首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Most biological reactions, including carcinogenesis, are complex processes involving thousands of compounds, their metabolites and intermediates. The separation of events which form part of a direct chain leading to neoplastic transformation from those which are mere by-products is a herculean task. In this study, we focused on the pros and cons of reactive oxygen species (ROS) being involved in the development of oral cancer among chewers of tobacco and areca nuts. The results revealed that bursts of ROS generation occur at different stages of carcinogenesis, and are caused by different mechanisms. This observation may have considerable practical implications. Different strategies will be required in the administration of chemopreventive agents in order to trap ROS formed in the alkaline (due to the addition of slaked lime) chewing mixture within the saliva of a chewer, to scavenge ROS within mucosal cells exposed to an array of tobacco- or areca nut-related carcinogens or tumour promoters, and to inhibit the action of ROS released from ROS-generating white cells during lymphocytic infiltration of the oral mucosa at a precancerous stage. The remission of oral leukoplakias following the administration of vitamin A (200,000 IU/week) or vitamin A (100,000 IU/week) plus beta-carotene (180 mg/week) for 6 months, the inhibition of new leukoplakias during this trial period, and the reduction of micronucleated oral mucosal cells in chewers treated with beta-carotene or vitamin A are indeed promising results. However, a better understanding of the role of ROS in various stages of carcinogenesis will provide the basis for selection of the proper chemopreventive agents and the design of a treatment regime which may either prevent the formation of precancerous lesions, induce their remission, or inhibit the progression of precancerous lesions into malignant cancers.  相似文献   

2.
There are 2 to 6 billion betel quid (BQ) chewers in the world. Areca nut (AN), a BQ component, modulates arachidonic acid (AA) metabolism, which is crucial for platelet function. AN extract (1 and 2 mg/ml) stimulated rabbit platelet aggregation, with induction of thromboxane B2 (TXB2) production. Contrastingly, Piper betle leaf (PBL) extract inhibited AA-, collagen-, and U46619-induced platelet aggregation, and TXB2 and prostaglandin-D2 (PGD2) production. PBL extract also inhibited platelet TXB2 and PGD2 production triggered by thrombin, platelet activating factor (PAF), and adenosine diphosphate (ADP), whereas little effect on platelet aggregation was noted. Moreover, PBL is a scavenger of O2(*-) and *OH, and inhibits xanthine oxidase activity and the (*)OH-induced PUC18 DNA breaks. Deferoxamine, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and neomycin prevented AN-induced platelet aggregation and TXB2 production. Indomethacin, genistein, and PBL extract inhibited only TXB2 production, but not platelet aggregation. Catalase, superoxide dismutase, and dimethylthiourea (DMT) showed little effect on AN-induced platelet aggregation, whereas catalase and DMT inhibited the AN-induced TXB2 production. These results suggest that AN-induced platelet aggregation is associated with iron-mediated reactive oxygen species production, calcium mobilization, phospholipase C activation, and TXB2 production. PBL inhibited platelet aggregation via both its antioxidative effects and effects on TXB2 and PGD2 production. Effects of AN and PBL on platelet aggregation and AA metabolism is crucial for platelet activation in the oral mucosa and cardiovascular system in BQ chewers.  相似文献   

3.
Fecapentaene-12 and -14, direct-acting mutagens in human feces, were found to hydroxylate the C-8 position of guanine residues in DNA in vitro. Fecapentaene-12 or -14 was incubated with 0.5 mg of calf thymus DNA in 1 ml of reaction mixture at pH 7.4 for 2 h at 37°C in the dark, and then 8-hydroxydeoxyguanosine (8-OH-dG) was analyzed. In these conditions 8-OH-dG was formed dose-dependently at levels of 1.1–4.6 residues/104 dG with concentrations of 0.5–3.0 mM of fecapentaene-12. Similar results were obtained with fecapentaene-14. The amount of 8-OH-dG in untreated DNA was 0.2–0.3 residue/104 dG.  相似文献   

4.
Betel Quid (BQ) chewing independently contributes to oral, hepatic and esophageal carcinomas. Strong association of breast cancer risk with BQ chewing in Northeast Indian population has been reported where this habit is prodigal. We investigated genomic alterations in breast cancer patients with and without BQ chewing exposure. Twenty six BQ chewers (BQC) and 17 non BQ chewer (NBQC) breast cancer patients from Northeast India were analyzed for genomic alterations and pathway networks using SNP array and IPA. BQC tumors showed significantly (P<0.01) higher total number of alterations, as compared with NBQC tumors, 48±17% versus 32±25 respectively. Incidence of gain in fragile sites in BQC tumors were significantly (P<0.001) higher as compared with NBQC tumors, 34 versus 23% respectively. Two chromosomal regions (7q33 and 21q22.13) were significantly (p<0.05) associated with BQC tumors while two regions (19p13.3-19p12 and 20q11.22) were significantly associated with NBQC tumors. GO terms oxidoreductase and aldo-keto reductase activity in BQC tumors in contrast to G-protein coupled receptor protein signaling pathway and cell surface receptor linked signal transduction in NBQC tumors were enriched in DAVID. One network "Drug Metabolism, Molecular Transport, Nucleic Acid Metabolism" including genes AKR1B1, AKR1B10, ETS2 etc in BQC and two networks "Molecular Transport, Nucleic Acid Metabolism, Small Molecule Biochemistry" and "Cellular Development, Embryonic Development, Organismal Development" including genes RPN2, EMR3, VAV1, NNAT and MUC16 etc were seen in NBQC. Common alterations (>30%) were seen in 27 regions. Three networks were significant in common regions with key roles of PTK2, RPN2, EMR3, VAV1, NNAT, MUC16, MYC and YWHAZ genes. These data show that breast cancer arising by environmental carcinogens exemplifies genetic alterations differing from those observed in the non exposed ones. A number of genetic changes are shared in both tumor groups considered as crucial in breast cancer progression.  相似文献   

5.
Fecapentaene-12 and -14, direct-acting mutagens in human feces, were found to hydroxylate the C-8 position of guanine residues in DNA in vitro. Fecapentaene-12 or -14 was incubated with 0.5 mg of calf thymus DNA in 1 ml of reaction mixture at pH 7.4 for 2 h at 37 degrees C in the dark, and then 8-hydroxydeoxyguanosine (8-OH-dG) was analyzed. In these conditions 8-OH-dG was formed dose-dependently at levels of 1.1-4.6 residues/10(4) dG with concentrations of 0.5-3.0 mM of fecapentaene-12. Similar results were obtained with fecapentaene-14. The amount of 8-OH-dG in untreated DNA was 0.2-0.3 residue/10(4) dG.  相似文献   

6.
The purpose of this study is to explore the mutual interactions among the chemical ingredients of betel quid including arecoline, sodium fluoride, catechin and glycyrrhizin in producing genotoxicity on Chinese hamster ovary (CHO) cells using the micronucleus method. Our results show that arecoline at a rather low concentration of 0.2–2 μM which could be in the oral cavity during betel quid chewing and NaF (0.8–2.4 mM) significantly elevated the number of micronucleated cells in a concentration-dependent manner. In addition, significant prolongation of cell cycles was observed by treatment with arecoline (≥2.0 μM) or NaF (2.4 mM) in CHO cells. Both catechin and glycyrrhizin could antagonize not only the increased micronucleated cells induced by arecoline and NaF but also the prolonged cell cycle induced by arecoline in CHO cells. This finding implies that the adjuvant ingredients, catechu and liquorice root extract provide not only a flavor but also an antagonist against the genotoxicity of arecoline and fluoride containing betel quid.  相似文献   

7.
《Free radical research》2013,47(9):996-1010
Abstract

In the present study, the formation of whole cellular S-nitrosylated proteins (protein-SNOs) by the reactive oxygen species (ROS), hydrogen peroxide (H2O2), and superoxide (O2??) is demonstrated. A spectrum of protein cysteine oxidative modifications was detected upon incubation of serum-starved mouse embryonic fibroblasts with increasing concentrations of exogenous H2O2, ranging from exclusive protein-SNOs at low concentrations to a mixture of protein-SNOs and other protein oxidation at higher concentrations to exclusively non-SNO protein oxidation at the highest concentrations of the oxidant used. Furthermore, formation of protein-SNOs was also detected upon inhibition of the antioxidant protein Cu/Zn superoxide dismutase that results in an increase in intracellular concentration of O2??. These results were further validated using the phosphatase and tensin homologue, PTEN, as a model of a protein sensitive to oxidative modifications. The formation of protein-SNOs by H2O2 and O2?? was prevented by the NO scavenger, c-PTIO, as well as the peroxinitrite decomposition catalyst, FETPPS, and correlated with the production or the consumption of nitric oxide (NO), respectively. These data suggest that the formation of protein-SNOs by H2O2 or O2?? requires the presence or the production of NO and involves the formation of the nitrosylating intermediate, peroxinitrite.  相似文献   

8.
The present study investigated the ability of gentamicin to catalyze free radical reactions and probed the underlying mechanisms by hydroethidine imaging, oxygen consumption, and reduction of cytochrome c. In Epstein-Barr virus-transformed lymphoblastoid cells, a respiratory burst was induced by phorbol ester and detected by hydroethidine, a fluorescent indicator of superoxide radical. The addition of gentamicin increased the fluorescence two-fold while gentamicin did not produce fluorescence in the absence of phorbol ester. In membrane preparations, gentamicin did not enhance NADPH consumption ruling out a direct activation of NADPH oxidase. The formation of reactive oxygen species by gentamicin was additionally supported by experiments that showed gentamicin increased oxygen consumption two-fold in intact cells and a cell-free system. In addition, generation of superoxide was indicated by the gentamicin-stimulated reduction of cytochrome c. The stimulation by gentamicin depended upon the presence of iron (FeII/FeIII) and of arachidonic acid as an electron donor. These results support the hypothesis that an iron-gentamicin complex can increase reactive oxygen species in nonenzymatic and in biological systems. The requirement for a reductive activation in intact cells (e.g., by a respiratory burst) is interpreted as the conversion of an inactive FeIII-gentamicin to a redox-active FeII-gentamicin complex.  相似文献   

9.
Heat-induced formation of 8-oxoguanine was demonstrated in DNA solutions in 10–3 M phosphate buffer, pH 6.8, by enzyme-linked immunosorbent assays using monoclonal antibodies against 8-oxoguanine. A radiation-chemical yield of 3.7 × 10–2 µmol J–1 for 8-oxoguanine production in DNA upon γ-irradiation was used as an adequate standard for quantitation of 8-oxoguanine in whole DNA. The initial yield of heat-induced 8-oxoguanine exhibits first order kinetics. The rate constants for 8-oxoguanine formation were determined at elevated temperatures; the activation energy was found to be 27 ± 2 kcal/mol. Extrapolation to 37°C gave a value of k37 = 4.7 × 10–10 s–1. Heat-induced 8-oxoguanine formation and depurination of guanine and adenine show similarities of the processes, which implies that heat-mediated generation of reactive oxygen species (ROS) should occur. Heat-induced production of H2O2 in phosphate buffer was shown. The sequence of reactions of thermally mediated ROS formation have been established: activation of dissolved oxygen to the singlet state, generation of superoxide radicals and their dismutation to H2O2. Gas saturation (O2, N2 and Ar), D2O, scavengers of 1O2, O2–• and OH radicals and metal chelators influenced heat-induced 8-oxoguanine formation as they affected thermal ROS generation. These findings imply that heat acts via ROS attack leading to oxidative damage to DNA.  相似文献   

10.
The “carcinogenic” betel nut and constituents of betel quid were tested for possible mutagenicity in Drosophila. The test compounds were administered either alone or in combinations by larval feeding. The data on sex-chromosome loss, sex-linked recessive lethals and autosomal translocations suggest lack of mutagenicity.  相似文献   

11.
Processes of oxygen activation in monocytes stimulated with adhesion to glass were studied by methods of luminol-dependent and lucigen-independent chemiluminescence. It was shown that monocyte chemiluminescence was caused by cell adhesion to glass surface. Generation of reactive oxygen species at monocyte adhesion to glass was dependent on calcium ion concentration in the medium. The increase in the level of cytosolic calcium, as the extracellular calcium concentration elevated, was accompanied by the activation of phospholipase A2, 5-lypoxygenase and cycloxygenases. Magnesium ions exerted no influence on oxygen activation by cells. Incubation of cells in glucose-free medium, or the addition of glycolysis blocker (2-deoxy-D-glucose) to cell suspension led to a decrease in chemiluminescence intensity. By means of inhibitory analysis, it has been established that processes of oxygen activation are related to arachidonic acid metabolism, and depend on the activity of phospholipase A2.  相似文献   

12.
The "carcinogenic" betel nut and constituents of betel quid were tested for possible mutagenicity in Drosophila. The test compounds were administered either alone or in combinations by larval feeding. The data on sex-chromosome loss, sex-linked recessive lethals and autosomal translocations suggest lack of mutagenicity.  相似文献   

13.
Fly ash was used as a model for ambient particulate matter which is under suspicion to cause adverse pulmonary health effects. The fly ash was pre-sized and contained only particles < 20 microm including an ultrafine fraction (< 100 nm) that contributed 31% to the particle number. In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the formation of ROS with regard to the mass of particles applied. Lipopolysaccharide (LPS) added as a co-stimulus did not increase the formation of ROS induced by fly ash. Furthermore, in LPS (0.1 microg/ml) and tumour necrosis factor-alpha (TNF-alpha; 1 ng/ml) pre-treated cells no increase in reactive oxygen species comparable to fly ash alone is observable. In presence of the metal chelator, desferrioxamine (DFO), ROS formation can be significantly reduced. Neither fly ash nor LPS induced a significant NO release in RLE-6TN cells.  相似文献   

14.
Components of betel quid (BQ) have been investigated for genotoxicity, mutagenicity, and animal toxicity. However, little information exists regarding their carcinogenic characteristics. Considerable attention has already been focused on tumor promoters that occur environmentally for human uptake. In this study, the promoting effects of BQ and lime-piper additives (LPA) in BQ on epidermal hyperplasia in CD-1 mouse skin are investigated. In the present study, we found that BQ and LPA at concentrations of 25,50,75 mg/ml caused significant induction of hyperplasia, but only LPA caused an increase of epidermal ornithine decarboxylase (ODC). Treatment of mouse skin with LPA caused remarkable increases in the production of H(2)O(2) by 2.41-, 3.90-, and 3.76-fold (for the above-indicated concentrations respectively); as well as marked increases of myeloperoxidase (MPO) by 1.43-, 2.70-, and 2.29-fold. Application of LPA or BQ (50,100,150 mg/ml) also caused induction of protein kinase C-alpha (PKC-alpha) and NF-kappaB. LPA exhibited more significant effect than BQ. Thus, LPA might make a major contribution to the BQ-induced expression of PKC and NF-kappaB. These results indicated that BQ has the potential of being promoting agents, and that LPA should play a major role in increasing the effects of BQ-caused skin hyperplasia and inflammation. The promoting effects of BQ and LPA on mouse skin were associated with the induction of the expressions of PKC and NF-kappaB.  相似文献   

15.
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.  相似文献   

16.
8-Oxoguanine (8-OG) is an important biomarker of oxidative DNA damage induced by reactive oxygen species (ROS). By using ELISA with monoclonal antibodies against 8-OG, the formation of 8-OG in DNA by the action of uranyl ions, gamma-irradiation, and heating at 37 degrees C and their combined action was investigated in view of environmental pollution by uranium oxides as a result of the use of armor piercing shells with depleted uranium. The content of 8-OG in DNA induced by the action of gamma-irradiation, 5 microM uranyl ions and heating changes with time in a complicated manner. These results suggest that, by the action of uranyl ions, an additional generation of ROS occurs, which leads both to the formation of 8-OG in DNA and its further oxidation. Uranyl ions at a conceptration of 5 microM increase the thermal deamination of cytosine in DNA several times but do not influence DNA thermal depurination. It is shown that uranyl ions essentially increase the production of hydrogen peroxide and hydroxyl radicals by the action of heat on water. The results indicate a high chemical genotoxicity of uranyl ions and their enhancing effect on DNA base damage by the action of heat and gamma-irradiation.  相似文献   

17.
NMR studies of a DNA containing 8-hydroxydeoxyguanosine.   总被引:13,自引:6,他引:7       下载免费PDF全文
The effects of hydroxylation at the C8 of a deoxyguanosine residue in DNA were studied by NMR analysis of a self-complementary dodecanucleotide, d(C1-G2-C3-oh8G4-A5-A6-T7-T8-C9-G10-C11-G12), which has an 8-hydroxy-2'-deoxyguanosine (oh8dG) residue at the 4th position. NMR data indicate that the 8-hydroxyguanine (oh8G) base takes a 6,8-diketo tautomeric form and is base-paired to C with Watson-Crick type hydrogen bonds in a B-form structure. The thermal stability of the duplex is reduced, but the overall structure is much the same as that of the unmodified d(CGCGAATTCGCG) duplex. The structural changes caused by 8-hydroxylation of the deoxyguanosine, if any, are localized near the modification site.  相似文献   

18.
We report the effects of reactive oxygen species generated by ultraviolet-A radiation on some biochemical parameters specific for oxidative stress, in rat testis homogenates. Results show an increase in lipid peroxidation products under ultraviolet-A exposure, and suggest that the involved mechanism is typical for a radical-mediated chain reaction. The amount of SH groups also increases during irradiation, probably as a consequence of conformational changes in proteins. Electrophoresis results revealed protein pattern changes mainly in the low molecular weight domain. The catalytic activities of alkaline phosphatase and gamma-glutamil transpeptidase are modified under the oxidative conditions generated by reactive oxygen species. The changes of the enzymatic activities are UVA exposure time-dependent, suggesting that conformational modifications are responsible for enzymatic activities enhancement.  相似文献   

19.
Lee HC  Yin PH  Yu TN  Chang YD  Hsu WC  Kao SY  Chi CW  Liu TY  Wei YH 《Mutation research》2001,493(1-2):67-74
Accumulation of mitochondrial DNA (mtDNA) mutations in human tissues has been associated with intrinsic aging and environmental insult. Recently, mtDNA mutations have been detected in various tumors, including head and neck tumors. However, the factors affecting the occurrence and accumulation of mtDNA deletions in tumor tissues are poorly understood. In Taiwan, betel quid chewing is a major risk factor for oral cancer. Using polymerase chain reaction (PCR) techniques, we examined large-scale deletions of mtDNA in 53 pairs of tumor and non-tumor oral tissues from the patients with or without betel quid chewing history. The results revealed that irrespective of the history of betel quid chewing, the incidences of the 4977bp deletion and other deletions of mtDNA were lower in the tumor portion as compared with the non-tumor portion. The average proportions of the 4977bp deleted mtDNA in the tumor tissues of the betel quid chewers and non-betel quid chewers were 13- and 5-fold, respectively, lower than those in the corresponding non-tumor tissues. Moreover, the average proportion of 4977bp deleted mtDNA was significantly higher (P<0.05) in the non-tumor oral tissues of the patients with betel quid chewing history than that of the patients without the history of betel quid chewing. These results suggest that betel quid chewing may increase mtDNA mutation in human oral tissues and that accumulation of mtDNA deletions and subsequent cytoplasmic segregation of these mutations during cell division could be an important contributor to the early phase of oral carcinogenesis.  相似文献   

20.
Liu J  Ouyang M  Jiang J  Mu P  Wu J  Yang Q  Zhang C  Xu W  Wang L  Huen MS  Deng Y 《Mutation research》2012,741(1-2):70-75
Mequindox, a quinoxaline-N-dioxide derivative that possesses antibacterial properties, has been widely used as a feed additive in the stockbreeding industry in China. While recent pharmacological studies have uncovered potential hazardous effects of mequindox, exactly how mequindox induces pathological changes and the cellular responses associated with its consumption remain largely unexplored. In this study, we investigated the cellular responses associated with mequindox treatment. We report here that mequindox inhibits cell proliferation by arresting cells at the G2/M phase of the cell cycle. Interestingly, this mequindox-associated deleterious effect on cell proliferation was observed in human, pig as well as chicken cells, suggesting that mequindox acts on evolutionarily conserved target(s). To further understand the mequindox-host interaction and the mechanism underlying mequindox-induced cell cycle arrest, we measured the cellular content of DNA damage, which is known to perturb cell proliferation and compromise cell survival. Accordingly, using γ-H2AX as a surrogate marker for DNA damage, we found that mequindox treatment induced cellular DNA damage, which paralleled the chemical-induced elevation of reactive oxygen species (ROS) levels. Importantly, expression of the antioxidant enzyme catalase partially alleviated these mequindox-associated effects. Taken together, our results suggest that mequindox cytotoxicity is attributable, in part, to its role as a potent inducer of DNA damage via ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号