首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《The Journal of cell biology》1987,105(6):2631-2639
The mitochondrial matrix enzyme ornithine transcarbamylase (OTC) is synthesized on cytoplasmic polyribosomes as a precursor (pOTC) with an NH2-terminal extension of 32 amino acids. We report here that rat pOTC synthesized in vitro is internalized and cleaved by isolated rat liver mitochondria in two, temporally separate steps. In the first step, which is dependent upon an intact mitochondrial membrane potential, pOTC is translocated into mitochondria and cleaved by a matrix protease to a product designated iOTC, intermediate in size between pOTC and mature OTC. This product is in a trypsin-protected mitochondrial location. The same intermediate-sized OTC is produced in vivo in frog oocytes injected with in vitro-synthesized pOTC. The proteolytic processing of pOTC to iOTC involves the removal of 24 amino acids from the NH2 terminus of the precursor and utilizes a cleavage site two residues away from a critical arginine residue at position 23. In a second cleavage step, also catalyzed by a matrix protease, iOTC is converted to mature OTC by removal of the remaining eight residues of leader sequence. To define the critical regions in the OTC leader peptide required for these events, we have synthesized OTC precursors with alterations in the leader. Substitution of either an acidic (aspartate) or a "helix-breaking" (glycine) amino acid residue for arginine 23 of the leader inhibits formation of both iOTC and OTC, without affecting translocation. These mutant precursors are cleaved at an otherwise cryptic cleavage site between residues 16 and 17 of the leader. Interestingly, this cleavage occurs at a site two residues away from an arginine at position 15. The data indicate that conversion of pOTC to mature OTC proceeds via the formation of a third discrete species: an intermediate-sized OTC. The data suggest further that, in the rat pOTC leader, the essential elements required for translocation differ from those necessary for correct cleavage to either iOTC or mature OTC.  相似文献   

2.
Escherichia coli expression, processing, and secretion of human interleukin-1 beta (IL-1 beta) fused to the signal peptide of E. coli OmpA or PhoA protein were studied. With fusion to either signal sequence, high-level expression was observed and the products accumulated to about 20% of total cell protein. In the fusion to OmpA leader sequence, more than 50% of the product has the OmpA signal peptide removed precisely. The majority of the processed material is not released by osmotic shock. On the other hand, very little of the material from the fusion to PhoA has the PhoA signal peptide removed. Use of the host with a mutation in prlA or prlF, variation of temperature for cell growth, and alteration of the amino acid residues around the cleavage site do not facilitate processing of the PhoA signal peptide. These results suggest that some component in the PhoA signal peptide, interacting with the Il-1 beta sequence, is interfering with the processing of the signal peptide.  相似文献   

3.
Comparative analyses of a number of secretory proteins processed by eukaryotic and prokaryotic signal peptidases have identified a strongly conserved feature regarding the residues positioned -3 and -1 relative to the cleavage site. These 2 residues of the signal peptide are thought to constitute a recognition site for the processing enzyme and are usually amino acids with small, neutral side chains. It was shown previously that the substitution of aspartic acid for alanine at -3 of the Escherichia coli maltose-binding protein (MBP) signal peptide blocked maturation by signal peptidase I but had no noticeable effect or MBP translocation across the cytoplasmic membrane of its biological activity. This identified an excellent system in which to undertake a detailed investigation of the structural requirements and limitations for the cleavage site. In vitro mutagenesis was used to generate 14 different amino acid substitutions at -3 and 13 different amino acid substitutions at -1 of the MBP signal peptide. The maturation of the mutant precursor species expressed in vivo was examined. Overall, the results obtained agreed fairly well with statistically derived models of signal peptidase I specificity, except that cysteine was found to permit efficient processing when present at either -3 and -1, and threonine at -1 resulted in inefficient processing. Interestingly, it was found that substitutions at -1 which blocked processing at the normal cleavage site redirected processing, with varying efficiencies, to an alternate site in the signal peptide represented by the Ala-X-Ala sequence at positions -5 to -3. The substitution of aspartic acid for alanine at -5 blocked processing at this alternate site but not the normal site. The amino acids occupying the -5 and -3 positions in many other prokaryotic signal peptides also have the potential for constituting alternate processing sites. This appears to represent another example of redundant information contained within the signal peptide.  相似文献   

4.
A systematic study of the signal peptidase cleavage site of the main cell-wall-repressible Saccharomyces cerevisiae acid phosphatase encoded by the PHO5 gene is presented. The last amino acid of the signal sequence, the chromosomally encoded alanine of the wild-type gene, was changed by any of 19 other amino acids in the chromosomal DNA by using in vitro mutagenesis in Escherichia coli and the technique of gene replacement. Processing and secretion are normal when the amino acid at this position is a small neutral amino acid, i.e. alanine, glycine, cysteine, serine or threonine. Processing glycosylation, and secretion of regulated acid phosphatase are distinctly affected with other amino acid substitutions and core-glycosylated protein accumulates in the cell. Surprisingly, PHO5 protein is still secreted to the cell wall and into the growth medium but at a lower rate and without cleavage of the signal sequence. The same features are exhibited by a mutated acid phosphatase with a deletion of four amino acids at the end of the signal peptide (-7 to -4 relative to the processing site) thus preserving the important -3 to -1 region.  相似文献   

5.
Rubella virus cDNA. Sequence and expression of E1 envelope protein   总被引:6,自引:0,他引:6  
A cDNA clone encoding the entire E1 envelope protein (410 amino acid residues) and a portion of the C-terminal end of the E2 envelope protein of the rubella virus has been isolated and characterized. DNA sequence analysis has revealed a region 20 nucleotides in length at the 3' end of the cloned cDNA which may be a replicase recognition site or a recognition site for encapsidation. The proteolytic cleavage site between the E1 and E2 proteins was localized based on the known amino-terminal sequence of the isolated E1 protein (Kalkkinen, N., Oker-Blom, C., and Pettersson, R. F. (1984) J. Gen. Virol. 65, 1549-1557) and the deduced amino acid sequence. The mature E1 protein is preceded by a set of 20 highly hydrophobic amino acid residues possessing characteristics of a signal peptide. This "signal peptide" is flanked on both sides by typical protease cleavage sites for trypsin-like enzyme and signal peptidase. The presence of a leader sequence in the E1 protein precursor may facilitate its translocation through the host cell membrane. The E1 protein of rubella virus shows no significant homology with alphavirus E1 envelope proteins. However, a stretch of 39 amino acids in the E1 protein of rubella virus (residues 262-300) was found to share a significant homology with the first 39 residues of bovine sperm histone. The position of 4 half-cystines and 8 arginines overlaps. The E1 protein of rubella virus has been successfully expressed in COS cells after transfecting them with rubella virus cDNA in simian virus 40-derived expression vector. This protein is antigenically similar to the one expressed by cells infected with rubella virus.  相似文献   

6.
7.
The leucine-specific binding protein, encoded by the livK gene, is located in the periplasm of E. coli. The present study is an attempt to identify intragenic regions that determine the efficiency of its secretion into the periplasm. C-terminal deletions or fusions of the livK gene to trpA (encoding the alpha subunit of tryptophan synthetase) were secreted with little loss of efficiency [1]. A series of deletions was constructed at the unique Sphl site within livK, near the 5' end of the region coding for the mature protein. Between 16 and 113 amino acids were deleted in the amino-terminal one-third of the protein. A few of these deletions were located within a few amino acids of the signal sequence processing site. Deletions extending within thirteen residues of the processing site were processed and secreted more slowly than normal. Secondary structure predictions suggested that the alpha-helical core region of the signal sequence extends into the mature protein in the case of the slow processing mutants, perhaps interfering with the recognition site for leader peptidase or other secretory components. These results suggest that the conformation around the signal processing site may be a critical factor in determining the efficiency of secretion. During the course of this study, it was found that the difference in molecular weight between precursor and mature forms of some binding protein mutants, as judged by SDS-PAGE, was much greater than could be accounted for by processing of the signal sequence. This anomalous mobility on gels, however, could be eliminated by performing SDS-PAGE in the presence of 6 M urea.  相似文献   

8.
A total of 37 separate mutants containing single and multiple amino acid substitutions in the leader and amino-terminal conserved region of the Type IV pilin from Pseudomonas aeruginosa were generated by oligonucleotide-directed mutagenesis. The effect of these substitutions on the secretion, processing, and assembly of the pilin monomers into mature pili was examined. The majority of substitutions in the highly conserved amino-terminal region of the pilin monomer had no effect on piliation. Likewise, substitution of several of the residues within the six amino acid leader sequence did not affect secretion and leader cleavage (processing), including replacement of one or both of the positively charged lysine residues with uncharged or negatively charged amino acids. One characteristic of the Type IV pili is the presence of an amino-terminal phenylalanine after leader peptide cleavage which is N-methylated prior to assembly of pilin monomers into pili. Substitution of the amino-terminal phenylalanine with a number of other amino acids, including polar, hydrophobic, and charged residues, did not affect proper leader cleavage and subsequent assembly into pili. Amino-terminal sequencing showed that the majority of substitute residues were also methylated. Substitution of the glycine residue at the -1 position to the cleavage site resulted in the inability to cleave the prepilin monomers and blocked the subsequent assembly of monomers into pili. These results indicate that despite the high degree of conservation in the amino-terminal sequences of the Type IV pili, N-methylphenylalanine at the +1 position relative to the leader peptide cleavage site is not strictly required for pilin assembly. N-Methylation of the amino acids substituted for phenylalanine was shown to have taken place in four of the five mutants tested, but it remains unclear as to whether pilin assembly is dependent on this modification. Recognition and proper cleavage of the prepilin by the leader peptidase appears to be dependent only on the glycine residue at the -1 position. Cell fractionation experiments demonstrated that pilin isolated from mutants deficient in prepilin processing and/or assembly was found in both inner and outer membrane fractions, indistinguishable from the results seen with the wild type.  相似文献   

9.
Defective Escherichia coli signal peptides function in yeast   总被引:3,自引:2,他引:1  
To investigate structural characteristics important for eukaryotic signal peptide function in vivo, a hybrid gene with interchangeable signal peptides was cloned into yeast. The hybrid gene encoded nine residues from the amino terminus of the major Escherichia coli lipoprotein, attached to the amino terminus of the entire mature E. coli beta-lactamase sequence. To this sequence were attached sequences encoding the nonmutant E. coli lipoprotein signal peptide, or lipoprotein signal peptide mutants lacking an amino-terminal cationic charge, with shortened hydrophobic core, with altered potential helicity, or with an altered signal-peptide cleavage site. These signal-peptide mutants exhibited altered processing and secretion in E. coli. Using the GAL10 promoter, production of all hybrid proteins was induced to constitute 4-5% of the total yeast protein. Hybrid proteins with mutant signal peptides that show altered processing and secretion in E. coli, were processed and translocated to a similar degree as the non-mutant hybrid protein in yeast (approximately 36% of the total hybrid protein). Both non-mutant and mutant signal peptides appeared to be removed at the same unique site between cysteine 21 and serine 22, one residue from the E. coli signal peptidase II processing site. The mature lipo-beta-lactamase was translocated across the cytoplasmic membrane into the yeast periplasm. Thus the protein secretion apparatus in yeast recognizes the lipoprotein signal sequence in vivo but displays a specificity towards altered signal sequences which differs from that of E. coli.  相似文献   

10.
Signal peptide of Bacillus subtilis alpha-amylase   总被引:4,自引:0,他引:4  
Mature alpha-amylase of Bacillus subtilis is known to be formed from its precursor by the removal of the NH2-terminal 41 amino acid sequence (41 amino acid leader sequence). DNA fragments coding for short sequences consisting of 28 (Pro as the COOH terminus) 29 (Ala), 31 (Ala), and 33 (Ala) amino acids from the translation initiator, Met, in the leader sequence were prepared and fused in frame to the DNA encoding the mature alpha-amylase. The secretion activity of the 33 amino acid sequence was nearly twice as high as that of the parental 41 amino acid sequence, whereas the activity of the 31 amino acid sequence was 75% of that of the parent. In contrast, almost no secretion activity was observed with the 28 and 29 amino acid sequences. The signal peptide cleavage site of the precursor expressed from the plasmid encoding the 33 amino acid sequence was located between Ala and Leu at positions 33 and 34 and that from the 31 amino acid sequence between Thr and Ala at positions 33 and 34. The NH2-terminal amino acid from the latter corresponded to the 3rd amino acid of the mature enzyme. These results indicated that the functional signal peptide of the B. subtilis beta-amylase consists of the first 33 amino acids from the initiator, Met.  相似文献   

11.
sigma E is a sporulation-specific sigma factor of Bacillus subtilis that is formed from an inactive precursor protein (pro-sigma E) by the removal of 27 to 29 amino acids from the pro-sigma E amino terminus. By using oligonucleotide-directed mutagenesis, sequential deletions were constructed in the precursor-specific region of sigE and analyzed for their effect on the gene product's activity, ability to accumulate, and susceptibility to conversion into mature sigma E. The results demonstrated that the first 17 residues of the pro sequence contribute to silencing the sigma-like activity of pro-sigma E and that the amino acids between positions 12 and 17 are also important for its conversion into sigma E. Deletions that remove 21 or more codons from sigE reduce sigma E activity in cells which carry it, presumably by affecting pro-sigma E stability. A 26-codon deletion results in a gene whose product is not detectable in B. subtilis by either reporter gene activity or Western blot (immunoblot) assay. The primary structure as well as the size of the pro region of sigma E contributes to the protein's stability. The placement of additional amino acids into the pro region reduces the cell's ability to accumulate pro-sigma E. Additional sigE mutations revealed that the amino acids normally found at the putative processing site(s) of pro-sigma E are not essential to the processing reaction; however, a Glu residue upstream of these sites (position 25) was found to be important for processing. These last results suggest that the pro-sigma E processing apparatus does not recognize the actual site within pro-sigma E at which cleavage occurs but rater sequence elements that are upstream of this site.  相似文献   

12.
Sequences beyond the cleavage site influence signal peptide function   总被引:8,自引:0,他引:8  
The earliest events in protein secretion include targeting to and translocation across the endoplasmic reticulum membrane. To dissect the mechanism by which signal sequences mediate translocation in eukaryotes, we are examining the behavior of fusion proteins and deletion mutants in cell-free systems. We demonstrate that the protein domain being translocated can have profound impact on the efficiency of the translocation process. Specifically, deletions in the mature prolactin "passenger" domain, beyond the signal cleavage site, reduce the efficiency of signal function. The effect of these deletions on signal function is observed when this signal sequence is in its normal position, at the amino terminus, and when internalized by the addition of 117 amino acids of chimpanzee alpha-globin. Alterations in the interaction of the deletion mutants with the signal recognition particle and with another component of the translocation system, signal peptidase, were observed. Our results suggest that subtle changes in sequences beyond the signal cleavage site can alter the efficiency of co-translational translocation by affecting various signal-receptor interactions.  相似文献   

13.
The export of proteins to the periplasmic compartment of bacterial cells is mediated by an amino-terminal signal peptide. After transport, the signal peptide is cleaved by a processing enzyme, signal peptidase I. A comparison of the cleavage sites of many exported proteins has identified a conserved feature of small, uncharged amino acids at positions -1 and -3 relative to the cleavage site. To determine experimentally the sequences required for efficient signal peptide cleavage, we simultaneously randomized the amino acid residues from positions -4 to +2 of the TEM-1 beta-lactamase enzyme to form a library of random sequences. Mutants that provide wild-type levels of ampicillin resistance were then selected from the random-sequence library. The sequences of 15 mutants indicated a bias towards small amino acids. The N-terminal amino acid sequence of the mature enzyme was determined for nine of the mutants to assign the new -1 and -3 residues. Alanine was present in the -1 position for all nine of these mutants, strongly supporting the importance of alanine at the -1 position. The amino acids at the -3 position were much less conserved but were consistent with the -3 rules derived from sequence comparisons. Compared with the wild type, two of the nine mutants have an altered cleavage position, suggesting that sequence is more important than position for processing of the signal peptide.  相似文献   

14.
15.
P Novak  I K Dev 《Journal of bacteriology》1988,170(11):5067-5075
The degradation of the prolipoprotein signal peptide in vitro by membranes, cytoplasmic fraction, and two purified major signal peptide peptidases from Escherichia coli was followed by reverse-phase liquid chromatography (RPLC). The cytoplasmic fraction hydrolyzed the signal peptide completely into amino acids. In contrast, many peptide fragments accumulated as final products during the cleavage by a membrane fraction. Most of the peptides were similar to the peptides formed during the cleavage of the signal peptide by the purified membrane-bound signal peptide peptidase, protease IV. Peptide fragments generated during the cleavage of the signal peptide by protease IV and a cytoplasmic enzyme, oligopeptidase A, were identified from their amino acid compositions, their retention times during RPLC, and knowledge of the amino acid sequence of the signal peptide. Both enzymes were endopeptidases, as neither dipeptides nor free amino acids were formed during the cleavage reactions. Protease IV cleaved the signal peptide predominantly in the hydrophobic segment (residues 7 to 14). Protease IV required substrates with hydrophobic amino acids at the primary and the adjacent substrate-binding sites, with a minimum of three amino acids on either side of the scissile bond. Oligopeptidase A cleaved peptides (minimally five residues) that had either alanine or glycine at the P'1 (primary binding site) or at the P1 (preceding P'1) site of the substrate. These results support the hypothesis that protease IV is the major signal peptide peptidase in membranes that initiates the degradation of the signal peptide by making endoproteolytic cuts; oligopeptidase A and other cytoplasmic enzymes further degrade the partially degraded portions of the signal peptide that may be diffused or transported back into the cytoplasm from the membranes.  相似文献   

16.
Non-typable Haemophilus influenzae is a common cause of human disease and initiates infection by colonizing the upper respiratory tract. The non-typable H. influenzae HMW1 and HMW2 adhesins mediate attachment to human epithelial cells, an essential step in the process of colonization. HMW1 and HMW2 have an unusual N-terminus and undergo cleavage of a 441-amino-acid N-terminal fragment during the course of their maturation. Following translocation across the outer membrane, they remain loosely associated with the bacterial surface, except for a small amount that is released extracellularly. In the present study, we localized the signal sequence to the first 68 amino acids, which are characterized by a highly charged region from amino acids 1-48, followed by a more typical signal peptide with a predicted leader peptidase cleavage site after the amino acid at position 68. Additional experiments established that the SecA ATPase and the SecE translocase are essential for normal export and demonstrated that maturation involves cleavage first between residues 68 and 69, via leader peptidase, and next between residues 441 and 442. Site-directed mutagenesis revealed that HMW1 processing, secretion and extracellular release are dependent on amino acids in the region between residues 150 and 166 and suggested that this region interacts with the HMW1B outer membrane translocator. Deletion of the C-terminal end of HMW1 resulted in augmented extracellular release and elimination of HMW1-mediated adherence, arguing that the C-terminus may serve to tether the adhesin to the bacterial surface. These observations suggest that the HMW proteins are secreted by a variant form of the general secretory pathway and provide insight into the mechanisms of secretion of a growing family of Gram-negative bacterial exoproteins.  相似文献   

17.
Extracellular Phr pentapeptides produced by gram-positive, spore-forming bacteria regulate processes during the transition from exponential- to stationary-phase growth. Phr pentapeptides are produced by cleavage of their precursor proteins. We determined the residues that direct this cleavage for the Bacillus subtilis Phr peptide, CSF, which is derived from the C terminus of PhrC. Strains expressing PhrC with substitutions in residues -1 to -5 relative to the cleavage site had a defect in CSF production. The mutant PhrC proteins retained a functional signal sequence for secretion, as assessed by secretion of PhrC-PhoA fusions. To determine whether the substitutions directly affected cleavage of PhrC to CSF, we tested cleavage of synthetic pro-CSF peptides that corresponded to the C terminus of PhrC and had an amino acid substitution at the -2, -3, or -4 position. The mutant pro-CSF peptides were cleaved less efficiently to CSF than the wild-type pro-CSF peptide whether they were incubated with whole cells, cell wall material, or the processing protease subtilisin or Vpr. To further define the range of amino acids that support CSF production, the amino acid at the -4 position of PhrC was replaced by the 19 canonical amino acids. Only four substitutions resulted in a >2-fold defect in CSF production, indicating that this position is relatively immune to mutational perturbations. These data revealed residues that direct cleavage of CSF and laid the groundwork for testing whether other Phr peptides are processed in a similar manner.  相似文献   

18.
Using deletion mutants, It is shown that part of the prosequence, the Ω-peptide (-4, -24), of the thermolysin-like neutral protease (TNP) from Bacillus cereus, Cnp, is not required for efficient processing and secretion of fully functional mature protease. It is demonstrated that the rate and selectivity of pro-protein processing is dependent on both the flexibility and primary sequence of the processing site. Processing is found to be particularly sensitive to the nature of the amino acid three residues upstream from the site of cleavage. A consensus sequence for TNP pro-protein processing has been identified, which provides further Insights. Finally, a larger deletion of a portion of the Cnp prosequence upstream from the Ω-peptide that includes amino acids conserved among TNPs reduces the rate of processing and secretion of Cnp and results in the accumulation of export-incompetent pre-proprotein in the cell fraction.  相似文献   

19.
Streptokinase (SK), an extracellular protein from Streptococcus equisimilis, is secreted post-translationally by Escherichia coli using both its native and E. coli-derived transport signals. In this communication we report that cleavage specificity of signal peptidase I, and thus efficiency of secretion, varies in E. coli when SK export is directed by different transport signals. The native (+1) N-terminus of mature SK was retained when it was transported under the control of its own, PelB or LamB signal peptide. However, when translocation of SK was controlled by the OmpA or MalE signal peptide, Ala2 of mature SK was preferred as a cleavage site for the pre-SK processing. Our results indicate that compatibility of the leader peptide with the mature sequences of SK, which fulfils the requirement for a given secondary structure within the cleavage region, is essential for maintaining the correct processing of pre-SK. An OmpA-SK fusion, which results in the deletion of two N-terminal amino acid residues of mature SK, was further studied with respect to the recognition of alternative cleavage site in E. coli. The alanine at +2 in mature SK was changed to glycine or its relative position was changed to +3 by introducing a methionine residue at the +1 position. Both alterations resulted in the correct cleavage of pre-SK at the original OmpA fusion site. In contrast, introduction of an additional alanine at +4, creating three probable cleavage sites (Ala-x-Ala-x-Ala-x-Ala), resulted in the recognition of all three target sites for cleavage, with varying efficiency. The results indicate that the nature of the secondary structure generated at the cleavage junction of pre-SK, resulting from the fusion of different signal peptides, modulates the cleavage specificity of signal peptidase I during extracellular processing of SK. Based on these findings it is proposed that flexibility in the interaction of the active site of signal peptidase I with the cleavage sites of signal peptides may occur when it encounters two or more juxtaposed cleavage sites. Preference for one cleavage site over another, then, may depend on fulfillment of secondary structure requirements in the vicinity of the pre-protein cleavage junction.  相似文献   

20.
Streptokinase (SK), an extracellular protein from Streptococcus equisimilis, is secreted post-translationally by Escherichia coli using both its native and E. coli-derived transport signals. In this communication we report that cleavage specificity of signal peptidase I, and thus efficiency of secretion, varies in E. coli when SK export is directed by different transport signals. The native (+1) N-terminus of mature SK was retained when it was transported under the control of its own, PelB or LamB signal peptide. However, when translocation of SK was controlled by the OmpA or MalE signal peptide, Ala2 of mature SK was preferred as a cleavage site for the pre-SK processing. Our results indicate that compatibility of the leader peptide with the mature sequences of SK, which fulfils the requirement for a given secondary structure within the cleavage region, is essential for maintaining the correct processing of pre-SK. An OmpA-SK fusion, which results in the deletion of two N-terminal amino acid residues of mature SK, was further studied with respect to the recognition of alternative cleavage site in E. coli. The alanine at +2 in mature SK was changed to glycine or its relative position was changed to +3 by introducing a methionine residue at the +1 position. Both alterations resulted in the correct cleavage of pre-SK at the original OmpA fusion site. In contrast, introduction of an additional alanine at +4, creating three probable cleavage sites (Ala-x-Ala-x-Ala-x-Ala), resulted in the recognition of all three target sites for cleavage, with varying efficiency. The results indicate that the nature of the secondary structure generated at the cleavage junction of pre-SK, resulting from the fusion of different signal peptides, modulates the cleavage specificity of signal peptidase I during extracellular processing of SK. Based on these findings it is proposed that flexibility in the interaction of the active site of signal peptidase I with the cleavage sites of signal peptides may occur when it encounters two or more juxtaposed cleavage sites. Preference for one cleavage site over another, then, may depend on fulfillment of secondary structure requirements in the vicinity of the pre-protein cleavage junction. Received: 22 September 1997 / Accepted: 17 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号