首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
The potassium channels in the two-pore domain family are widely expressed and regulate the excitability of neurons and other excitable cells. These channels have been shown to function as dimers, but heteromerization between the various channel subunits has not yet been reported. Here we demonstrate that two members of the TASK subfamily of potassium channels, TASK-1 and TASK-3, can form functional heterodimers when expressed in Xenopus laevis oocytes. To recognize the two TASK channel types, we took advantage of the higher sensitivity of TASK-1 over TASK-3 to physiological pH changes and the discriminating sensitivity of TASK-3 to the cationic dye ruthenium red. These features were clearly observed when the channels were expressed individually. However, when TASK-1 and TASK-3 were expressed together, the resulting current showed intermediate pH sensitivity and ruthenium red insensitivity (characteristic of TASK-1), indicating the formation of TASK-1/TASK-3 heterodimers. Expression of a tandem construct in which TASK-3 and TASK-1 were linked together yielded currents with features very similar to those observed when coexpressing the two channels. The tandem construct also responded to AT(1a) angiotensin II receptor stimulation with an inhibition that was weaker than the inhibition of homodimeric TASK-1 and greater than that shown by TASK-3. Expression of epitope-tagged channels in mammalian cells showed their primary presence in the plasma membrane consistent with their function in this location. Heteromerization of two-pore domain potassium channels may provide a greater functional diversity and additional means by which they can be regulated in their native tissues.  相似文献   

3.
S Bour  K Strebel 《Journal of virology》1996,70(12):8285-8300
We have recently shown that the envelope glycoprotein of the ROD10 isolate of human immunodeficiency virus type 2 (HIV-2) has the ability to positively regulate HIV-2 viral particle release. The activity provided by the ROD10 Env was remarkably similar to that of the HIV-1 Vpu protein, thus raising the possibility that the two proteins act in a related fashion. We now show that the ROD10 Env can functionally replace Vpu to enhance the rate of HIV-1 particle release. When provided in trans, both Vpu and the ROD10 Env restored wild-type levels of particle release in a Vpu-deficient mutant of the NL4-3 molecular clone with indistinguishable efficiencies. This effect was independent of the presence of the HIV-1 envelope protein. The ROD10 Env also enhanced HIV-1 particle release in the context of HIV-2 chimeric viruses containing the HIV-1 gag-pol, indicating a lack of need for additional HIV-1 products in this process. In addition, we show for the first time that HIV-1 Vpu, as well as ROD10 Env, has the ability to enhance simian immunodeficiency virus (SIV) particle release. The effects of Vpu and ROD10 Env on SIV particle release were indistinguishable and were observed in the context of full-length SIVmac239 and simian-human immunodeficiency virus chimeras. These results further demonstrate that ROD10 Env can functionally complement Vpu with respect to virus release. In contrast, we found no evidence of a destabilizing activity of ROD10 Env on the CD4 molecule. HIV-1 and HIV-2 thus appear to have evolved genetically distinct but functionally similar strategies to resolve the common problem of efficient release of progeny virus from infected cells.  相似文献   

4.
The HIV-1 accessory gene product Vpu is required for efficient viral particle release from infected human cells. The mechanism by which Vpu enhances particle assembly or release is not yet defined. Here, we identify an intracellular site that is critical for Vpu-mediated enhancement of particle release. Vpu was found to co-localize with markers for the pericentriolar recycling endosome. Expression of dominant negative mutants of Rab11a and myosin Vb that disrupt protein sorting through the recycling endosome abrogated the ability of Vpu to augment particle release. Remarkably, the effects of blocking recycling endosome function on HIV particle release were demonstrable only in human cell lines known to be responsive to Vpu, while no effect on particle release was seen in African green monkey cells. Inhibition of recycling endosome function in human cells also blocked the ability of HIV-2 envelope to enhance particle release. These studies indicate that Vpu and HIV-2 envelope glycoprotein enhance particle release via a common mechanism that requires the activity of the pericentriolar recycling endosome.  相似文献   

5.
The human immunodeficiency virus (HIV) type-1 viral protein U (Vpu) protein enhances the release of diverse retroviruses from human, but not monkey, cells and is thought to do so by ablating a dominant restriction to particle release. Here, we determined how Vpu expression affects the subcellular distribution of HIV-1 and murine leukemia virus (MLV) Gag proteins in human cells where Vpu is, or is not, required for efficient particle release. In HeLa cells, where Vpu enhances HIV-1 and MLV release approximately 10-fold, concentrations of HIV-1 Gag and MLV Gag fused to cyan fluorescent protein (CFP) were initially detected at the plasma membrane, but then accumulated over time in early and late endosomes. Endosomal accumulation of Gag-CFP was prevented by Vpu expression and, importantly, inhibition of plasma membrane to early endosome transport by dominant negative mutants of Rab5a, dynamin, and EPS-15. Additionally, accumulation of both HIV and MLV Gag in endosomes required a functional late-budding domain. In human HOS cells, where HIV-1 and MLV release was efficient even in the absence of Vpu, Gag proteins were localized predominantly at the plasma membrane, irrespective of Vpu expression or manipulation of endocytic transport. While these data indicated that Vpu inhibits nascent virion endocytosis, Vpu did not affect transferrin endocytosis. Moreover, inhibition of endocytosis did not restore Vpu-defective HIV-1 release in HeLa cells, but instead resulted in accumulation of mature virions that could be released from the cell surface by protease treatment. Thus, these findings suggest that a specific activity that is present in HeLa cells, but not in HOS cells, and is counteracted by Vpu, traps assembled retrovirus particles at the cell surface. This entrapment leads to subsequent endocytosis by a Rab5a- and clathrin-dependent mechanism and intracellular sequestration of virions in endosomes.  相似文献   

6.
The Vpu protein is a human immunodeficiency virus type 1 (HIV-1)-specific accessory protein that is required for the efficient release of viral particles from infected cells. Even though HIV-2 does not encode Vpu, we found that this virus is nevertheless capable of efficiently releasing virus particles. In fact, the rate of virus release from HeLa cells transfected with a full-length molecular clone of HIV-2, ROD10, was comparable to that observed for the vpu+ HIV-1 NL4-3 isolate and was not further enhanced by expression of Vpu in trans. However, consistent with previous observations showing that HIV-2 particle release is Vpu responsive in the context of HIV-1/HIV-2 chimeric constructs; exchanging the gag-pol region of NL4-3 with the corresponding region from pROD10 rendered the resulting chimeric virus Vpu responsive. Our finding that the responsiveness of HIV-2 particle release to Vpu is context dependent suggested the presence of a Vpu-like factor(s) encoded by HIV-2. Using chimeric proviruses encoding HIV-2 gag and pol in the context of the HIV-1 provirus that were coexpressed with subgenomic HIV-2 constructs, we found that the HIV-2 envelope glycoprotein had the ability to enhance HIV-2 particle release with an efficiency comparable to that of the HIV-1 Vpu protein. Conversely, inactivation of the HIV-2 env gene in the original ROD10 clone resulted in a decrease in the rate of viral particle release to a level that was comparable to that of Vpu-deficient HIV-1 isolates. Providing the wild-type envelope in trans rescued the particle release defect of the ROD10 envelope mutant. Thus, unlike HIV-1, which encodes two separate proteins to regulate virus release or to mediate viral entry, the HIV-2 Env protein has evolved to perform both functions.  相似文献   

7.
Vpu, a component unique to HIV-1, greatly enhances the efficiency of viral particle release by unclear mechanisms. This Vpu function is intrinsically linked to its channel-like structure, which enables it to interfere with homologous transmembrane structures in infected cells. Because Vpu interacts destructively with host background K+ channels that set the cell resting potential, we hypothesized that Vpu might trigger viral release by destabilizing the electric field across a budding membrane. Here, we found that the efficiency of Vpu-mediated viral release is inversely correlated with membrane potential polarization. By inhibiting the background K+ currents, Vpu dissipates the voltage constraint on viral particle discharge. As a proof of concept, we show that HIV-1 release can be accelerated by externally imposed depolarization alone. Our findings identify the trigger of Vpu-mediated release as a manifestation of the general principle of depolarization-stimulated exocytosis.  相似文献   

8.
Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.  相似文献   

9.
Lv M  Wang J  Wang X  Zuo T  Zhu Y  Kong W  Yu X 《PloS one》2011,6(6):e20890
Tetherin (BST-2/CD317) is an interferon-inducible antiviral protein that restricts the release of enveloped viruses from infected cells. The HIV-1 accessory protein Vpu can efficiently antagonize this restriction. In this study, we analyzed mutations of the transmembrane (TM) domain of Vpu, including deletions and substitutions, to delineate amino acids important for HIV-1 viral particle release and in interactions with tetherin. The mutants had similar subcellular localization patterns with that of wild-type Vpu and were functional with respect to CD4 downregulation. We showed that the hydrophobic binding surface for tetherin lies in the core of the Vpu TM domain. Three consecutive hydrophobic isoleucine residues in the middle region of the Vpu TM domain, I15, I16 and I17, were important for stabilizing the tetherin binding interface and determining its sensitivity to tetherin. Changing the polarity of the amino acids at these positions resulted in severe impairment of Vpu-induced tetherin targeting and antagonism. Taken together, these data reveal a model of specific hydrophobic interactions between Vpu and tetherin, which can be potentially targeted in the development of novel anti-HIV-1 drugs.  相似文献   

10.
Viral protein U (Vpu) of HIV-1 has two known functions in replication of the virus: degradation of its cellular receptor CD4 and enhancement of viral particle release. Vpu binds CD4 and simultaneously recruits the betaTrCP subunit of the SCF(betaTrCP) ubiquitin ligase complex through its constitutively phosphorylated DS52GXXS56 motif. In this process, Vpu was found to escape degradation, while inhibiting the degradation of betaTrCP natural targets such as beta-catenin and IkappaBalpha. We further addressed this Vpu inhibitory function with respect to the degradation of Emi1 and Cdc25A, two betaTrCP substrates involved in cell-cycle progression. In the course of these experiments, we underscored the importance of a novel phosphorylation site in Vpu. We show that, especially in cells arrested in early mitosis, Vpu undergoes phosphorylation of the serine 61 residue, which lies adjacent to the betaTrCP-binding motif. This phosphorylation event triggers Vpu degradation by a betaTrCP-independent process. Mutation of Vpu S61 in the HIV-1 provirus extends the half-life of the protein and significantly increases the release of HIV-1 particles from HeLa cells. However, the S61 determinant of regulated Vpu turnover is highly conserved within HIV-1 isolates. Altogether, our results highlight a mechanism where differential phosphorylation of Vpu determines its fate as an adaptor or as a substrate of distinct ubiquitin ligases. Conservation of the Vpu degradation determinant, despite its negative effect on virion release, argues for a role in overall HIV-1 fitness.  相似文献   

11.
TASK channels, an acid-sensitive subgroup of two pore domain K+ (K2P) channels family, were widely expressed in a variety of neural tissues, and exhibited potent functions such as the regulation of membrane potential. The steroid hormone estrogen was able to interact with K+ channels, including voltage-gated K+ (Kv) and large conductance Ca2+-activated (BK) K+ channels, in different types of cells like cardiac myocytes and neurons. However, it is unclear about the effects of estrogen on TASK channels. In the present study, the expressions of two members of acid-sensitive TASK channels, TASK-1 and TASK-2, were detected in mouse neuroblastoma N2A cells by RT-PCR. Extracellular acidification (pH 6.4) weakly but statistically significantly inhibited the outward background current by 22.9 % at a holding potential of 0 mV, which inactive voltage-gated K+ currents, suggesting that there existed the functional TASK channels in the membrane of N2A cells. Although these currents were not altered by the acute application of 100 nM 17β-estradiol, incubation with 10 nM 17β-estradiol for 48 h reduced the mRNA level of TASK-1 channels by 40.4 % without any effect on TASK-2 channels. The proliferation rates of N2A cells were also increased by treatment with 10 nM 17β-estradiol for 48 h. These data implied that N2A cells expressed functional TASK channels and chronic exposure to 17β-estradiol downregulated the expression of TASK-1 channels and improved cell proliferation. The effect of 17β-estradiol on TASK-1 channels might be an alternative mechanism for the neuroprotective action of 17β-estradiol.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1)-specific Vpu is an 81-amino-acid amphipathic integral membrane protein with at least two different biological functions: (i) enhancement of virus particle release from the plasma membrane of HIV-1-infected cells and (ii) degradation of the virus receptor CD4 in the endoplasmic reticulum (ER). We have previously found that Vpu is phosphorylated in infected cells at two seryl residues in positions 52 and 56 by the ubiquitous casein kinase 2. To study the role of Vpu phosphorylation on its biological activity, a mutant of the vpu gene lacking both phosphoacceptor sites was introduced into the infectious molecular clone of HIV-1, pNL4-3, as well as subgenomic Vpu expression vectors. This mutation did not affect the expression level or the stability of Vpu but had a significant effect on its biological activity in infected T cells as well as transfected HeLa cells. Despite the presence of comparable amounts of wild-type and nonphosphorylated Vpu, decay of CD4 was observed only in the presence of phosphorylated wild-type Vpu. Nonphosphorylated Vpu was unable to induce degradation of CD4 even if the proteins were artificially retained in the ER. In contrast, Vpu-mediated enhancement of virus secretion was only partially dependent on Vpu phosphorylation. Enhancement of particle release by wild-type Vpu was efficiently blocked when Vpu was artificially retained in the ER, suggesting that the two biological functions of Vpu are independent, occur at different sites within a cell, and exhibit different sensitivity to phosphorylation.  相似文献   

13.
Vpu is a 16-kDa membrane-associated phosphoprotein that is expressed from the same, singly spliced message as the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein precursor, gp160. Previous studies suggest that Vpu functions in the late stages of viral replication, possibly in virus egression from the cell. Recently, it has been demonstrated that Vpu functions to allow gp160 to be more efficiently processed by disrupting CD4-gp160 complexes generated by transfection of HeLa cells. We show here that the lack of expression of intact Vpu results in a 90% reduction in infectious virus produced over a single round of replication from HeLa cells in the absence of CD4 expression. This reduction persists when HIV-1 particles are pseudotyped with the HIV-2 or amphotropic murine leukemia virus envelope glycoprotein. Pulse-chase analysis of HIV-1 capsid protein (p24) in the absence of CD4 and envelope glycoprotein demonstrates that the rate of virus release is reduced when Vpu is not expressed. Our findings indicate that Vpu has a function involving particle release not dependent on CD4 or envelope glycoprotein expression.  相似文献   

14.
Viral protein U (Vpu) is a protein encoded by human immunodeficiency virus type 1 (HIV-1) that promotes the degradation of the virus receptor, CD4, and enhances the release of virus particles from cells. We isolated a cDNA that encodes a novel cellular protein that interacts with Vpu in vitro, in vivo, and in yeast cells. This Vpu-binding protein (UBP) has a molecular mass of 41 kDa and is expressed ubiquitously in human tissues at the RNA level. UBP is a novel member of the tetratricopeptide repeat (TPR) protein family containing four copies of the 34-amino-acid TPR motif. Other proteins that contain TPR motifs include members of the immunophilin superfamily, organelle-targeting proteins, and a protein phosphatase. UBP also interacts directly with HIV-1 Gag protein, the principal structural component of the viral capsid. However, when Vpu and Gag are coexpressed, stable interaction between UBP and Gag is diminished. Furthermore, overexpression of UBP in virus-producing cells resulted in a significant reduction in HIV-1 virion release. Taken together, these data indicate that UBP plays a role in Vpu-mediated enhancement of particle release.  相似文献   

15.
Strebel K 《Molecular cell》2004,14(2):150-152
Vpu is an HIV-encoded protein that enhances virus release. Previously, this activity was correlated with an intrinsic ion channel activity of Vpu. In this issue of Molecular Cell, Hsu at all. propose an alternative mechanism: they suggest that Vpu functions by inhibiting another ion channel, TASK-1.  相似文献   

16.
In the absence of antiretroviral therapy, infection with human immunodeficiency virus type 1 (HIV-1) can typically not be controlled by the infected host and results in the development of acquired immunodeficiency. In rare cases, however, patients spontaneously control HIV-1 replication. Mechanisms by which such elite controllers (ECs) achieve control of HIV-1 replication include particularly efficient immune responses as well as reduced fitness of the specific virus strains. To address whether polymorphisms in the accessory HIV-1 protein Vpu are associated with EC status we functionally analyzed a panel of plasma-derived vpu alleles from 15 EC and 16 chronic progressor (CP) patients. Antagonism of the HIV particle release restriction by the intrinsic immunity factor CD317/tetherin was well conserved among EC and CP Vpu alleles, underscoring the selective advantage of this Vpu function in HIV-1 infected individuals. In contrast, interference with CD317/tetherin induced NF-κB activation was little conserved in both groups. EC Vpus more frequently displayed reduced ability to downregulate cell surface levels of CD4 and MHC class I (MHC-I) molecules as well as of the NK cell ligand NTB-A. Polymorphisms potentially associated with high affinity interactions of the inhibitory killer immunoglobulin-like receptor (KIR) KIR2DL2 were significantly enriched among EC Vpus but did not account for these functional differences. Together these results suggest that in a subgroup of EC patients, some Vpu functions are modestly reduced, possibly as a result of host selection.  相似文献   

17.
The recently identified restriction factor tetherin/BST-2/CD317 is an interferon-inducible trans-membrane protein that restricts HIV-1 particle release in the absence of the HIV-1 countermeasure viral protein U (Vpu). It is known that Tantalus monkey CV1 cells can be rendered non-permissive to HIV-1 release upon stimulation with type 1 interferon, despite the presence of Vpu, suggesting species-specific sensitivity of tetherin proteins to viral countermeasures such as Vpu. Here we demonstrate that Tantalus monkey tetherin restricts HIV-1 by nearly two orders of magnitude, but in contrast to human tetherin the Tantalus protein is insensitive to HIV-1 Vpu. We have investigated tetherin''s sensitivity to Vpu using positive selection analyses, seeking evidence for evolutionary conflict between tetherin and viral countermeasures. We provide evidence that tetherin has undergone positive selection during primate evolution. Mutation of a single amino acid (showing evidence of positive selection) in the trans-membrane cap of human tetherin to that in Tantalus monkey (T45I) substantially impacts on sensitivity to HIV-1 Vpu, but not on antiviral activity. Finally, we provide evidence that cellular steady state levels of tetherin are substantially reduced by Vpu, and that the T45I mutation abrogates this effect. This study provides evidence that tetherin is important in protecting mammals against viral infection, and that the HIV-1 Vpu–mediated countermeasure is specifically adapted to act against human tetherin. It also emphasizes the power of selection analyses to illuminate the molecular details of host–virus interactions. This work suggests that tetherin binding agents might protect it from viral encoded countermeasures and thus make powerful antivirals.  相似文献   

18.
The HIV-1 Vpu protein is required for efficient viral release from human cells. For HIV-2, the envelope (Env) protein replaces the role of Vpu. Both Vpu and HIV-2 Env enhance virus release by counteracting an innate host-cell block within human cells that is absent in African green monkey (AGM) cells. Here we identify calcium-modulating cyclophilin ligand (CAML) as a Vpu-interacting host factor that restricts HIV-1 release. Expression of human CAML (encoded by CAMLG) in AGM cells conferred a strong restriction of virus release that was reversed by Vpu and HIV-2 Env, suggesting that CAML is the mechanistic link between these two viral regulators. Depletion of CAML in human cells eliminated the need for Vpu in enhancing HIV-1 and murine leukemia virus release. These results point to CAML as a Vpu-sensitive host restriction factor that inhibits HIV release from human cells. The ability of CAML to inhibit virus release should illuminate new therapeutic strategies against HIV.  相似文献   

19.
Dutta S  Tan YJ 《Biochemistry》2008,47(38):10123-10131
The small glutamine-rich tetratricopeptide repeat protein (SGT) belongs to a family of cochaperones that interacts with both Hsp70 and Hsp90 via the so-called TPR domain. Here, we present the crystal structure of the TPR domain of human SGT (SGT-TPR), which shows that it contains typical features found in the structures of other TPR domains. Previous studies show that full-length SGT can bind to both Vpu and Gag of human immunodeficiency virus type 1 (HIV-1) and the overexpression of SGT in cells reduces the efficiency of HIV-1 particle release. We show that SGT-TPR can bind Vpu and reduce the amount of HIV-1 p24, which is the viral capsid, secreted from cells transfected with the HIV-1 proviral construct, albeit at a lower efficiency than full-length SGT. This indicates that the TPR domain of SGT is sufficient for the inhibition of HIV-1 particle release but the N- and/or C-terminus also have some contributions. The SGT binding site in Vpu was also identified by using peptide array and confirmed by GST pull-down assay.  相似文献   

20.
Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2-81). Vpu(2-37) encompasses the N-terminal transmembrane alpha-helix; Vpu(2-51) spans the N-terminal transmembrane helix and the first cytoplasmic alpha-helix; Vpu(28-81) includes the entire cytoplasmic domain containing the two C-terminal amphipathic alpha-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane alpha-helix. The C-terminal alpha-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号