首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is increasing evidence that axons are guided by repulsion in several regions of the developing nervous system, although this has yet to be confirmed directly in vivo. As more candidate repulsion molecules are identified, it is becoming clear that collapse of the growth cone in vitro may be mediated by more than one intracellular mechanism. The present emphasis on molecular cloning of the ligands and their receptors should enable a proper definition of their function during development.  相似文献   

2.
Conservation and divergence of axon guidance mechanisms.   总被引:8,自引:0,他引:8  
Analysis of axon guidance mechanisms in vertebrates, Caenorhabditis elegans, and Drosophila melanogaster has led to the identification of several signaling pathways, many of which are strikingly conserved in function. Recent studies indicate that several axon guidance mechanisms are highly conserved in all animals, whereas others, though still conserved in a general sense, show strong evolutionary divergence at a detailed mechanistic level.  相似文献   

3.
Secreted proteins of the Wnt family affect axon guidance, asymmetric cell division, and cell fate. We show here that C. elegans Wnts acting through Frizzled receptors can shape axon and dendrite trajectories by reversing the anterior-posterior polarity of neurons. In lin-44/Wnt and lin-17/Frizzled mutants, the polarity of the PLM mechanosensory neuron is reversed along the body axis: the long PLM process, PLM growth cone, and synapses are posterior to its cell body instead of anterior. Similarly, the polarity of the ALM mechanosensory neuron is reversed in cwn-1 egl-20 Wnt double mutants, suggesting that different Wnt signals regulate neuronal polarity at different anterior-posterior positions. LIN-17 protein is asymmetrically localized to the posterior process of PLM in a lin-44-dependent manner, indicating that Wnt signaling redistributes LIN-17 in PLM. In this context, Wnts appear to function not as instructive growth cone attractants or repellents, but as organizers of neuronal polarity.  相似文献   

4.
Hippocampal mossy fibers (MFs), axons of dentate granule cells, run through a narrow strip, called the stratum lucidum, and make synaptic contacts with CA3 pyramidal cells. This stereotyped pathfinding is assumed to require a tightly controlled guidance system, but the responsible mechanisms have not been proven directly. To clarify the cellular basis for the MF pathfinding, microslices of the dentate gyrus (DG) and Ammon's horn (AH) were topographically arranged in an organotypic explant coculture system. When collagen gels were interposed between DG and AH slices prepared from postnatal day 6 (P6) rats, the MFs passed across this intervening gap and reached CA3 stratum lucidum. Even when the recipient AH was chemically pre-fixed with paraformaldehyde, the axons were still capable of accessing their normal target area only if the DG and AH slices were directly juxtaposed without a collagen bridge. The data imply that diffusible and contact cues are both involved in MF guidance. To determine how these different cues contribute to MF pathfinding during development, a P6 DG slice was apposed simultaneously to two AH slices prepared from P0 and P13 rats. MFs projected normally to both the host slices, whereas they rarely invaded P0 AH when the two hosts were fixed. Early in development, therefore, the MFs are guided mainly by a chemoattractant gradient, and thereafter, they can find their trajectories by a contact factor, probably via fasciculation with pre-established MFs. The present study proposes a dynamic paradigm in CNS axon pathfinding, that is, developmental changes in axon guidance cues.  相似文献   

5.
Semaphorins and their receptors in olfactory axon guidance.   总被引:2,自引:0,他引:2  
The mammalian olfactory system is capable of discriminating among a large variety of odor molecules and is therefore essential for the identification of food, enemies and mating partners. The assembly and maintenance of olfactory connectivity have been shown to depend on the combinatorial actions of a variety of molecular signals, including extracellular matrix, cell adhesion and odorant receptor molecules. Recent studies have identified semaphorins and their receptors as putative molecular cues involved in olfactory pathfinding, plasticity and regeneration. The semaphorins comprise a large family of secreted and transmembrane axon guidance proteins, being either repulsive or attractive in nature. Neuropilins were shown to serve as receptors for secreted class 3 semaphorins, whereas members of the plexin family are receptors for class 1 and V (viral) semaphorins. The present review will discuss a role for semaphorins and their receptors in the establishment and maintenance of olfactory connectivity.  相似文献   

6.
7.
Schmucker D  Clemens JC  Shu H  Worby CA  Xiao J  Muda M  Dixon JE  Zipursky SL 《Cell》2000,101(6):671-684
A Drosophila homolog of human Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin superfamily member, was isolated by its affinity to Dock, an SH3/SH2 adaptor protein required for axon guidance. Dscam binds directly to both Dock's SH2 and SH3 domains. Genetic studies revealed that Dscam, Dock and Pak, a serine/threonine kinase, act together to direct pathfinding of Bolwig's nerve, containing a subclass of sensory axons, to an intermediate target in the embryo. Dscam also is required for the formation of axon pathways in the embryonic central nervous system. cDNA and genomic analyses reveal the existence of multiple forms of Dscam with a conserved architecture containing variable Ig and transmembrane domains. Alternative splicing can potentially generate more than 38,000 Dscam isoforms. This molecular diversity may contribute to the specificity of neuronal connectivity.  相似文献   

8.
Many zebrafish mutants have specific defects in axon guidance or synaptogenesis, particularly in the retinotectal and motor systems. Several mutants have now been characterized in detail and/or cloned. A combination of genetic studies, in vivo imaging and new techniques for misexpressing genes or blocking their function promises to reveal the molecules and principles that govern wiring of the vertebrate nervous system.  相似文献   

9.
10.
Anterior pituitaries of normal adult male rats were subjected to synthetic thyrotropin-releasing hormone (TRH) treatment in an acute incubation system which employed pretreatment of the glands with plasma obtained from the donor animals. Following a 60-min preincubation period in a 1:1 mixture of Krebs-Ringer bicarbonate buffer (KRB) and plasma, media and hemipituitary prolactin (PRL) concentrations were significantly (p less than 0.01) increased after a 40-min treatment with 500 pg TRH. The TRH effect was absent among hemipituitaries preincubated in KRB alone. Plasma obtained from older donors was more potent than was plasma from younger rats in this effect. TSH secretion was markedly increased by 500 pg TRH, whether or not plasma preincubation was employed. A dose response of PRL release to concentrations of TRH from 100 pg to 6.0 ng was observed. Crude extracts of median eminence also effected enhanced PRL release using the plasma preincubation technique. The results suggest that plasma preincubation of explanted pituitaries increases PRL cell sensitivity to TRH, perhaps by enzymatic inactivation of endogenous TRH bound to cellular membrane receptors.  相似文献   

11.
12.
13.
During nervous system development, axons that grow out simultaneously in the same extracellular environment are often sorted to different target destinations. As there is only a restricted set of guidance cues known, regulatory mechanisms are likely to play a crucial role in controlling cell migration and axonal pathfinding. Heparan sulfate proteoglycans (HSPGs) carry long chains of differentially modified sugar residues that have been proposed to encode specific information for nervous system development. Here, we show that the cell surface proteoglycan syndecan SDN-1 functions autonomously in neurons to control the neural migration and guidance choices of outgrowing axons. Epistasis analysis suggests that heparan sulfate (HS) attached to SDN-1 can regulate guidance signaling by the Slit/Robo pathway. Furthermore, SDN-1 acts in parallel with other HSPG core proteins whose HS side chains are modified by the C5-epimerase HSE-5, and/or the 2O-sulfotransferase HST-2, depending on the cellular context. Taken together, our experiments show that distinct HS modification patterns on SDN-1 are involved in regulating axon guidance and cell migration in C. elegans.  相似文献   

14.
A family of proteins implicated in axon guidance and outgrowth.   总被引:18,自引:0,他引:18  
Rapid progress in the identification and characterization of axon guidance molecules and their receptors has left the field poised to explore the intracellular mechanisms by which signals are transduced into growth cone responses. The TUC (TOAD/Ulip/CRMP) family of proteins has emerged as a strong candidate for a role in growth cone signaling. The TUC family members reach their highest expression levels in all neurons during their peak periods of axonal growth and are strongly down-regulated afterward. When axonal regrowth in the adult is triggered by axotomy, TUC-4 is reexpressed during the period of regrowth. Mutations in unc-33, a homologous nematode gene, lead to severe axon guidance errors in all neurons. Furthermore, the TUC family is required for the growth cone-collapsing activity of collapsin-1. An important role for the TUC family is also suggested by its high degree of interspecies amino acid sequence identity, with the rat TUC-2 protein showing 98% identity with its chick ortholog and 89% identity with its Xenopus ortholog. Information gained from the study of the TUC family will be of key importance in understanding how growth cones find their targets.  相似文献   

15.
In the past year, several new components involved in cell migration and axon guidance have been identified by genetic analysis in Caenorhabditis elegans, taking us a step closer to being able to trace the pathways which mediate these processes. The completion of the C. elegans genome sequencing project has provided us with the knowledge of the full spectrum of genes that might be involved in cell migration and axon guidance, and can facilitate the analysis of components that have been shown to be important for these processes in other systems.  相似文献   

16.
CNS glia have integral roles in directing axon migration of both vertebrates and insects. In contrast, very little is known about the roles of PNS glia in axonal pathfinding. In vertebrates and Drosophila, anatomical evidence shows that peripheral glia prefigure the transition zones through which axons migrate into and out of the CNS. Therefore, peripheral glia could guide axons at the transition zone. We used the Drosophila model system to test this hypothesis by ablating peripheral glia early in embryonic neurodevelopment via targeted overexpression of cell death genes grim and ced-3. The effects of peripheral glial loss on sensory and motor neuron development were analyzed. Motor axons initially exit the CNS in abnormal patterns in the absence of peripheral glia. However, they must use other cues within the periphery to find their correct target muscles since early pathfinding errors are largely overcome. When peripheral glia are lost, sensory axons show disrupted migration as they travel centrally. This is not a result of motor neuron defects, as determined by motor/sensory double-labeling experiments. We conclude that peripheral glia prefigure the CNS/PNS transition zone and guide axons as they traverse this region.  相似文献   

17.
18.
Glial cells have diverse functions that are necessary for the proper development and function of complex nervous systems. During development, a variety of reciprocal signaling interactions between glia and neurons dictate all parts of nervous system development. Glia may provide attractive, repulsive, or contact-mediated cues to steer neuronal growth cones and ensure that neurons find their appropriate synaptic targets. In fact, both neurons and glia may act as migrational substrates for one another at different times during development. Also, the exchange of trophic signals between glia and neurons is essential for the proper bundling, fasciculation, and ensheathement of axons as well as the differentiation and survival of both cell types. The growing number of links between glial malfunction and human disease has generated great interest in glial biology. Because of its relative simplicity and the many molecular genetic tools available, Drosophila is an excellent model organism for studying glial development. This review will outline the roles of glia and their interactions with neurons in the embryonic nervous system of the fly.  相似文献   

19.
The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin’s inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.  相似文献   

20.
A modification of the scrape-loading/dye transfer technique was used to study gap junctional communication along the anterior-posterior (A-P) axis of embryonic chick wing buds at an early stage of development (stage 20/21) when positional values along the A-P axis are being specified. Extensive intercellular transfer of the gap junction-permeable dye, lucifer yellow, from scrape-loaded mesenchymal cells to contiguous cells occurs in the posterior mesenchymal tissue of the wing bud adjacent to the zone of polarizing activity, which is thought to be the source of a diffusible morphogen that specifies A-P positional identity according to its local concentration. Considerably less transfer of lucifer yellow dye occurs in scrape-loaded mesenchymal tissue in the middle of the limb bud compared to posterior mesenchymal tissue, and little or no transfer of lucifer yellow is observed in the mesenchymal tissue in the anterior portion of the limb bud. No intercellular transfer of the gap junction-impermeable dye, rhodamine dextran, occurs in any region of the limb bud. These results indicate that there is a gradient of gap junctional communication along the A-P axis of the developing chick wing bud. This gradient of gap junctional communication along the A-P axis might generate a graded distribution of a relatively low molecular weight intracellular regulatory molecule involved in specifying A-P positional identities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号