首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The presence of consensus phosphorylation sites in the ectodomains of cell surface proteins suggests that such post‐translational modification may be important in regulation of surface receptor activity. To date, the only cell surface receptor for which such ectodomain phosphorylation has been conclusively demonstrated is the clonally expressed T cell antigen receptor (TCR). Attempts to conclusively identify individual phosphorylated residues in TCR α and β chains and determine their functional significance by biochemical approaches failed due to insufficient quantities of purified molecules. Here we present the results of an alternative approach where survey of phosphorylation sites in the TCR α and β chains was accomplished using site‐directed mutagenesis and retroviral vector expression, as well as in vitro phosphorylation of synthetic peptide substrates. All mutants studied directed the cell surface expression of normal amounts of TCR, and all transfectants could be stimulated to produce IL‐2 in response to substrate‐immobilized antibody to TCR. However, mutation of serine‐88 in the protein kinase A phosphorylation site of the TCR β chain resulted in a complete lack of response to the superantigen staphylococcal enterotoxin B (SEB). In addition, this mutation abolished TCR‐associated tyrosine phosphorylation, consistent with the impairment of cell signaling. Reversion of the serine‐88/alanine mutation with phosphorylatable threonine completely restored the SEB recognition by TCR. These results, interpreted in the context of the known three‐dimensional structure of the complex of SEB and TCR, are consistent with the view that serine‐88 is important for the contact of the TCR β chain with SEB.  相似文献   

2.
The T-cell receptor (TCR) is a multimeric receptor composed of the Ti alpha beta heterodimer and the noncovalently associated CD3 gamma delta epsilon and zeta(2) chains. All of the TCR chains are required for efficient cell surface expression of the TCR. Previous studies on chimeric molecules containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine-based endocytosis motif partially restored TCR expression in cells with truncated zeta chains, indicating that the zeta chain masks the endocytosis motif in CD3 gamma and thereby stabilizes TCR cell surface expression.  相似文献   

3.
T Saito 《Human cell》1990,3(3):183-192
T cell receptor complex is composed of at least 7 different polypeptides and is one of the most sophisticated receptor. There are two types of T cell receptor (TCR); alpha beta and gamma delta, both of which are composed of a heterodimer and associated with invariant CD3 complexes on the cell surface. T cells expressing alpha beta dimer recognize antigen-peptides in the context of self-MHC molecules, whereas the specificity and function of gamma delta T cells are largely unknown. Gene organization of alpha beta and gamma delta indicates the difference of mechanism to generate diversity. Whereas alpha and beta genes have a large number of V genes, those of gamma and delta genes are limited. However, especially for delta gene, the repertoire is largely produced by junctional diversity. There are increasing data showing new TCR heterodimers; such as beta delta heterodimer in human, beta homodimer in mouse and unknown new heterodimer in chicken, which are expressed on the cell surface in the association with CD3 complex. The characterization of these new receptor dimers and the function of cells expressing these receptors have to be determined. Among CD3 complex, zeta and eta chains are most important for signal transduction after antigen-recognition by TCR. eta gene is recently cloned and now found to be produced by an alternative splicing of a common gene with zeta chains gene. Tyrosine++ phosphorylation of zeta chain seems to be one of the earliest events of T cell activation. Since fyn, one of src oncogene family possessing tyrosine++ kinase function, is co-precipitated with TCR-CD3 complex, fyn seems to be involved in early phosphorylation for T cell activation. Positive and negative selection of thymocytes has been shown to occur via TCR using TCR-transgenic mice model. Molecular mechanism of the selection should be determined.  相似文献   

4.
A total of 33 human leukemia/lymphoma cell lines were classified into 4 groups with respect to the pattern of cell membrane (sm) expression of the CD3 and T cell receptor (TCR) molecules; (i) smCD3+TCR alpha beta (16 cell lines), (ii) smCD3+TCR beta delta (1 cell line), (iii) smCD3+TCR gamma delta (3 cell lines) amd (iv) smCD3-TCR- (13 cell lines), respectively. Using monoclonal antibodies (MoAbs) specific to CD3 (NU-T3), TCR alpha chain (alpha F1), TCR beta chain (beta F1), and TCR gamma chain (C gamma M1), respectively, cytoplasmic (cy) expression of these molecules was determined by immunofluorescence test. Expression of cyCD3 was present in all cell lines regardless of groups. In group (i), all 16 cell lines expressed both TCR alpha and beta chains. While only TCR beta chain was expressed in group (ii), TCR gamma chain was expressed in all 3 cell lines of group (iii). One (PEER) of the three in group (iii) expressed TCR beta chain as well. In group (iv), we found 8 cell lines with cyTCR alpha expression, 11 cell lines with cyTCR beta expression, and 10 cell lines with cyTCR gamma expression, respectively. For TCR genes, except 1 cell line all cell lines were found to present rearranged C beta gene and its mRNA, including all 3 TCR gamma/delta cell lines of group (iii). One of the TCR alpha beta cell lines exhibited rearranged C delta and J delta genes as well as its mRNA. Two cell lines of the 13 CD3-TCR- of group (iv) exhibited rearranged C delta and J delta and its mRNA. An NK-like activity and IL-2 production were induced in the TCR beta delta and gamma delta cell lines [group (ii) and (iii)] by treatment with PHA and PMA.  相似文献   

5.
The T cell antigen receptor (TCR) is an oligomeric protein complex made from at least six different integral membrane proteins (alpha beta gamma delta epsilon and zeta). The TCR is assembled in the ER of T cells, and correct assembly is required for transport to the cell surface. Single subunits and partial receptor complexes are retained in the ER where TCR alpha, beta, and CD3 delta chains are degraded selectively. The information required for the ER degradation of the TCR beta chain is confined to the membrane anchor of the protein (Wileman et al., 1990c; Bonifacino et al., 1990b). In this study we show that the rapid degradation of the TCR beta chain is inhibited when it assembles with single CD3 gamma, delta, or epsilon subunits in the ER, and have started to define the role played by transmembrane anchors, and receptor ectodomains, in the masking proteolytic targeting information. Acidic residues within the membrane spanning domains of CD3 subunits were essential for binding to the TCR beta chain. TCR beta chains and CD3 subunits therefore interact via transmembrane domains. However, when sites of binding were restricted to the membrane anchor of the TCR beta chain, stabilization by CD3 subunits was markedly reduced. Interactions between membrane spanning domains were not, therefore, sufficient for the protection of the beta chain from ER proteolysis. The presence of the C beta domain, containing the first 150 amino acids of the TCR ectodomain, greatly increased the stability of complexes formed in the ER. For assembly with CD3 epsilon, stability was further enhanced by the V beta amino acids. The results showed that the efficient neutralization of transmembrane proteolytic targeting information required associations between membrane spanning domains and the presence of receptor ectodomains. Interactions between receptor ectodomains may slow the dissociation of CD3 subunits from the beta chain and prolong the masking of transmembrane targeting information. In addition, the close proximity of TCR and CD3 ectodomains within the ER may provide steric protection from the action of proteases within the ER lumen.  相似文献   

6.
7.
8.
Transfected T cell receptor (TCR) beta chain genes are expressed as homodimers on the surface of immature (Sci/ET27F) but not on mature (58 alpha-beta-) T cell lines which lack TCR alpha, gamma and delta chains. The homodimer on Sci/ET27F cells is tightly bound to CD3 delta and CD3 epsilon while the association with CD3 gamma and CD3 zeta proteins is rather weak. Crosslinking of the TCR beta homodimers resulted in a strong and rapid calcium flux. In 58 alpha-beta- T cells the beta TCR chain could be easily visualized intracellularly but was not transported to the cell surface. The Scid cell lines considerably facilitate the molecular analysis of early differentiation events in the thymus which are likely to be regulated by the beta TCR homodimer.  相似文献   

9.
10.
11.
Human leukemic cells corresponding to the earliest identifiable stages of intrathymic T cell differentiation lack cell surface expression of the T cell receptor(TCR alpha/beta)-T3 complex but transcribe TCR beta mRNA from either germ-line configuration (1/13) or partially (DJ) or fully (VDJ) rearranged (12/13) genes. These cells do not produce TCR alpha mRNA, but do contain T3 delta and T3 epsilon mRNA and accumulate T3 polypeptides, primarily in the perinuclear envelope. Equivalent normal T cells isolated from thymus have a predominantly germ-line configuration of TCR beta but contain intracellular T3 proteins. T3 gene expression is therefore a very early event in T cell differentiation. TCR alpha chain production appears to be the limiting maturation-linked event in the transport, assembly, and cell surface membrane insertion of the TCR alpha/beta-T3 complex.  相似文献   

12.
13.
When human T cell receptor for antigen (TCR) alpha chain V-genes were compared pair-wise, the numbers of nucleotide differences showed a characteristic distribution; most were in the range of 100 to 200 differences out of a total of about 300 bases. The same distribution was observed for mouse TCR alpha chains. Even more interesting was that comparing human alpha chains and mouse alpha chains gave essentially the same nucleotide difference pattern. It is inferred from the large number of differences and from the nonspecificity of trans-species (human and mouse) nucleotide sequence differences of TCR V-genes that TCR alpha chains probably diverged early during evolution. The same feature was also observed for human and mouse TCR beta chains, although the alpha and beta chain V-genes were distinct. This evolutionary preservation could be of vital importance to the fidelity of the complicated trimolecular interactions among TCR alpha and beta chains, the processed peptide, and the major histocompatibility complex (MHC) class I or II molecules. Received: 22 January 1996 / Accepted: 9 September 1996  相似文献   

14.
The T cell antigen receptor (TCR) plays a key role in the process of antigen recognition. It is a complex of at least seven peptide chains (alpha beta gamma delta epsilon zeta-zeta). It is found on the surface of mature T cells and functions in antigen binding in the presence of the major histocompatibility complex. It has been known for some time that physical associations between the CD3 proteins and the TCR chains are essential for efficient transport of either component to the surface of T cells. For example, T cells that lack either the alpha, beta, or delta chains synthesize partial complexes that are eventually degraded. cDNAs encoding the six chains of receptor have become available recently. We have used transfection techniques to generate a panel of Chinese hamster ovary cells that contain partial receptor complexes of known composition and also cells that express all six subunits of the TCR.CD3 complex. Cells in this panel were analyzed for the ability to form alpha-beta heterodimers and also an ability to transport the synthesized chains to the plasma membrane. These studies have allowed us to define the minimum requirements for TCR.CD3 expression on the cell surface.  相似文献   

15.
The alpha beta T cell antigen receptor (TCR) that is expressed on most T lymphocytes is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER) and then transported to the plasma membrane. Expression of the TCR complex is quantitatively regulated during T cell development, with immature CD4+CD8+ thymocytes expressing only 10% of the number of surface alpha beta TCR complexes that are expressed on mature T cells. However, the molecular basis for low TCR expression in developing alpha beta T cells is unknown. In the present study we report the unexpected finding that assembly of nascent component chains into complete TCR alpha beta complexes is severely impaired in immature CD4+CD8+ thymocytes relative to their mature T cell progeny. In particular, the initial association of TCR alpha with TCR beta proteins, which occurs relatively efficiently in mature T cells, is markedly inefficient in immature CD4+CD8+ thymocytes, even for a matched pair of transgenic TCR alpha and TCR beta proteins. Inefficient formation of TCR alpha beta heterodimers in immature CD4+CD8+ thymocytes was found to result from the unique instability of nascent TCR alpha proteins within the ER of immature CD4+CD8+ thymocytes, with nascent TCR alpha proteins having a median survival time of only 15 min in CD4+CD8+ thymocytes, but > 75 min in mature T cells. Thus, these data demonstrate that stability of TCR alpha proteins within the ER is developmentally regulated and provide a molecular basis for quantitative differences in alpha beta TCR expression on immature and mature T cells. In addition, these results provide the first example of a receptor complex whose expression is quantitatively regulated during development by post-translational limitations on receptor assembly.  相似文献   

16.
Engagement of the alpha beta T cell receptor (TCR) by its ligand results in the down-modulation of TCR cell surface expression, which is thought to be a central event in T cell activation. On the other hand, pre-TCR signaling is a key process in alpha beta T cell development, which appears to proceed in a constitutive and ligand-independent manner. Here, comparative analyses on the dynamics of pre-TCR and TCR cell surface expression show that unligated pre-TCR complexes expressed on human pre-T cells behave as engaged TCR complexes, i.e. they are rapidly internalized and degraded in lysosomes and proteasomes but do not recycle back to the cell surface. Thus, pre-TCR down-regulation takes place constitutively without the need for extracellular ligation. By using TCR alpha/p Tau alpha chain chimeras, we demonstrate that prevention of recycling and induction of degradation are unique pre-TCR properties conferred by the cytoplasmic domain of the pT alpha chain. Finally, we show that pre-TCR internalization is a protein kinase C-independent process that involves the combination of src kinase-dependent and -independent pathways. These data suggest that constitutive pre-TCR down-modulation regulates pre-TCR surface expression levels and hence the extent of ligand-independent signaling through the pre-TCR.  相似文献   

17.
The T cell receptor (TCR) for antigen consists, on the majority of peripheral lymphocytes, of an immunoglobulin-like, disulfide-linked heterodimeric glycoprotein: the alpha and beta chain. These proteins are noncovalently linked to at least four nonvariant proteins which comprise the CD3 complex: CD3 gamma, delta, epsilon, and zeta. Whereas the TCR alpha and beta proteins have positively charged residues in the transmembrane region, all the CD3 proteins have similarly placed negatively charged amino acid residues. It has been suggested that these basic and acidic amino acid residues may play an important role in TCR.CD3 complex assembly and/or function. In this paper, the structural and functional role of the lysine and arginine residues of the TCR alpha chain was addressed using oligonucleotide mediated site directed mutagenesis. The Arg256 and Lys261 residues of the TCR alpha cDNA of the HPB-ALL cell line were mutated to either Gly256 and/or Ile261. The altered cDNAs were transfected into a TCR alpha negative recipient mutant cell line of REX, clone 20A. Metabolic labeling of the T cell transfectants showed that mutation of either the Arg256 or Lys261 amino acid residues had no effect on the ability of the TCR alpha chain to form either a heterodimer with the TCR beta chain or a complex with the CD3 gamma, delta, and epsilon proteins. Consequently, the Arg256 to Gly256 and Lys261 to Ile261 mutations did not prevent the formation of a mature, functional TCR.CD3 complex on the cell surface as determined by immunofluorescence, cell surface radioiodination, and the ability of the transfectants to mobilize intracellular calcium after stimulation with a mitogenic anti-CD3 epsilon monoclonal antibody. In contrast, a mutant cDNA in which both the Arg256 and Lys261 residues were mutated to Gly256 and Ile261, respectively, failed to reconstitute the cell surface expression of the TCR.CD3 complex and, consequently, the ability to respond to mitogenic stimuli. In the absence of both the Arg256 and Lys261 residues, TCR alpha beta heterodimer formation was not observed. Cotransfection studies in COS cells showed that the failure of assembly of a heterodimer was likely due to an inability of the mutated TCR alpha chain to form a subcomplex with either the CD3 gamma, delta, epsilon, or zeta proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
T cells have the capacity to respond to ligands as full, weak, partial or null agonists, or indeed as antagonists. In the present paper, it is reported that staphylococcal enterotoxin B (SEB) mutated in a T cell receptor (TCR) contact site (SEBDelta61Y) behaves as an altered ligand for a T cell clone (AC20) that expresses the Vbeta17 TCR. The T cells were partially activated by SEBDelta61Y, as shown by TCR down-modulation and up-regulation of the IL-2 receptor. However, these cells did not secrete IL-2, IL-3, IL-4 or IFN-gamma, nor did they proliferate. Analysis of intracellular protein tyrosine phosphorylation after cellular activation provided further evidence that SEBDelta61Y could transduce a signal via the Vbeta17 TCR. The events following receptor ligation were clearly different when the T cells were stimulated with SEB or SEBDelta61Y, manifested as both quantitatively and qualitatively different patterns of phosphorylation of intracellular substrates. In contrast, only quantitative differences were apparent when a transfectant expressing the same alpha/beta TCR was stimulated with the different superantigens. Together, these results provide the first demonstration that altered TCR ligands are not restricted to peptides substituted at secondary TCR contact residues. Rather, an altered superantigenic ligand mutated in the TCR binding site can behave as a partial agonist.  相似文献   

19.
20.
The effects of quantitative differences in class II cell surface expression have been difficult to address in intact animals. This study uses several lines of H-2s/s mice carrying an A beta k transgene that differ significantly in terms of class II cell surface expression. Due to inefficient chain pairing, mice carrying 60 to 65 copies of this transgene express only low levels of A alpha s/A beta k on the cell surface, and cell surface expression of the endogenous A alpha s/A beta s complex (and total Ia) is severely reduced (to 7-15% control levels). The significant decrease in class II cell surface expression in the thymic cortex of these mice did not affect the frequency of peripheral T cells expressing at least 10 distinct TCR V beta chains. However, T cell proliferative responses to the A alpha s/A beta s-restricted peptide MBP 89-101 were abrogated in high copy number A beta k mice. Experiments using bone marrow chimeras demonstrated that both inefficient Ag presentation and failure to positively select appropriate T cells contributed to this lack of response. Inefficient Ag presentation was clearly the dominant defect, and the density of class II cell surface expression required for positive selection appeared to be quite low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号