首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endurance trained people exhibit low levels of postprandial lipemia. However, this favorable situation is rapidly reversed with de-training and it is likely that the triglyceride (TG) lowering effects of exercise are mainly the result of acute metabolic responses to recent exercise rather than long-term training adaptations. A large body of evidence suggests that postprandial lipemia can be attenuated following an individual exercise session, with the energy expended during exercise being an important determinant of the extent of TG lowering. Increased lipoprotein lipase-mediated TG clearance and reduced hepatic TG secretion are both likely to contribute to the exercise-induced TG reductions. These changes may occur in response to post-exercise substrate deficits in skeletal muscle and/or the liver. In addition, regular exercise can oppose the hypertriglyceridaemia sometimes seen with low-fat, high-carbohydrate diets. Levels of physical activity should therefore be taken into account when considering nutritional strategies for reducing the risk of cardiovascular disease.  相似文献   

2.
Cardiovascular disease (CVD) and CVD risk factors are highly heritable, and numerous lines of evidence indicate they have a strong genetic basis. While there is nothing known about the interactive effects of genetics and exercise training on CVD itself, there is at least some literature addressing their interactive effect on CVD risk factors. There is some evidence indicating that CVD risk factor responses to exercise training are also heritable and, thus, may have a genetic basis. While roughly 100 studies have reported significant effects of genetic variants on CVD risk factor responses to exercise training, no definitive conclusions can be generated at the present time, because of the lack of consistent and replicated results and the small sample sizes evident in most studies. There is some evidence supporting "possible" candidate genes that may affect these responses to exercise training: APO E and CETP for plasma lipoprotein-lipid profiles; eNOS, ACE, EDN1, and GNB3 for blood pressure; PPARG for type 2 diabetes phenotypes; and FTO and BAR genes for obesity-related phenotypes. However, while genotyping technologies and statistical methods are advancing rapidly, the primary limitation in this field is the need to generate what in terms of exercise intervention studies would be almost incomprehensible sample sizes. Most recent diabetes, obesity, and blood pressure genetic studies have utilized populations of 10,000-250,000 subjects, which result in the necessary statistical power to detect the magnitude of effects that would probably be expected for the impact of an individual gene on CVD risk factor responses to exercise training. Thus at this time it is difficult to see how this field will advance in the future to the point where robust, consistent, and replicated data are available to address these issues. However, the results of recent large-scale genomewide association studies for baseline CVD risk factors may drive future hypothesis-driven exercise training intervention studies in smaller populations addressing the impact of specific genetic variants on well-defined physiological phenotypes.  相似文献   

3.
Neuroelectric measurement of cognition during aerobic exercise   总被引:1,自引:0,他引:1  
The application of neuroimaging techniques to assess changes in brain and cognition during exercise has received little attention due to issues related to artifact associated with gross motor movement inherent in physical activity behaviors. Although many neuroimaging techniques have not yet progressed to a point where movement artifact may be controlled, event-related brain potentials (ERPs), which measure neuroelectric responses to specific events, can account for such issues in controlled environments. This paper discusses the deviations from standard neuroelectric recording procedures and signal processing that are necessary for the collection and analysis of ERPs during gross motor movement. Considerations include the properties of the exercise behavior, task instructions, and the position of materials in the stimulus environment, as well as issues related to electrode impedance, additional reduction techniques, and the plotting of single trials to identify movement artifacts. These techniques provide a means for collecting clean data from the neuroelectric system to provide further understanding of changes in brain and cognition that occur online during exercise behavior, and serves as a novel application of neuroimaging to the kinesiological sciences.  相似文献   

4.
The fat mass (FM) and obesity‐associated (FTO) gene is the first obesity‐susceptibility gene identified by genome‐wide association scans and confirmed in several follow‐up studies. Homozygotes for the risk allele (A/A) have 1.67 times greater risk of obesity than those who do not have the allele. However, it is not known whether regular exercise‐induced changes in body composition are influenced by the FTO genotype. The purpose of our study was to test whether the FTO genotype is associated with exercise‐induced changes in adiposity. Body composition was derived from underwater weighing before and after a 20‐week endurance training program in 481 previously sedentary white subjects of the HERITAGE Family Study. FTO single‐nucleotide polymorphism (SNP) rs8050136 was genotyped using Illumina GoldenGate assay. In the sedentary state, the A/A homozygotes were significantly heavier and fatter than the heterozygotes and the C/C homozygotes in men (P = 0.004) but not in women (P = 0.331; gene‐by‐sex interaction P = 0.0053). The FTO genotype was associated with body fat responses to regular exercise (P < 0.005; adjusted for age, sex, and baseline value of response trait): carriers of the C allele showed three times greater FM and %body fat losses than the A/A homozygotes. The FTO genotype explained 2% of the variance in adiposity changes. Our data suggest that the FTO obesity‐susceptibility genotype influences the body fat responses to regular exercise. Resistance to exercise‐induced reduction in total adiposity may represent one mechanism by which the FTO A allele promotes overweight and obesity.  相似文献   

5.
When animals perceive social signals, information about the identity and the location of the signaller can be important determinants of a response by the perceiver. An unfamiliar individual often elicits a greater response than does a familiar individual. Similarly, a signal from an unexpected location may elicit a greater response than if it came from an expected location. For example, in field experiments on vocal communication in birds, an unexpected location has been many metres away from the expected one. Laboratory experiments on the responses of voles and hamsters to scent overmarks and on the habituation of hamsters to social scents suggest that much smaller differences in the location of odours may be salient. To explore this further, we examined the influence of changes in spatial location of familiar and novel male scents on responses of female golden hamsters,M. auratus . The spatial changes were about 9 cm, less than three-fourths of the body length of our subjects. The decline in females' investigation of the same male's flank odour across four habituation trials was not affected by changing the location of the odour. During test trials, however, changes in location did influence the results. The expected higher level of investigation of a novel scent versus that of a familiar one was observed primarily when the novel scent occupied a novel location. Such increases in investigation were usually not seen when only one of these variables was changed (individual or location). Thus, small changes in spatial location influence the salience of conspecific odours in this species. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

6.
Exercise adaptations result from a coordinated response of multiple organ systems, including cardiovascular, pulmonary, endocrine-metabolic, immunologic, and skeletal muscle. Among these, the cardiovascular system is the most directly affected by exercise, and it is responsible for many of the important acute changes occurring during physical training. In recent years, the development of animal models of pathological or physiological cardiac overload has allowed researchers to precisely analyze the complex cardiovascular responses to stress in genetically altered murine models of human cardiovascular disease. The intensity-controlled treadmill exercise represents a well-characterized model of physiological cardiac hypertrophy because of its ability to mimic the typical responses to exercise in humans. In this review, we describe cardiovascular adaptations to treadmill exercise in mice and the most important parameters that can be used to quantify such modifications. Moreover, we discuss how treadmill exercise can be used to perform physiological testing in mouse models of disease and to enlighten the role of specific signaling pathways on cardiac function.  相似文献   

7.
Colonization of a novel environment is expected to result in adaptive divergence from the ancestral population when selection favors a new phenotypic optimum. Local adaptation in the new environment occurs through the accumulation and integration of character states that positively affect fitness. The role played by plastic traits in adaptation to a novel environment has generally been ignored, except for variable environments. We propose that if conditions in a relatively stable but novel environment induce phenotypically plastic responses in many traits, and if genetic variation exists in the form of those responses, then selection may initially favor the accumulation and integration of functionally useful plastic responses. Early divergence between ancestral and colonist forms will then occur with respect to their plastic responses across the gradient bounded by ancestral and novel environmental conditions. To test this, we compared the magnitude, integration, and pattern of plastic character responses in external body form induced by shallow versus open water conditions between two sunfish ecomorphs that coexist in four postglacial lakes. The novel sunfish ecomorph is present in the deeper open water habitat, whereas the ancestral ecomorph inhabits the shallow waters along the lake margin. Plastic responses by open water ecomorphs were more correlated than those of their local shallow water ecomorph in two of the populations, whereas equal levels of correlated plastic character responses occurred between ecomorphs in the other two populations. Small but persistent differences occurred between ecomorph pairs in the pattern of their character responses, suggesting a recent divergence. Open water ecomorphs shared some similarities in the covariance among plastic responses to rearing environment. Replication in the form of correlated plastic responses among populations of open water ecomorphs suggests that plastic character states may evolve under selection. Variation between ecomorphs and among lake populations in the covariance of plastic responses suggests the presence of genetic variation in plastic character responses. In three populations, open water ecomorphs also exhibited larger plastic responses to the environmental gradient than the local shallow water ecomorph. This could account for the greater integration of plastic responses in open water ecomorphs in two of the populations. This suggests that the plastic responses of local sunfish ecomorphs can diverge through changes in the magnitude and coordination of plastic responses. Although these results require further investigation, they suggest that early adaptive evolution in a novel environment can include changes to plastic character states. The genetic assimilation of coordinated plastic responses could result in the further, and possibly rapid, divergence of such populations and could also account for the evolution of genes of major effect that contribute to suites of phenotypic differences between divergent populations.  相似文献   

8.
Exosomes contain regulatory signals such as lipids, proteins, and nucleic acids which can be transferred to adjacent or remote cells to mediate cell-to-cell communication. Exercise is a positive lifestyle for metabolic health and a nonpharmacological treatment of insulin resistance and metabolic diseases. Moreover, exercise is a stressor that induces cellular responses including gene expression and exosome release in various types of cells. Exosomes can carry the characters of parent cells by their modified cargoes, representing novel mechanisms for the effects of exercise. Here, we present a review of exosomes as the perspective players in mediating exercise's beneficial impacts on type 2 diabetes (T2D).  相似文献   

9.
Age-related sarcopenia leads to muscle weakness and a concomitant increase in gait problems and the risk of hip fracture due to falling in the elderly. Muscle weakness reduces general activity levels in elderly individuals which in turn elevates the risk of osteoporosis due to a decrease in overall mechanical loading of the skeleton. At the same time, age-related sarcopenia is also linked to an increase in the risk of metabolic disorders such as adult onset (Type II) diabetes. However, it is widely accepted that increased mechanical loading of the musculoskeletal system (e.g., resistive exercise) can have a beneficial effect on both skeletal muscle and the supporting skeleton resulting in a significant reduction in the risk of developing all of the above age-related problems. As such, unloading models that exhibit many if not all of the same responses observed in aged muscle, including the capacity of exercise to reverse these responses, may provide valuable insight into the skeletal muscle aging process.  相似文献   

10.
Regular aerobic exercise reduces risk of cardiovascular disease far more effectively than any pharmaceutical agent. The precise mechanisms contributing to these health benefits are unknown. Currently, much of our knowledge regarding the molecular regulators of skeletal muscle phenotype remodeling in response to muscle activity is derived from rodent models. Over the past five years large scale gene analysis has emerged as a promising research strategy for studying complex processes in human tissue. This review will principally discuss the application of large scale gene expression profiling to study the molecular responses to longitudinal aerobic exercise training studies in humans. The focus is largely on the Affymetrix technology platform, as this can be most easily compared, in a quantitative manner, across laboratories. Indeed, there are compelling reasons to adopt a common standard to obtain maximum synergy across complex, expensive and invasive human studies. Direct comparisons between array data sets can be made, and these should be considered novel 'experiments', often providing great insight into disease mechanisms. Weaknesses in existing human studies are identified and future objectives are discussed.  相似文献   

11.
This study assessed muscle fatigue patterns of the elbow flexors in untrained men and women to determine if sex differences exist during acute maximal eccentric exercise. High-intensity eccentric exercise is often used by athletes to elicit gains in muscle strength and size gains. Development of fatigue during this type of exercise can increase risk of injury; therefore, it is important to understand fatigue patterns during eccentric exercise to minimize injury risk exposure while still promoting training effects. While many isometric exercise studies have demonstrated that women show less fatigue, the patterns of fatigue during purely eccentric exercise have not been assessed in men and women. Based on the lack of sex differences in overall strength loss immediately post-eccentric exercise, it was hypothesized that women and men would have similar relative fatigue pattern responses (i.e., change from baseline) during a single bout of maximal eccentric exercise. Forty-six subjects (24 women and 22 men) completed 5 sets of 10 maximal eccentric contractions on an isokinetic dynamometer. Maximal voluntary isometric contraction strength was assessed at baseline and immediately following each exercise set. Maximal eccentric torque and contractile properties (i.e., contraction time, work, half relaxation time, and maximal rate of torque development) were calculated for each contraction. Men and women demonstrated similar relative isometric (32% for men and 39% for women) and eccentric (32% for men and 39% for women) fatigue as well as similar deficits in work done and rates of torque development and relaxation during exercise (p > 0.05). Untrained men and women displayed similar relative responses in all measures of muscle function during a single bout of maximal eccentric exercise of the elbow flexors. Thus, there is no reason to suspect that women may be more vulnerable to fatigue-related injury.  相似文献   

12.
The increased energy required for acute moderate exercise by skeletal muscle (SkM) is derived equally from enhanced fatty acid (FA) oxidation and glucose oxidation. Availability of FA also influences contracting SkM metabolic responses. Whole body glucose turnover and SkM glucose metabolic responses were determined in paired dog studies during 1) a 30-min moderate exercise (maximal oxygen consumption of approximately 60%) test vs. a 60-min low-dose 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion, 2) a 150-min AICAR infusion vs. modest elevation of FA induced by a 150-min combined intralipid-heparin (IL/hep) infusion, and 3) an acute exercise test performed with vs. without IL/hep. The exercise responses differed from those observed with AICAR: plasma FA and glycerol rose sharply with exercise, whereas FA fell and glycerol was unchanged with AICAR; glucose turnover and glycolytic flux doubled with exercise but rose only by 50% with AICAR; SkM glucose-6-phosphate rose and glycogen content decreased with exercise, whereas no changes occurred with AICAR. The metabolic responses to AICAR vs. IL/hep differed: glycolytic flux was stimulated by AICAR but suppressed by IL/hep, and no changes in glucose turnover occurred with IL/hep. Glucose turnover responses to exercise were similar in the IL/hep and non-IL/hep, but SkM lactate and glycogen concentrations rose with IL/hep vs. that shown with exercise alone. In conclusion, the metabolic responses to acute exercise are not mimicked by a single dose of AICAR or altered by short-term enhancement of fatty acid supply.  相似文献   

13.
Previous studies investigating the impact of circadian rhythms on physiological variables during exercise have yielded conflicting results. The purpose of the present investigation was to examine maximal aerobic exercise performance, as well as the physiological and psychophysiological responses to exercise, at four different intervals (0800 hours, 1200 hours, 1600 hours, and 2000 hours) within the segment of the 24-h day in which strenuous physical activity is typically performed. Ten physically fit, but untrained, male university students served as subjects. The results revealed that exercise performance was unaffected by chronobiological effects. Similarly, oxygen uptake, minute ventilation and heart rate showed no time of day influences under pre-, submaximal, and maximal exercise conditions. Ratings of perceived exertion were unaffected by time of day effects during submaximal and maximal exercise. In contrast, rectal temperature exhibited a significant chronobiological rhythm under all three conditions. Under pre- and submaximal exercise conditions, significant time of day effects were noted for respiratory exchange ratio, while a significant rhythmicity of blood pressure was evident during maximal exercise. However, none of these physiological variables exhibited significant differential responses (percent change from pre-exercise values) to the exercise stimulus at any of the four time points selected for study. Conversely, resting plasma lactate levels and lactate responses to maximal exercise were found to be significantly sensitive to chronobiological influences. Absolute post-exercise plasma norepinephrine values, and norepinephrine responses to exercise (percent change from pre-exercise values), also fluctuated significantly among the time points studied. In summary, these data suggest that aerobic exercise performance does not vary during the time frame within which exercise is normally conducted, despite the fact that some important physiological responses to exercise do fluctuate within that time period. Accepted: 18 August 1997  相似文献   

14.
Lower limb exercise increases upper limb conduit artery blood flow and shear stress, and leg exercise training can enhance upper limb vascular function. We therefore examined the contribution of shear stress to changes in vascular function in the nonexercising upper limbs in response to lower limb cycling exercise training. Initially, five male subjects underwent bilateral brachial artery duplex ultrasound to measure blood flow and shear responses to 30-min cycling exercise at 80% of maximal heart rate. Responses in one forearm were significantly (P < 0.05) attenuated via cuff inflation throughout the exercise bout. An additional 11 subjects participated in an 8-wk cycle training study undertaken at a similar intensity, with unilateral cuff inflation around the forearm during each exercise bout. Bilateral brachial artery flow-mediated dilation responses to a 5-min ischemic stimulus (FMD%), an ischemic handgrip exercise stimulus (iEX), and endothelium-independent NO donor administration [glyceryl trinitrate (GTN)] were measured at 2, 4, and 8 wk. Cycle training increased FMD% in the noncuffed limb at week 2, after which time responses returned toward baseline levels (5.8 ± 4.1, 8.6 ± 3.8, 7.4 ± 3.5, 6.0 ± 2.3 at 0, 2, 4 and 8 wk, respectively; ANOVA: P = 0.04). No changes in FMD% were observed in the cuffed arm. No changes were evident in response to iEX or GTN in either the cuffed or noncuffed arms (P > 0.05) across the 8-wk intervention period. Our data suggest that lower limb cycle training induces a transient increase in upper limb vascular function in healthy young humans, which is, at least partly, mediated via shear stress.  相似文献   

15.
Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.  相似文献   

16.
A novel automatic escalator was designed, constructed and used in the present investigation. The aim of the present investigation was to compare the effect of two repeated sessions of stair descending versus stair ascending exercise on muscle performance and health-related parameters in young healthy men. Twenty males participated and were randomly divided into two equal-sized groups: a stair descending group (muscle-damaging group) and a stair ascending group (non-muscle-damaging group). Each group performed two sessions of stair descending or stair ascending exercise on the automatic escalator while a three week period was elapsed between the two exercise sessions. Indices of muscle function, insulin sensitivity, blood lipid profile and redox status were assessed before and immediately after, as well as at day 2 and day 4 after both exercise sessions. It was found that the first bout of stair descending exercise caused muscle damage, induced insulin resistance and oxidative stress as well as affected positively blood lipid profile. However, after the second bout of stair descending exercise the alterations in all parameters were diminished or abolished. On the other hand, the stair ascending exercise induced only minor effects on muscle function and health-related parameters after both exercise bouts. The results of the present investigation indicate that stair descending exercise seems to be a promising way of exercise that can provoke positive effects on blood lipid profile and antioxidant status.  相似文献   

17.
Hearing acuity can be reduced temporarily after exposure to loud noise, and the physiological responses that occur with exercise may enhance this effect. Currently, it is not known whether short-term reductions in hearing acuity after noise exposure and exercise are a result of temporary changes in auditory function. Therefore, the purpose of this investigation was to determine the acute effects of simultaneous exercise and loud music on hearing acuity and auditory function in young, healthy women. Nine women (age = 22 +/- 5 years, body mass index = 23.9 +/- 2.2, Vo(2)peak = 30.6 +/- 6.0 ml x kg(-1) x min(-1)) with normal hearing thresholds (<20 dB hearing level) underwent each of 3 conditions in a randomized counterbalanced design: (a) loud music exposure of 90 to 95 dB sound pressure level for 20 minutes, (b) exercise at 60% Vo(2)peak on a cycle ergometer for 20 minutes, and (c) simultaneous exercise and music exposure for 20 minutes. Hearing acuity and auditory function were assessed via pure-tone hearing thresholds and distortion product otoacoustic emission amplitudes, respectively, at frequencies of 2, 3, 4, 6, and 8 kHz presented in random order before and after each condition. Results indicate that hearing acuity and auditory function remained unaltered after exposure to each condition (p > 0.05). These findings provide evidence that hearing acuity and auditory function in young women do not change after short-term exposure to moderate-intensity exercise and loud music. Thus, listening to loud music with earphones during moderate-intensity exercise does not pose acute hearing health concerns for young physically fit adults with normal hearing.  相似文献   

18.
Lifestyle habits, such as exercise, may significantly influence risk of major vascular thrombotic events. The risk of primary cardiac arrest has been shown to transiently increase during vigorous exercise, whereas regular moderate-intensity exercise is associated with an overall reduced risk of cardiovascular diseases. What are the mechanisms underlying these paradoxical effects of vigorous exercise versus exercise training on thrombotic modification? This review analyzes research regarding effects and their underlying mechanisms of acute exercise, endurance training, and deconditioning on platelets, coagulation, and fibrinolysis. Evidence suggests that (i) light, acute exercise ( < or = 49% VO(2 max)) does not affect platelet reactivity and coagulation and increases fibrinolytic activity; (ii) moderate, acute exercise (50 to approximately 74% VO(2 max)) suppresses platelet reactivity and enhances fibrinolysis, which remains unchanged in the coagulation system; and, (iii) strenuous, acute exercise ( > or = 75% VO(2 max)) enhances both platelet reactivity and coagulation, simultaneously promoting fibrinolytic activity. Therefore, moderate exercise is likely a safe and effective exercise dosage for minimizing risk of cardiovascular diseases by inducing beneficial anti-thrombotic changes. Moreover, moderate-intensity exercise training reduces platelet reactivity and enhances fibrinolysis at rest, also attenuating enhanced platelet reactivity and augmenting hyper-fibrinolytic activity during strenuous exercise. However, these favorable effects of exercise training on thrombotic modification return to a pre-training state after a period of deconditioning. These findings can aid in determining appropriate exercise regimes to prevent early thrombotic events and further hinder the cardiovascular disease progression.  相似文献   

19.
Proteomics applied to exercise physiology: a cutting-edge technology   总被引:1,自引:0,他引:1  
Exercise research has always drawn the attention of the scientific community because it can be widely applied to sport training, health improvement, and disease prevention. For many years numerous tools have been used to investigate the several physiological adaptations induced by exercise stimuli. Nowadays a closer look at the molecular mechanisms underlying metabolic pathways and muscular and cardiovascular adaptation to exercise are among the new trends in exercise physiology research. Considering this, to further understand these adaptations as well as pathology attenuation by exercise, several studies have been conducted using molecular investigations, and this trend looks set to continue. Through enormous biotechnological advances, proteomic tools have facilitated protein analysis within complex biological samples such as plasma and tissue, commonly used in exercise research. Until now, classic proteomic tools such as one- and two-dimensional polyacrylamide gel electrophoresis have been used as standard approaches to investigate proteome modulation by exercise. Furthermore, other recently developed in gel tools such as differential gel electrophoresis (DIGE) and gel-free techniques such as the protein labeling methods (ICAT, SILAC, and iTRAQ) have empowered proteomic quantitative analysis, which may successfully benefit exercise proteomic research. However, despite the three decades of 2-DE development, neither classic nor novel proteomic tools have been convincingly explored by exercise researchers. To this end, this review gives an overview of the directions in which exercise-proteome research is moving and examines the main tools that can be used as a novel strategy in exercise physiology investigation.  相似文献   

20.
大强度运动中,非创伤性急性肾损伤(acute kindey injury, AKI)经常发生,表现为血尿、蛋白尿、血红蛋白尿等。一般认为,中低程度的运动性急性肾损伤是可逆的,可完全恢复。但动物实验与人类研究均发现,严重的运动性肾损伤会导致“功能性”急性肾损伤发展为“结构性”急性肾损伤,并增加慢性肾病的风险。运动性急性肾损伤对机体的潜在健康威胁已引起国内外相关领域学者的广泛关注。血清肌酐 (serum creatinine, Scr)和尿量作为肾功能的传统经典标志物,不能特异性反映早期肾损伤,而新型肾损伤标志物可进一步明确损伤的位置及严重程度。在运动领域,利用新型生物标志物进行无创性检查,识别早期运动性急性肾损伤非常必要。本文综述了反映肾小球或肾小管损伤、细胞周期停滞和肾损伤修复的新型生物标志物,着重论述了尿中性粒细胞明胶酶相关脂质运载蛋白(NGAL)和肾损伤分子-1(KIM-1)与肾功能的关系,以及长时间耐力运动、急性运动和高强度间歇阻力运动3种运动形式对肾功能的影响,旨在引起重视,精准识别风险,及时进行早干预。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号