首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The murine immunoglobulin heavy-chain (Igh) locus provides an important model for understanding the replication of tissue-specific gene loci in mammalian cells. We have observed two DNA replication programs with dramatically different temporal replication patterns for the Igh locus in B-lineage cells. In pro- and pre-B-cell lines and in ex vivo-expanded pro-B cells, the entire locus is replicated early in S phase. In three cell lines that exhibit the early-replication pattern, we found that replication forks progress in both directions through the constant-region genes, which is consistent with the activation of multiple initiation sites. In contrast, in plasma cell lines, replication of the Igh locus occurs through a triphasic pattern similar to that previously detected in MEL cells. Sequences downstream of the Igh-C alpha gene replicate early in S, while heavy-chain variable (Vh) gene sequences replicate late in S. An approximately 500-kb transition region connecting sequences that replicate early and late is replicated progressively later in S. The formation of the transition region in different cell lines is independent of the sequences encompassed. In B-cell lines that exhibit a triphasic-replication pattern, replication forks progress in one direction through the examined constant-region genes. Timing data and the direction of replication fork movement indicate that replication of the transition region occurs by a single replication fork, as previously described for MEL cells. Associated with the contrasting replication programs are differences in the subnuclear locations of Igh loci. When the entire locus is replicated early in S, the Igh locus is located away from the nuclear periphery, but when Vh gene sequences replicate late and there is a temporal-transition region, the entire Igh locus is located near the nuclear periphery.  相似文献   

2.
3.
4.
We have examined the dynamics of nuclear repositioning and the establishment of a replication timing program for the actively transcribed dihydrofolate reductase (DHFR) locus and the silent beta-globin gene locus in Chinese hamster ovary cells. The DHFR locus was internally localized and replicated early, whereas the beta-globin locus was localized adjacent to the nuclear periphery and replicated during the middle of S phase, coincident with replication of peripheral heterochromatin. Nuclei were prepared from cells synchronized at various times during early G1 phase and stimulated to enter S phase by introduction into Xenopus egg extracts, and the timing of DHFR and beta-globin replication was evaluated in vitro. With nuclei isolated 1 h after mitosis, neither locus was preferentially replicated before the other. However, with nuclei isolated 2 or 3 h after mitosis, there was a strong preference for replication of DHFR before beta-globin. Measurements of the distance of DHFR and beta-globin to the nuclear periphery revealed that the repositioning of the beta-globin locus adjacent to peripheral heterochromatin also took place between 1 and 2 h after mitosis. These results suggest that the CHO beta-globin locus acquires the replication timing program of peripheral heterochromatin upon association with the peripheral subnuclear compartment during early G1 phase.  相似文献   

5.
6.
7.
In non-B cell lines, like the murine erythroleukemia cell line (MEL), the most distal IgH constant region gene, C alpha, replicates early in S; other heavy chain constant region genes, joining and diversity segments, and the most proximal Vh gene replicate successively later in S in a 3' to 5' direction proportional to their distance from C alpha. In MEL, replication forks detected in the IgH locus also proceed in the same 3' to 5' direction for approximately 400 kb, beginning downstream of the IgH 3' regulatory region and continuing to the D region, as well as within the Vh81X gene. Downstream of the initiation region is an early replicating domain, and upstream of Vh81X is a late replicating domain. Hence, the gradual transition between early and late replicated domains can be achieved by a single replication fork.  相似文献   

8.
9.
10.
We measured the temporal order of replication of EcoRI segments from the murine immunoglobulin heavy-chain constant region (IgCH) gene cluster, including the joining (J) and diversity (D) loci and encompassing approximately 300 kilobases. The relative concentrations of EcoRI segments in bromouracil-labeled DNA that replicated during selected intervals of the S phase in Friend virus-transformed murine erythroleukemia (MEL) cells were measured. From these results, we calculated the nuclear DNA content (C value; the haploid DNA content of a cell in the G1 phase of the cell cycle) at the time each segment replicated during the S phase. We observed that IgCH genes replicate in the following order: alpha, epsilon, gamma 2a, gamma 2b, gamma 1, gamma 3, delta, and mu, followed by the J and D segments. The C value at which each segment replicates increased as a linear function of its distance from C alpha. The average rate of DNA replication in the IgCH gene cluster was determined from these data to be 1.7 to 1.9 kilobases/min, similar to the rate measured for mammalian replicons by autoradiography and electron microscopy (for a review, see H. J. Edenberg and J. A. Huberman, Annu. Rev. Genet. 9:245-284, 1975, and R. G. Martin, Adv. Cancer Res. 34:1-55, 1981). Similar results were obtained with other murine non-B cell lines, including a fibroblast cell line (L60T) and a hepatoma cell line (Hepa 1.6). In contrast, we observed that IgCh segments in a B-cell plasmacytoma (MPC11) and two Abelson murine leukemia virus-transformed pre-B cell lines (22D6 and 300-19O) replicated as early as (300-19P) or earlier than (MPC11 and 22D6) C alpha in MEL cells. Unlike MEL cells, however, all of the IgCH segments in a given B cell line replicated at very similar times during the S phase, so that a temporal directionality in the replication of the IgCH gene cluster was not apparent from these data. These results provide evidence that in murine non-B cells the IgCH, J, and D loci are part of a single replicon.  相似文献   

11.
12.
We have analyzed the structure of Ig kappa chain genes in B cell lines derived from a human individual who cannot synthesize any kappa chains, and whose Igs all contain lambda chains (1). We have characterized secondary DNA recombination events at two kappa alleles which have undergone misaligned V-J recombinations. One such secondary recombination has joined the flanking sequences of a V kappa and a J kappa 2 gene segment as if it were the reciprocal product of a V-J kappa 2 recombination, and resulted in the displacement of the recombined VJ kappa 1 gene segments from the C kappa locus. The non-rearranged form of the V kappa fragment which had recombined with the J kappa 2 flank was cloned. Nucleotide sequencing of this fragment identified a V kappa gene that differed by at least 38% from all previously sequenced human V kappa genes. The other V-J kappa segment analyzed has undergone a secondary recombination at a different site from that described above, at a site within the intervening sequence between the J kappa and C kappa gene segments, similar to the location of secondary recombinations which have occurred in lambda + B cell lines from mice and humans (2,3). These results prove that multiple recombinations can occur at one J kappa-C kappa locus.  相似文献   

13.
Studies on the immunoglobulin V kappa locus in human lymphoid cell lines   总被引:1,自引:0,他引:1  
DNA digests of 16 human lymphoid cell lines were studied in blot hybridization experiments with probes from V kappa genes and their immediate neighborhood as well as with single or low-copy probes from intergenic regions. The patterns were compared with those of placenta DNA digests in which the kappa genes are in the germline configuration. The differences of patterns which were detected with the first type of hybridization probes can be attributed to V kappa--J kappa rearrangements or to restriction site polymorphisms between individuals. Some of the pattern differences observed with the second type of probes can be interpreted best as arising from deletions of parts of the kappa locus. Such deletions may be individual variations but they may also be caused by the V kappa-J kappa rearrangement process. The results obtained with one particular probe which was derived from a nonduplicated part of the kappa locus allow some conclusions as to the mechanism of the V kappa--J kappa rearrangement: the genomic situation in some lymphoid cell lines can be explained by an inversion while in other cell lines clearly deletions have occurred. The observations are in agreement with the inversion-deletion mechanism of V kappa--J kappa rearrangement as proposed by Lewis et al. (1982, 1984).  相似文献   

14.
15.
Allele specific timing of replication is believed to be a hallmark of imprinted genes, however recent evidence suggests that this might not be the case for the insulin-like growth factor 2 (Igf2) and H19 locus. In this report, we assayed the timing of replication of Igf2 and H19 in two mouse embryonic cell lines expressing both H19 and Igf2, and one cell line maternally disomic for the Igf2/H19 mouse locus which expresses H19 but not Igf2. In all cell lines, Igf2 and H19 were replicated early in the S phase of the cell cycle, and both alleles replicated at the same time. This indicates that any differences in the timing of replication at the Igf2/H19 locus are of a lesser magnitude than those found in other imprinted regions. Dev Genet 20:29–35, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The V kappa 10 family in BALB/c mice is composed of three members, two of which are utilized in a variety of immune responses. We previously demonstrated that the product of the third gene, V kappa 10C, has never been detected as part of a functional antibody and productive rearrangements are selectively lost during B-cell development. Here we analyzed germline V kappa 10 genes from inbred and wild-derived mice by RFLP and sequencing in order to determine the origin of the V kappa 10C gene, as well as to examine the evolutionary relationships of V kappa 10 genes. Our results demonstrated that the V kappa 10 family is highly conserved across Mus species and subspecies, but that V kappa 10C is rare, being found in only inbred mice of V kappa 10 allelic group b and two of six M. m. domesticus isolates. It was not found in other M. musculus subspecies or M. spretus. V kappa 10A and V kappa 10B were found in all strains, with the exception of one M. m. domesticus isolate, which had only V kappa 10B genes. Overall, V kappa 10A sequences were more highly conserved than V kappa 10B, indicating that different selective pressures may be operating on these genes. The two V kappa 10C sequences from M. m. domesticus were 100% identical to that found in inbred mice. V kappa 10C is more closely related to V kappa 10B than to V kappa 10A and our data suggest that it is a recent duplication of the V kappa 10B gene.  相似文献   

17.
Cytogenetic techniques revealed an altered early replication banding pattern on the distal part of chromosome 15 in some murine T-cell lymphomas. This pattern reverted back to normal replication in somatic cell hybrids that had become non-tumorigenic after fusion of leukemic cells with normal fibroblasts. The altered banding pattern was correlated with malignancy. To investigate the molecular basis of the aberrant pattern in more detail, centrifugal elutriation of cells containing bromodeoxyuridine labeled DNA was used to prepare newly replicated DNA from selected intervals of the S-phase from tumor cells, as well as from hybrid cells with the revertant phenotype. These different DNA fractions were probed for DNA sequences distributed over the distal half of chromosome 15. Only two out of ten chromosome 15 specific genes tested showed a clear change in replication timing between the two different cell lines tested. These two genes were the lymphocyte antigen-6,Ly-6, and the neighboring thyroglobulin gene,Tgn, which replicated at the beginning of S in the tumor cells and later in S in the non-tumorigenic hybrid cells.by J.A. Huberman  相似文献   

18.
Newly synthesized DNA was separated from the bulk of the DNA by pulse-labeling with BUdR and centrifugation in an alkaline CsCl buoyant density gradient. The content of histone gene in the newly synthesized DNA was determined by DNA dot hybridization. The gene contents in DNA replicated during the early half of S phase and during the whole S phase were compared. Results showed that histone genes were replicated during the first half of the S phase in embryos in the early cleavage stage.  相似文献   

19.
Time of replication of ARS elements along yeast chromosome III.   总被引:33,自引:16,他引:17       下载免费PDF全文
The replication of putative replication origins (ARS elements) was examined for 200 kilobases of chromosome III of Saccharomyces cerevisiae. By using synchronous cultures and transfers from dense to light isotope medium, the temporal pattern of mitotic DNA replication of eight fragments that contain ARSs was determined. ARS elements near the telomeres replicated late in S phase, while internal ARS elements replicated in the first half of S phase. The results suggest that some ARS elements in the chromosome may be inactive as replication origins. The actively expressed mating type locus, MAT, replicated early in S phase, while the silent cassettes, HML and HMR, replicated late. Unexpectedly, chromosome III sequences were found to replicate late in G1 at the arrest induced by the temperature-sensitive cdc7 allele.  相似文献   

20.
The time of replication during the S phase in a murine erythroleukemia (MEL) cell line was determined for immunoglobulin heavy chain constant region C alpha, C gamma 2b and C mu sequences whose boundaries are defined by EcoR1 restriction endonuclease sites (EcoR1 segments). Logarithmically growing cultures of MEL cells with an S phase of about 7.5 hours were pulse labelled with 20 micrograms/ml of 5-bromodeoxyuridine (BUdR). The cells were then fractionated by centrifugal elutriation into 10-12 distinct populations containing cells in different stages of the cell cycle. Flow microfluorimetric (FMF) analysis of DNA content, measurements of cell volume and autoradiography after 3H-thymidine pulse labelling were used to determine position in the cell cycle. Fractions were pooled to represent four selected intervals of S in which BU-DNA was synthesized for 2.5 hrs or less. Newly replicated DNA which had incorporated BUdR into one strand was isolated, cleaved with EcoR1, and separated on neutral Cs2S04 gradients. Equal amounts of BU-DNA replicated during these four intervals of S were electrophoresed in 0.8% agarose gels, transferred to diazotized aminobenzyloxymethyl paper and hybridized with 32p probes containing the C alpha, C gamma 2b and C mu genes and flanking sequences. The relative amounts of segments replicated were assessed by quantitation of the appropriate bands on the autoradiograms by microdensitometry. The results indicate that the 2.8 kb C alpha, 6.6 kb C gamma 2b and 12 kb C mu EcoR1 segments in these MEL cells replicated during defined intervals of the first half of the S phase. The order of replication of these EcoR1 segments as the cells proceeded through S was C alpha, C gamma 2b, C mu, corresponding to the linear order of the genes determined by restriction endonuclease mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号