首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Gloeobacter violaceus is a cyanobacterium isolated from other groups by lack of thylakoids and unique structural features of its photosynthetic protein complexes. Carotenoid biosynthesis has been investigated with respect to the carotenoids formed and the genes and enzymes involved. Carotenoid analysis identified ss-carotene as major carotenoid and echinenone as a minor component. This composition is quite unique and the cellular amounts are up to 10-fold lower than in other unicellular cyanobacteria. Carotenoid biosynthesis is up-regulated in a light-dependent manner. This enhanced biosynthesis partially compensates for photooxidation especially of ss-carotene. The sequenced genome of G. violaceus was analyzed and several gene candidates homologous to carotenogenic genes from other organisms obtained. Functional expression of all candidates and complementation in Escherichia coli led to the identification of all genes involved in the biosynthesis of the G. violaceus carotenoids with the exception of the lycopene cyclase gene. An additional diketolase gene was found that functioned in E. coli but is silent in G. violaceus cells. The biggest difference from all other cyanobacteria is the existence of a single bacterial-type 4-step desaturase instead of the poly cis cyanobacterial desaturation pathway catalyzed by two cyanobacterial-type desaturases and an isomerase. The genes for these three enzymes are absent in G. violaceus.  相似文献   

2.
3.
4.
Carotenoid biosynthesis in plants has been described at the molecular level for most of the biochemical steps in the pathway. However, the cis-trans isomerization of carotenoids, which is known to occur in vivo, has remained a mystery since its discovery five decades ago. To elucidate the molecular mechanism of carotenoid isomerization, we have taken a genetic map-based approach to clone the tangerine locus from tomato. Fruit of tangerine are orange and accumulate prolycopene (7Z,9Z,7'Z,9'Z-tetra-cis-lycopene) instead of the all-trans-lycopene, which normally is synthesized in the wild type. Our data indicate that the tangerine gene, designated CRTISO, encodes an authentic carotenoid isomerase that is required during carotenoid desaturation. CRTISO is a redox-type enzyme structurally related to the bacterial-type phytoene desaturase CRTI. Two alleles of tangerine have been investigated. In tangerine(mic), loss of function is attributable to a deletion mutation in CRTISO, and in tangerine(3183), expression of this gene is impaired. CRTISO from tomato is expressed in all green tissues but is upregulated during fruit ripening and in flowers. The function of carotene isomerase in plants presumably is to enable carotenoid biosynthesis to occur in the dark and in nonphotosynthetic tissues.  相似文献   

5.
Dual role of the plastid terminal oxidase in tomato   总被引:1,自引:0,他引:1       下载免费PDF全文
The plastid terminal oxidase (PTOX) is a plastoquinol oxidase whose absence in tomato (Solanum lycopersicum) results in the ghost (gh) phenotype characterized by variegated leaves (with green and bleached sectors) and by carotenoid-deficient ripe fruit. We show that PTOX deficiency leads to photobleaching in cotyledons exposed to high light primarily as a consequence of reduced ability to synthesize carotenoids in the gh mutant, which is consistent with the known role of PTOX as a phytoene desaturase cofactor. In contrast, when entirely green adult leaves from gh were produced and submitted to photobleaching high light conditions, no evidence for a deficiency in carotenoid biosynthesis was obtained. Rather, consistent evidence indicates that the absence of PTOX renders the tomato leaf photosynthetic apparatus more sensitive to light via a disturbance of the plastoquinone redox status. Although gh fruit are normally bleached (most likely as a consequence of a deficiency in carotenoid biosynthesis at an early developmental stage), green adult fruit could be obtained and submitted to photobleaching high light conditions. Again, our data suggest a role of PTOX in the regulation of photosynthetic electron transport in adult green fruit, rather than a role principally devoted to carotenoid biosynthesis. In contrast, ripening fruit are primarily dependent on PTOX and on plastid integrity for carotenoid desaturation. In summary, our data show a dual role for PTOX. Its activity is necessary for efficient carotenoid desaturation in some organs at some developmental stages, but not all, suggesting the existence of a PTOX-independent pathway for plastoquinol reoxidation in association with phytoene desaturase. As a second role, PTOX is implicated in a chlororespiratory mechanism in green tissues.  相似文献   

6.
The carotenoid content in photosynthetic plant tissue reflects a steady state value resulting from permanent biosynthesis and concurrent photo-oxidation. The contributions of both reactions were determined in illuminated pepper leaves. The amount of carotenoids provided by biosynthesis were quantified by the accumulation of the colourless carotenoid phytoene in the presence of the inhibitor norflurazon. When applied, substantial amounts of this rather photo-stable intermediate were formed in the light. However, carotenoid biosynthesis was completely stalled in darkness. This switch off in the absence of light is related to the presence of very low messenger levels of the phytoene synthase gene, psy and the phytoene desaturase gene, pds. Other carotenogenic genes, such as zds, ptox and Icy-b also were shown to be down-regulated to some extent. By comparison of the carotenoid concentration before and after transfer of plants to increasing light intensities and accounting for the contribution of biosynthesis, the rate of photo-oxidation was estimated for pepper leaves. It could be demonstrated that light-independent degradation or conversion of carotenoids e.g. to abscisic acid is a minor process.  相似文献   

7.
The unicellular green alga Haematococcus pluvialis Flotow is known for its massive accumulation of ketocarotenoids under various stress conditions. Therefore, this microalga is one of the favored organisms for biotechnological production of these antioxidative compounds. Astaxanthin makes up the main part of the secondary carotenoids and is accumulated mostly in an esterified form in extraplastidic lipid vesicles. We have studied phytoene desaturase, an early enzyme of the carotenoid biosynthetic pathway. The increase in the phytoene desaturase protein levels that occurs following induction is accompanied by a corresponding increase of its mRNA during the accumulation period, indicating that phytoene desaturase is regulated at the mRNA level. We also investigated the localization of the enzyme by western-blot analysis of cell fractions and by immunogold labeling of ultrathin sections for electron microscopy. In spite of the fact that secondary carotenoids accumulate outside the chloroplast, no extra pathway specific for secondary carotenoid biosynthesis in H. pluvialis was found, at least at this early stage in the biosynthesis. A transport process of carotenoids from the site of biosynthesis (chloroplast) to the site of accumulation (cytoplasmatic located lipid vesicles) is implicated.  相似文献   

8.
Astaxanthin is a high-value carotenoid which is used as a pigmentation source in fish aquaculture. Additionally, a beneficial role of astaxanthin as a food supplement for humans has been suggested. The unicellular alga Haematococcus pluvialis is a suitable biological source for astaxanthin production. In the context of the strong biotechnological relevance of H. pluvialis, we developed a genetic transformation protocol for metabolic engineering of this green alga. First, the gene coding for the carotenoid biosynthesis enzyme phytoene desaturase was isolated from H. pluvialis and modified by site-directed mutagenesis, changing the leucine codon at position 504 to an arginine codon. In an in vitro assay, the modified phytoene desaturase was still active in conversion of phytoene to ζ-carotene and exhibited 43-fold-higher resistance to the bleaching herbicide norflurazon. Upon biolistic transformation using the modified phytoene desaturase gene as a reporter and selection with norflurazon, integration into the nuclear genome of H. pluvialis and phytoene desaturase gene and protein expression were demonstrated by Southern, Northern, and Western blotting, respectively, in 11 transformants. Some of the transformants had a higher carotenoid content in the green state, which correlated with increased nonphotochemical quenching. This measurement of chlorophyll fluorescence can be used as a screening procedure for stable transformants. Stress induction of astaxanthin biosynthesis by high light showed that there was accelerated accumulation of astaxanthin in one of the transformants compared to the accumulation in the wild type. Our results strongly indicate that the modified phytoene desaturase gene is a useful tool for genetic engineering of carotenoid biosynthesis in H. pluvialis.  相似文献   

9.
Astaxanthin is a high-value carotenoid which is used as a pigmentation source in fish aquaculture. Additionally, a beneficial role of astaxanthin as a food supplement for humans has been suggested. The unicellular alga Haematococcus pluvialis is a suitable biological source for astaxanthin production. In the context of the strong biotechnological relevance of H. pluvialis, we developed a genetic transformation protocol for metabolic engineering of this green alga. First, the gene coding for the carotenoid biosynthesis enzyme phytoene desaturase was isolated from H. pluvialis and modified by site-directed mutagenesis, changing the leucine codon at position 504 to an arginine codon. In an in vitro assay, the modified phytoene desaturase was still active in conversion of phytoene to zeta-carotene and exhibited 43-fold-higher resistance to the bleaching herbicide norflurazon. Upon biolistic transformation using the modified phytoene desaturase gene as a reporter and selection with norflurazon, integration into the nuclear genome of H. pluvialis and phytoene desaturase gene and protein expression were demonstrated by Southern, Northern, and Western blotting, respectively, in 11 transformants. Some of the transformants had a higher carotenoid content in the green state, which correlated with increased nonphotochemical quenching. This measurement of chlorophyll fluorescence can be used as a screening procedure for stable transformants. Stress induction of astaxanthin biosynthesis by high light showed that there was accelerated accumulation of astaxanthin in one of the transformants compared to the accumulation in the wild type. Our results strongly indicate that the modified phytoene desaturase gene is a useful tool for genetic engineering of carotenoid biosynthesis in H. pluvialis.  相似文献   

10.
11.
Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots   总被引:12,自引:0,他引:12  
  相似文献   

12.
Li L  Lu S  Cosman KM  Earle ED  Garvin DF  O'Neill J 《Phytochemistry》2006,67(12):1177-1184
The cauliflower (Brassica oleracea L. var. botrytis) Or gene is a rare carotenoid gene mutation that confers a high level of beta-carotene accumulation in various tissues of the plant, turning them orange. To investigate the biochemical basis of Or-induced carotenogenesis, we examined the carotenoid biosynthesis by evaluating phytoene accumulation in the presence of norflurazon, an effective inhibitor of phytoene desaturase. Calli were generated from young seedlings of wild type and Or mutant plants. While the calli derived from wild type seedlings showed a pale green color, the calli derived from Or seedlings exhibited intense orange color, showing the Or mutant phenotype. Concomitantly, the Or calli accumulated significantly more carotenoids than the wild type controls. Upon treatment with norflurazon, both the wild type and Or calli synthesized significant amounts of phytoene. The phytoene accumulated at comparable levels and no major differences in carotenogenic gene expression were observed between the wild type and Or calli. These results suggest that Or-induced beta-carotene accumulation does not result from an increased capacity of carotenoid biosynthesis.  相似文献   

13.
ABSTRACT: BACKGROUND: Corynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin. RESULTS: Here, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 epsilon-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum DeltacrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum DeltacrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 +/- 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum DeltacrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 +/- 0.3 mg/g CDW were obtained. CONCLUSION: C. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production.  相似文献   

14.
Fester T  Wray V  Nimtz M  Strack D 《Phytochemistry》2005,66(15):1781-1786
The identification and quantification of cyclohexenone glycoside derivatives from the model legume Lotus japonicus revealed far higher levels than expected according to the stoichiometric relation to another, already determined carotenoid cleavage product, i.e., mycorradicin. Mycorradicin is responsible for the yellow coloration of many arbuscular mycorrhizal (AM) roots and is usually esterified in a complex way to other compounds. After liberation from such complexes it has been detected in AM roots of many, but not of all plants examined. The non-stoichiometric occurrence of this compound compared with other carotenoid cleavage products suggested that carotenoid biosynthesis might be activated upon mycorrhization even in plant species without detectable levels of mycorradicin. This assumption has been supported by inhibition of a key enzyme of carotenoid biosynthesis (phytoene desaturase) and quantification of the accumulating enzymic substrate (phytoene). Our observations suggest that the activation of carotenoid biosynthesis in AM roots is a general phenomenon and that quantification of mycorradicin is not always a good indicator for this activation.  相似文献   

15.
Why Is Golden Rice Golden (Yellow) Instead of Red?   总被引:6,自引:0,他引:6       下载免费PDF全文
The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of beta-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, zeta-carotene desaturase, carotene cis-trans-isomerase, beta-lycopene cyclase, and beta-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that beta-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, alpha/beta-lycopene cyclase, beta-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or zeta-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the beta-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed.  相似文献   

16.
Abstract A screening procedure for carotenoid genes involving heterologous complementation with two different plasmid constructs was developed. The plasmids contained the crtE and crtB genes from Erwinia unredovora together with the phytoene desaturase gene from either Rhodobacter capsulatus or Synechococcus PCC 7942. Transformation in E. coli led to the accumulation of neurosporene and ζ-carotene, respectively. Co-transformation with an Anabaena plasmid library resulted in the isolation of the two plasmids, pZDS1 and pZDS1. Their gene products showed the ability to convert neurosporene and ζ-carotene into lycopene. In contrast, accumulated phytoene could not be converted. We conclude that the cloned gene codes for the carotenoid biosynthesis gene ζ-carotene desaturase ( zds ).  相似文献   

17.
18.
Light-stimulated carotenoid biosynthesis associated with the transformation of etioplasts to chloroplasts was investigated after dark-grown maize (Zea mays) seedlings were transferred into light. These studies focused on the enzymes of the pathway to detect those enzyme activities that were stimulated in the light and thus that were responsible for increased biosynthesis of carotenoids. In preliminary experiments, norflurazon, an inhibitor of phytoene desaturase, was used to prevent phytoene being further metabolized to carotenoids. Light-dependent stimulation of phytoene accumulation indicated that the light-regulated steps are located in the pathway leading to phytoene synthesis. The use of the 14C- labeled precursors mevalonic acid, isopentenyl pyrophosphate, and farnesyl pyrophosphate pointed to increased activity of an enzyme involved in the biosynthetic steps between isopentenyl pyrophosphate and farnesyl pyrophosphate. Determination of the activities of all five enzymes of the pathway involved in the sequence from mevalonic acid to phytoene revealed that the only enzyme activity stimulated by light was isopentenyl pyrophosphate isomerase. Over a 3-h period of illumination, this enzyme activity, like carotenoid biosynthesis, was stimulated 2.8-fold.  相似文献   

19.
At least 700 natural carotenoids have been characterized; they can be classified into C(30), C(40) and C(50) subfamilies. The first step of C(40) pathway is the combination of two molecules of geranylgeranyl pyrophosphate to synthesize phytoene by phytoene synthase (CrtB or PSY). Most natural carotenoids originate from different types and levels of desaturation by phytoene desaturase (CrtI or PDS+ZDS), cyclization by lycopene cyclase (CrtY or LYC) and other modifications by different modifying enzyme (CrtA, CrtU, CrtZ or BCH, CrtX, CrtO, etc.) of this C(40) backbone. The first step of C(30) pathway is the combination of two molecules of FDP to synthesize diapophytoene by diapophytoene synthase (CrtM). But natural C(30) pathway only goes through a few steps of desaturation to form diaponeurosporene by diapophytoene desaturase (CrtN). Natural C(50) carotenoid decaprenoxanthin is synthesized starting from the C(40) carotenoid lycopene by the addition of 2 C(5) units. Concerned the importance of carotenoids, more and more attention has been concentrated on achieving novel carotenoids. The method being used successfully is to construct carotenoids biosynthesis pathways by metabolic engineering. The strategy of metabolic engineering is to engineer a small number of stringent upstream enzymes (CrtB, CrtI, CrtY, CrtM, or CrtN), then use a lot of promiscuous downstream enzymes to obtain large number of novel carotenoids. Two key enzymes phytoene desaturase (CrtI(m)) and lycopene cyclase (CrtY(m)) have been modified and used with a series of downstream modifying enzymes with broad substrate specificity, such as monooxygenase (CrtA), carotene desaturase (CrtU), carotene hydroxylase (CrtZ), zeaxanthin glycosylase (CrtX) and carotene ketolase (CrtO) to extend successfully natural C(30) and C(40) pathways in E. coli. Existing C(30) synthase CrtM to synthesize carotenoids with different chain length have been engineered and a series of novel carotenoids have been achieved using downstream modifying enzymes. C(35) carotenoid biosynthesis pathway has been constructed in E. coli as described. C(45) and C(50) carotenoid biosynthesis pathways have also been constructed in E. coli, but it is still necessary to extend these two pathways. Those novel acyclic or cyclic carotenoids have a potential ability to protect against photooxidation and radical-mediated peroxidation reactions which makes them interesting pharmaceutical candidates.  相似文献   

20.
Molecular breeding of carotenoid biosynthetic pathways   总被引:24,自引:0,他引:24  
The burgeoning demand for complex, biologically active molecules for medicine, materials science, consumer products, and agrochemicals is driving efforts to engineer new biosynthetic pathways into microorganisms and plants. We have applied principles of breeding, including mixing genes and modifying catalytic functions by in vitro evolution, to create new metabolic pathways for biosynthesis of natural products in Escherichia coli. We expressed shuffled phytoene desaturases in the context of a carotenoid biosynthetic pathway assembled from different bacterial species and screened the resulting library for novel carotenoids. One desaturase chimera efficiently introduced six rather than four double bonds into phytoene, to favor production of the fully conjugated carotenoid, 3, 4,3',4'-tetradehydrolycopene. This new pathway was extended with a second library of shuffled lycopene cyclases to produce a variety of colored products. One of the new pathways generates the cyclic carotenoid torulene, for the first time, in E. coli. This combined approach of rational pathway assembly and molecular breeding may allow the discovery and production, in simple laboratory organisms, of new compounds that are essentially inaccessible from natural sources or by synthetic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号