细胞质膜NADPH氧化酶有很大的相似性。在Cle激发人参悬浮细胞产生氧进发的过程中,NAD(P)H氧化酶活性被诱导从而导致H2O2的产生,H2O2作为第二信使,激活苯丙氨酸途径,诱发人参皂苷的合成及hrgp防御基因的表达。这一过程中还涉及到Ca2+内流,胞内Ca2+浓度的升高,蛋白磷酸化与去磷酸化。人参细胞质膜NAD(P)H氧化酶在人参细胞对Cle的反应过程中起一种介导作用。因此可能存在由Cle刺激,NAD(P)H氧化酶被诱导,H2O2释放,到人  相似文献   

6.
7.
Basic fibroblast growth factor (bFGF) has been reported to promote the formation of axonal branches in cultured brain neurons. In the present study, we investigated whether the mitogen-activated protein kinase (MAPK) cascade was involved in this action of bFGF in cultured rat hippocampal neurons. Recombinant human bFGF (0.1-10 ng/ml) induced phosphorylation of p44/42 MAPK in a concentration and time-dependent manner. The phosphorylation of p44/42 MAPK occurred rapidly within 5 min after addition of bFGF, and lasted for 48 h. The bFGF-induced phosphorylation of p44/42 MAPK and axonal branch formation were both blocked by simultaneous addition of U0126 and PD98059, specific inhibitors of MAPK kinases. Furthermore, when U0126 and PD98059 were added 24 h after bFGF, phosphorylation of p44/42 m MAPK was decreased, and axonal branch formation was stopped. These results suggest that sustained activation of the MAPK cascade is required for bFGF-mediated axonal branch formation.  相似文献   

8.
Grepafloxacin is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. We recently found that grepafloxacin induced a priming effect on neutrophil respiratory burst induced by N-formylmethionylleucylphenylalanine. In this report, we elucidate the precise mechanism of the priming by grepafloxacin. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK). Grepafloxacin strongly phosphorylated p38 MAP kinase but not p44/42 MAPK or JNK. R(+)-Grepafloxacin showed more potent phosphorylation of p38 MAPK than did S(-)-grepafloxacin, in a time- and concentration-dependent manner. PD169316 significantly inhibited R(+)-grepafloxacin-induced translocation of p47-phox protein to the membrane fraction. Interestingly, grepafloxacin stereospecifically bound to the membrane fractions of neutrophils. These results strongly suggest that grepafloxacin stereospecifically primes neutrophil respiratory burst, and p38 MAPK activation is closely related to the grepafloxacin priming.  相似文献   

9.
Abstract: Nerve growth factor (NGF) induces persistent p42 and p44 mitogen-activated protein kinase (MAPK) activity in sympathetic neurones in parallel to its survival-promoting activity. To investigate whether these MAPK activities are necessary for NGF-induced survival, we have inhibited NGF-stimulated p42/p44 MAPK activity over extended periods using the compound 2-(2'-amino-3'-methoxyphenyl)-oxanaphthalen-4-one (PD98059). Despite attaining up to 95% inhibition of p42/p44 MAPK activity in cultures treated with NGF and PD98059, neuronal survival is maintained undiminished, although a decrease in the density of the neuritic network is observed. Because p21Ras activity is essential for NGF-induced survival, we conclude that p21Ras-linked activities other than p42 and p44 MAPKs are responsible for mediating NGF-dependent survival of rat sympathetic neurones.  相似文献   

10.
We have previously reported that prostaglandin F2 alpha (PGF2 alpha) activates p44/p42 mitogen-activated protein kinase (MAPK) through protein kinase C (PKC) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the mechanism of vascular endothelial growth factor (VEGF) synthesis induced by PGF2 alpha and the effect of incadronate on the VEGF synthesis in these cells. PGF2 alpha significantly stimulated the VEGF synthesis in a dose-dependent manner between 1 pm and 10 microm. Cycloheximide reduced the PGF2 alpha effect. PGF2 alpha increased the levels of mRNA for VEGF. Cloprostenol, a PGF2 alpha-sensitive receptor agonist, potently induced the VEGF synthesis. Indomethacin, an inhibitor of cyclooxygenase, significantly reduced the PGF2 alpha-induced VEGF synthesis. Bisindolylmaleimide, an inhibitor of PKC, reduced the PGF2 alpha-induced VEGF synthesis. The VEGF synthesis induced by PGF2 alpha was significantly attenuated in the PKC down-regulated cells. PGF2 alpha elicited the translocation of PKC beta I from cytosol to membrane fraction. PD98059 or U0126, inhibitors of MEK, suppressed the VEGF synthesis induced by PGF2 alpha. Farnesyltransferase inhibitor failed to affect the PGF2 alpha-induced VEGF synthesis. Incadronate enhanced the synthesis of VEGF induced by PGF2 alpha. NaF-induced VEGF synthesis was also amplified by incadronate. PD98059 suppressed the enhancement by incadronate of PGF2 alpha-induced VEGF synthesis. Incadronate markedly enhanced the phosphorylation of Raf-1, MEK1/2, and p44/p42 MAPK induced by PGF2 alpha or 12-O-tetradecanoylphorbol-13-acetate, a PKC activator. Incadronate significantly enhanced the cloprostenol-increased level of VEGF concentration in mouse plasma in vivo. These results strongly suggest that PGF2 alpha stimulates VEGF synthesis through the PKC-dependent activation of p44/p42 MAPK in osteoblasts and that the incadronate enhances the VEGF synthesis at the point between PKC and Raf-1.  相似文献   

11.
Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by plateletderived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated DNA synthesis which was totally dependent on Ras, because transfection of dominant negative Ras resulted in complete loss of PDGF-stimulated DNA synthesis. Initiation of DNA synthesis was preceded by activation of Raf-1, MEK and MAP kinases (Erk 1 and Erk2). Treatment of the cells with PD98059, an inhibitor of MAPK kinase (MEK) attenuated but did not abolish PDGF-stimulated DNA synthesis, suggesting that MAPK is required but not essential for DNA synthesis. PDGF also stimulated phosphorylation of protein kinase B (Akt/PKB) and p70 S6Kinase (p70S6K) in a wortmannin-sensitive manner. Rapamycin, an inhibitor of p70S6K, markedly suppressed DNA synthesis. Low concentrations of insulin (1-10 nmol/l) alone showed little mitogenic activity and no significant effect on MAPK activity. However, the presence of insulin enhanced both DNA synthesis and MAPK activation by PDGF. The enhancing effect of insulin was not seen in cells treated with PD98059. Insulin was without effect on PDGF-stimulated activations of protein kinase B (Akt/PKB) and p70S6K. We conclude that insulin, at pathophysiologically relevant concentrations, potentiates the PDGFstimulated DNA synthesis, at least in part, by potentiating activation of the MAPK cascade. These results are consistent with the notion that hyperinsulinemia is a risk factor for the development of atherosclerosis.  相似文献   

12.
Insulin and moderate oxidative stress stimulate proliferation of ovarian theca-interstitial cells. The effects of these agents on selected signal transduction pathways were examined. PD98059 (inhibitor of MAP2K1, also known as MEK-1, upstream of extracellular signal-regulated protein kinases MAPK3/1, also known as ERK1/2), wortmannin (inhibitor of PIK3C2A, also known as PI3K), and rapamycin (inhibitor of FRAP1, also known as mTOR, upstream of RPS6KB1) each significantly decreased insulin and oxidative stress-induced proliferation of theca-interstitial cells. The greatest inhibition was observed in the presence of rapamycin; this effect occurred without a significant change in cell viability. Phosphorylation of AKT was stimulated by insulin only, while phosphorylation of MAPK3/1 and RPS6KB1 was increased by insulin and oxidative stress. Insulin-induced and oxidative stress-induced phosphorylation of RPS6KB1 was partly inhibited by wortmannin and partly by PD98059; the greatest inhibition was observed in the presence of a combination of wortmannin plus PD98059. Effects of insulin and oxidative stress on phosphorylation of RPS6KB1 were confirmed by kinase activity assays. These findings indicate that actions of insulin and oxidative stress converge on MAPK3/1 and RPS6KB1. Furthermore, we speculate that activation of RPS6KB1 may be in part induced via the MAPK3/1 pathway.  相似文献   

13.
Resumption of meiosis of mammalian oocytes is facilitated by the maturation promoting factor (MPF) and accompanied by activation of mitogen activated protein kinases (MAPK) which are phosphorylated by the MAPK kinase (MEK). In this study we examined the effects of PD 98059, which inhibits the activity of MEK, on in vitro maturation of pig oocytes. Cumulus-oocyte complexes (COCs) were cultured in the presence or absence of the drug (50 microM) for various time periods. To elucidate the influence of cumulus cells, COCs were first cultured in inhibitor-free medium, subsequently denuded, and incubated further in PD 98059 supplemented medium. Reversibility of drug action as tested following PD 98059 treatment of COCs by transferring them to drug-free medium. Culture of COCs in medium supplemented with PD 98059 prevents resumption of nuclear maturation in the majority of COCs. This inhibition was reversible and accompanied by a non-activation of both MAP and MPF. Addition of the MEK inhibitor to extracts of in vitro matured oocytes revealed that the kinase activities were not directly influenced by the inhibitor, suggesting a link between MAP and MPF kinases. Preincubation of COCs in inhibitor-free medium for 6 h followed by further culture of COCs or denuded oocytes in the presence of PD 98059 for various periods resulted in elevated MAP and MPF kinase activities, indicating an early and transient MEK signalling in the oocyte itself. These results support the idea that MAP and MPF are involved in the induction of germinal vesicle breakdown in porcine oocytes.  相似文献   

14.
15.
Many neutrophil responses, including chemotaxis, exocytosis, respiratory burst activity and chemokine synthesis, are mediated by p38 MAPK. MAPK-activated protein kinase-2 (MK2) is activated by p38 MAPK in human neutrophils. The present study tested the hypothesis that MK2 mediates multiple p38 MAPK-dependent responses in human neutrophils by comparing the effect of the p38 MAPK inhibitor, SB203580, with an MK2 inhibitory peptide. Both SB203580 and MK2 inhibitory peptide attenuated respiratory burst activity, exocytosis, and chemotaxis. Lipopolysaccharide (LPS)-induced IL-8 production was inhibited by SB203580, but not by the MK2 inhibitory peptide. Inhibition of chemotaxis and respiratory burst activity by SB203580 was less than that of MK2 inhibitory peptide. Inhibition of extracellular signal-regulated kinase (ERK) activity by PD98059 attenuated superoxide release and chemotaxis, and simultaneous treatment with SB203580 and PD98059 demonstrated additive inhibition. ERK phosphorylated MK2 in vitro and activated MK2 in f-methionyl-leucyl-phenylalanine (FMLP)-stimulated neutrophils. These data suggest that MK2 mediates both ERK- and p38 MAPK-dependent neutrophil responses.  相似文献   

16.
Transforming growth factor-beta (TGF-beta) reportedly induces vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. We have recently shown that TGF-beta activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in these cells. In the present study, we investigated the exact mechanism of TGF-beta behind the synthesis of VEGF in MC3T3-E1 cells. PD98059 and U-0126, specific inhibitors of MEK, suppressed the VEGF synthesis induced by TGF-beta. U-0126 inhibited the TGF-beta-induced p44/p42 MAP kinase phosphorylation. SB203580 and PD169316, inhibitors of p38 MAP kinase, reduced the TGF-beta-stimulated VEGF synthesis. SB202474, a negative control for p38 MAP kinase inhibitor, did not affect the VEGF synthesis. A combination with PD98059 and SB203580 almost completely suppressed the TGF-beta-induced VEGF synthesis. Retinoic acid, which alone failed to affect VEGF synthesis, markedly enhanced the VEGF synthesis stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-increased levels of VEGF mRNA. The amplifications by retinoic acid of TGF-beta-increased VEGF synthesis and levels of VEGF mRNA were reduced by PD98059 or SB203580. The combination of PD98059 and SB203580 almost completely suppressed the enhancement by retinoic acid of VEGF synthesis induced by TGF-beta. Taken together, our results strongly suggest that both p44/p42 MAP kinase and p38 MAP kinase take part in TGF-beta-stimulated VEGF synthesis in osteoblasts, and that retinoic acid upregulates the VEGF synthesis.  相似文献   

17.
18.
19.
20.
The present study investigated the role of the progestin receptor (PR) and the mitogen-activated protein kinase (MAPK) pathway in the facilitation of lordosis behavior by the delta opioid receptor agonist [D-Pen(2), D-Pen(5)]-enkephalin (DPDPE). Ovariectomized, estrogen-primed rats were treated with the PR antagonist RU486 or the MAPK inhibitor PD98059 prior to intraventricular (icv) infusion of DPDPE. Both RU486 and PD98059 blocked receptive and proceptive behaviors induced by DPDPE at 60 min, and RU486 continued to inhibit estrous behavior at 90 min. Because delta opioid receptors can activate the p42/44 MAPKs, extracellular signal regulated kinases (ERK), we determined the effects of DPDPE on ERK phosphorylation. Icv infusion of DPDPE increased the levels of phosphorylated ERK in the hypothalamus and preoptic area of female rats, assessed by immunoblotting. These results support the participation of the PR and the MAPK pathway in the facilitation of lordosis behavior by delta opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号