首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
3.
The abundance of an mRNA encoding an HMG1/2 protein from Pharbitis nil (HMG1) has been previously shown to be regulated by light and an endogenous rhythm in cotyledons. A second Pharbitis nil HMG cDNA (HMG2) was characterized. The sequence of HMG2 was 82% and 86% identical to HMG1 at the nucleotide and amino acid level, respectively. As with HMG1, HMG2 mRNA was detected in all vegetative tissues and was most abundant in roots. However, unlike HMG1, HMG2 mRNA abundance did not increase upon transfer of cotyledons to darkness and did not exhibit regulation by an endogenous circadian rhythm when maintained in continuous darkness over a 68 h period. Similarly, while the abundance of HMG1 mRNA during a dark period that induced photoperiodically controlled flowering was dramatically affected by brief light exposure (night break), this treatment had no effect on HMG2 mRNA abundance. Collectively, these data are consistent with a role of HMG1 in contributing to the circadian-regulated and/or dark-regulated gene expression with constitutive expression of HMG2 playing a housekeeping role in the general regulation of gene expression in Pharbitis nil cotyledons.  相似文献   

4.
We have studied how non-histone proteins HMG1 and HMG2 interact with rat liver chromatin using reconstitution and chemical cross-linking procedures. Both proteins were found to associate to chromatin only to some extent and always with a marked preference for short oligonucleosomes, mainly mono- and dinucleosomes. However, a slight reconstitution with the long polynucleosomal fraction can be observed in H1-depleted chromatin. Reconstitution is non-random and a clear preference for regions highly sensitive to staphylococcal nuclease (EC 3.1.31.1) is observed. Chemical cross-linking has allowed us to identify H1, H2A and H2B as the histones contacted by HMG1 and HMG2 upon reconstitution. Also, we present evidence that HMG1 and HMG2 interact with the nucleosomal particle without replacing H1 or any other histone.  相似文献   

5.
中华鳖HMG1基因的克隆与序列分析   总被引:1,自引:0,他引:1  
为了解中华鳖(Pelodiscus sinensis)HMG1(High mobility group 1)的基因结构,利用RT-PCR,从中华鳖肝脏组织的总RNA中,克隆并测序了中华鳖HMG1cDNA片段,结果表明,中华鳖HMG1基因的开放读码框(Open reading frame,ORF)长度为606 bp,编码202个氨基酸。中华鳖HMG1多肽链主要包含三个保守的区域:位于多肽链N端的HMG盒区1(第9—80个氨基酸之间);位于多肽链中心的HMG盒区2(第89—162个氨基酸之间);位于多肽链C端的富含酸性氨基酸区域(第163—202个氨基酸之间)。在2个HMG盒区范围内,中华鳖HMG1多肽链与红原鸡、人、虹鳟等物种的HMG1多肽链相比,氨基酸同源性依次为96.5%、74%和67%。排序比较显示,不同物种HMG1多肽链之间的富含酸性氨基酸区域的长度是不同的,暗示了HMG1多肽链富含酸性氨基酸区域的长度可能受到选择压力的影响,但这种选择压力没有使谷氨酸和天冬氨酸这两种酸性氨基酸之间区分开来。系统发生分析表明,脊椎动物HMG1基因的HMG盒区1和盒区2分别形成了2个亚族。本研究首次报道爬行动物的HMG1基因。    相似文献   

6.
The enzyme kinetic studies with endonucleases specific for single-stranded DNA and the thermal denaturation analyses of DNA showed that a high mobility group (HMG) nonhistone protein fraction HMG (1 + 2), composed of HMG1 and HMG2, has an activity to unwind DNA partially at low protein-to-DNA weight ratio. Isolated HMG1 and HMG2 have the same activity. Divalent cations such as Mg++ or Ca++ were necessary for the unwinding reaction. A peptide containing high glutamic and aspartic (HGA) region, isolated from the tryptic digest of HMG (1 + 2), unwound DNA depending on the presence of Mg++ or Ca++, suggesting that the HMA region in HMG protein is the active site for the DNA unwinding reaction. Poly-L-glutamic acid, employed as a model peptide of the HGA region, showed the activity. Finally, mechanisms of the DNA unwinding reaction by the HMG protein and possible role of the divalent cations are discussed.  相似文献   

7.
H Shirakawa  K Tsuda  M Yoshida 《Biochemistry》1990,29(18):4419-4423
The isolation and sequencing of a cDNA clone for the entire sequence of pig thymus non-histone protein HMG2 are described. cDNA the size of 1153 nucleotides contains an open reading frame of 627 nucleotides. The 5'-untranslated region of 146 nucleotides is extremely rich in GC residues whereas the 3'-untranslated region of 380 nucleotides is rich in AT residues. The open reading frame encodes 209 amino acids, which contain a unique continuous run of 23 acidic amino acids at the C-terminal. The deduced amino acid sequence is 79% homologous to that of HMG1 protein from the same source which we reported [Tsuda, K., Kikuchi, M., Mori, K., Waga, S., & Yoshida, M. (1988) Biochemistry 27, 6159-6163]. In addition, the hydropathy index profiles of both proteins are very similar, supporting that they have similar structural features. Northern analysis of poly(A+) RNA reveals that a single-sized mRNA codes for HMG2 protein. Southern analysis suggests that the HMG2 coding gene is homogeneous within the pig thymus genome.  相似文献   

8.
Nonhistone proteins HMG1 and HMG2 unwind DNA double helix.   总被引:9,自引:6,他引:3       下载免费PDF全文
In a previous communication we have shown that both HMG1 and HMG2 nonhistone proteins change the DNA helical structure and the binding of HMG1 and HMG2 to DNA induces a net unwinding equivalent of DNA double helix (Javaherian, K., Liu, L. F. and Wang, J. C. (1978) Science, 199, 1345-1346). Employing melting absorption technique, we now show that in the presence of salt HMG1 and HMG2 destabilize DNA whereas in the absence of salt, they both stabilize DNA molecules. Consequently the folded structure of HMG must play an important role in melting DNA. Furthermore, by measuring topological winding number using competition unwinding experiments, we conclude that HMG1 has a higher affinity for a single-stranded DNA relative to double-stranded DNA. These results together suggest that HMG1 and HMG2 unwind DNA double helix by local denaturation of the DNA base pairs. The net unwinding angles have been measured to be 22 degrees and 26 degrees per molecule of HMG1 and HMG2 respectively.  相似文献   

9.
Identification of the core-histone-binding domains of HMG1 and HMG2   总被引:5,自引:0,他引:5  
High mobility group (HMG) nonhistone chromosomal proteins are a group of abundant, conservative and highly charged nuclear proteins whose physiological role in chromatin is still unknown. To gain insight into the interactions of HMG1 and HMG2 with the fundamental components of chromatin we have introduced the methodology of photochemical crosslinking. This technique has allowed us to study the interaction of HMG1 and HMG2 with the core histones, in the form of an H2A X H2B dimer and an (H3 X H4)2 tetramer, for an effective time of crosslinking of less than 1 ms and under very mild conditions. This is achieved by using flash photolysis. With this procedure we found that both HMG1 and HMG2 interact with H2A X H2B and also with (H3 X H4)2. In the second case, they seem to do this through histone H3. To obtain more information about the interactions, we split HMG1 and HMG2 into their peptides using staphylococcal proteinase. The peptides obtained, which reflect the domain distribution of these proteins, were then used along with the histone oligomers to elucidate their interactions by means of photochemical crosslinking. Results obtained indicate that the domain of HMG1 and HMG2 involved in the interaction with H2A X H2B histones is the highly acidic C-terminal, whereas the N-terminal is involved in the interactions with (H3 X H4)2 histones. In all cases, the interactions found appear appreciably strong. Along with other data published in the literature, these proteins appear to have at least one binding site per domain for the chromatin components.  相似文献   

10.
The binding of chromosomal proteins HMG1 and HMG2 to various DNA structures was examined by a nitrocellulose filter binding assay using a 32P labelled supercoiled plasmid. Binding assays and competition experiments indicated that HMG2 has a higher affinity than HMG1 for supercoiled DNA. Studies at various ionic strengths and pH values reveal differences in the interaction of the two proteins with DNA. The results suggest that HMG1 and HMG2 are involved in distinguishable cellular functions.  相似文献   

11.
To replicate, a retrovirus must synthesize a cDNA copy of the viral RNA genome and integrate that cDNA into a chromosome of the host. We have investigated the role of a host cell cofactor, HMG I(Y) protein, in integration of human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) cDNA. Previously we reported that HMG I(Y) cofractionates with HIV-1 preintegration complexes (PICs) isolated from freshly infected cells. PICs depleted of required components by treatment with high concentrations of salt could be reconstituted by addition of purified HMG I(Y) in vitro. Here we report studies using immunoprecipitation that indicate that HMG I(Y) is associated with MoMLV preintegration complexes. In mechanistic studies, we show for both HIV-1 and MoMLV that each HMG I(Y) monomer must contain multiple DNA binding domains to stimulate integration by HMG I(Y)-depleted PICs. We also find that HMG I(Y) can condense model HIV-1 or MoMLV cDNA in vitro as measured by stimulation of intermolecular ligation. This reaction, like reconstitution of integration, depends on the presence of multiple DNA binding domains in each HMG I(Y) monomer. These data suggest that binding of multivalent HMG I(Y) monomers to multiple cDNA sites compacts retroviral cDNA, thereby promoting formation of active integrase-cDNA complexes.  相似文献   

12.
Sera were raised to non-histone chromatin proteins HMG 1 and HMG 2. Immunoperoxidase staining localised these proteins on chromosomes during mitosis and indicated a cell cycle-related variation in these proteins during interphase. Some species differences in HMG 1 and HMG 2 were also observed.  相似文献   

13.
The nonhistone chromosomal proteins, HMG1 and HMG2, were iodinated and introduced into HeLa cells, bovine fibroblasts, or mouse 3T3 cells by erythrocyte-mediated microinjection. Autoradiographic analysis of injected cells fixed with glutaraldehyde consistently showed both molecules concentrated within nuclei. Fixation with methanol, on the other hand, resulted in some leakage of the microinjected proteins from the nuclei so that more autoradiographic grains appeared over the cytoplasm or outside the cells. Both injected and endogenous HMG1 and HMG2 partitioned unexpectedly upon fractionation of bovine fibroblasts, HeLa, or 3T3 cells, appearing in the cytoplasmic fractions. However, in calf thymus, HMG1 and HMG2 molecules appeared in the 0.35 M NaCl extract of isolated nuclei, as expected. These observations show that the binding of HMG1 and HMG2 to chromatin differs among cell types or that other tissue-specific components can influence their binding. Coinjection of [125I]HMG1 and [131I]HMG2 into HeLa cells revealed that the two molecules display virtually equivalent distributions upon cell fractionation, identical stability, identical intracellular distributions, and equal rates of equilibration between nuclei. In addition, HMG1 and HMG2 did not differ in their partitioning upon fractionation nor in their stability in growing vs. nongrowing 3T3 cells. Thus, we have not detected any significant differences in the intracellular behavior of HMG1 and HMG2 after microinjection into human, bovine, or murine cells.  相似文献   

14.
Nonhistone protein HMG2, like HMG1, binds with B-DNA in a sequence-nonspecific manner and causes structural alterations in DNA such as bending, kinking and unwinding. Here, we studied the functions of HMG2 domains in the DNA structural alteration and modulation by using various HMG2 peptides, and we demonstrated several new findings. The HMG box itself as a DNA-binding motif may have the basic function of inducing curvature, resulting in the apparent DNA bending in the DNA cyclization assay, but not of abruptly kinking DNA. The DNA-binding activity of HMG box B, which is enhanced by the presence of box A, together with the flanking regions of box B, causes DNA bending accompanying the kinking of the DNA main chain. The DNA unwinding accompanied by DNA kinking diminishes cruciform structures in supercoiled DNA. Analysis using mutant peptides for box A confirmed that box A in HMG2 functions as a mediator of DNA structural alteration together with box B. The present studies on the functional properties of the respective regions of HMG2 may help to elucidate the protein function.  相似文献   

15.
Variations in the content of nonhistone proteins high mobility group 2a (HMG2a) and HMG2b have been determined in several cell types of chicken. HMG2a was found to accumulate during erythrocyte maturation. HMG2b is the major HMG2 subtype in testis and reaches the highest proportion, detected so far, in spermatid cells obtained by centrifugal elutriation. In hepatocytes HMG2b is barely detectable and HMG2a is the major subtype. In conclusion, the pattern of HMG2 composition is different in three quiescent and terminally differentiated cell types, no correlation between the state of cell proliferation and HMG2 composition can be established.  相似文献   

16.
Differences between HMG1 proteins isolated from normal and tumour cells   总被引:1,自引:0,他引:1  
The properties of the non-histone chromosomal high-mobility-group 1 (HMG1) proteins from rat liver and Guerin ascites tumour cells (GAT cells) were compared and showed the following differences: (1) five spots were missing in the peptide map of HMG1 from GAT cells in comparison with that of HMG1 from rat liver; (2) HMG1 from GAT cells was about 5-times more poly(ADP)-ribosylated; (3) HMG1 from GAT cells which was found acetylated in vivo and incorporated [14C]acetate in vitro, whereas no incorporation of the label was detected in HMG1 from rat liver; (4) HMG1 from GAT cells exhibited pronounced ability to form oligomers at physiological ionic strength, while HMG1 from rat liver was predominantly in monomeric form. This property of HMG1 from GAT cells was lost upon deacetylation.  相似文献   

17.
On the presence of the chromosomal proteins HMG I and HMG Y in rat organs   总被引:1,自引:0,他引:1  
Using antiserum raised against HMG I, we have shown that HMG I and HMG Y are present in perchloric acid extracts of kidney, lung, heart, brain, liver and intestine in the rat, suggesting that the expression of these proteins may not be dependent upon proliferative activity. The results also show that the ratio between HMG I and HMG Y varies between different organs.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号