首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate.  相似文献   

2.
Most bilaterians specify primordial germ cells (PGCs) during early embryogenesis using either inherited cytoplasmic germ line determinants (preformation) or induction of germ cell fate through signaling pathways (epigenesis). However, data from nonbilaterian animals suggest that ancestral metazoans may have specified germ cells very differently from most extant bilaterians. Cnidarians and sponges have been reported to generate germ cells continuously throughout reproductive life, but previous studies on members of these basal phyla have not examined embryonic germ cell origin. To try to define the embryonic origin of PGCs in the sea anemone Nematostella vectensis, we examined the expression of members of the vasa and nanos gene families, which are critical genes in bilaterian germ cell specification and development. We found that vasa and nanos family genes are expressed not only in presumptive PGCs late in embryonic development, but also in multiple somatic cell types during early embryogenesis. These results suggest one way in which preformation in germ cell development might have evolved from the ancestral epigenetic mechanism that was probably used by a metazoan ancestor.  相似文献   

3.
In mouse embryos, the expression of Blimp1 has recently revealed a population of allocated primordial germ cell precursors 24 hours earlier than previously thought. Those 'blimped' precursors have been shown to give rise, by mitotic division, to germ cells only and no other cell lineages. Here, we try to understand the events that lead to Blimp1 expression in the primordial germ cell precursors and speculate on what can be the role of Blimp1 during primordial germ cell specification and gastrulation in the mouse. Finally, we discuss the possible involvement of Blimp1 in the two know modes of germ line segregation (epigenesis and preformation).  相似文献   

4.
5.
Inheritance (sequestration of a localized determinant: germplasm) and zygotic induction are two modes of metazoan primordial germ cell (PGC) specification. vasa and nanos homologs are evolutionarily conserved germline marker genes that have been used to examine the ontogeny of germ cells in various animals. In the lepidopteran insect Bombyx mori, although the lack of vasa homolog (BmVLG) protein localization as well as microscopic observation suggested the lack of germplasm, classical embryo manipulation studies and the localization pattern of Bm-nosO (one of the four nanos genes in Bombyx) maternal mRNA in the egg raised the possibility that an inheritance mode is operating in Bombyx. Here, we generated Bm-nosO knockouts to examine whether the localized mRNA acts as a localized germ cell determinant. Contrary to our expectations, Bm-nosO knockout lines could be established. However, these lines frequently produced abnormal eggs, which failed to hatch, to various extent depending on the individuals. We also found that Bm-nosO positively regulated BmVLG expression at least during embryonic stage, directly or indirectly, indicating that these genes were on the same developmental pathway for germ cell formation in Bombyx. These results suggest that these conserved genes are concerned with stable germ cell production. On the other hand, from the aspect of BmVLG as a PGC marker, we showed that maternal Bm-nosO product(s) as well as early zygotic Bm-nosO activity were redundantly involved in PGC specification; elimination of both maternal and zygotic gene activities (as in knockout lines) resulted in the apparent lack of PGCs, indicating that an inheritance mechanism indeed operates in Bombyx. This, however, together with the fact that germ cells are produced at all in Bm-nosO knockout lines, also suggests the possibility that, in Bombyx, not only this inheritance mechanism but also an inductive mechanism acts in concert to form germ cells or that loss of early PGCs are compensated for by germline regeneration: mechanisms that could enable the evolution of preformation. Thus, Bombyx could serve as an important organism in understanding the evolution of germ cell formation mechanisms; transition between preformation and inductive modes.  相似文献   

6.
In recent years, a large amount of data on gene expression at different stages of primordial germ cell (PGC) development has been acquired. The process of germ line segregation in various species is realized differently, i.e., as preformation or epigenesis. The review surveys the mechanisms of the initial lineage specification of mammalian and human germ cells. The data on PGC identification from their initial detection in the epiblast to gonadal anlagen where they migrate has been analyzed. Information on the PGC markers of the different development, the mechanisms of PGC migration towards genital ridges and the chemokines that direct migration are discussed.  相似文献   

7.
8.
9.
Primordial germ cell development in zebrafish   总被引:2,自引:0,他引:2  
In sexually reproducing organisms, primordial germ cells (PGCs) give rise to gametes that are responsible for the development of a new organism in the next generation. These cells follow a characteristic developmental path that is manifested in specialized regulation of basic cell functions and behavior making them an attractive system for studying cell fate specification, differentiation and migration. This review summarizes studies aimed at understanding the development of this cell population in zebrafish and compares these results with those obtained in other model organisms.  相似文献   

10.
11.
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.  相似文献   

12.
We have isolated and identified the vasa homologue macvasa, expressed in testes, ovaries, eggs and somatic stem cells of the flatworm Macrostomum lignano. Molecular tools such as in situ hybridization and RNA interference were developed for M. lignano to study gene expression and function. Macvasa expression was followed during postembryonic development, regeneration and in starvation experiments. We were able to follow gonad formation in juveniles and the reformation of gonads from stem cells after amputation by in situ hybridization and a specific Macvasa antibody. Expression of macvasa in the germ cells was highly affected by feeding conditions and correlated with the decrease and regrowth of the gonads. RNA interference showed specific down-regulation of macvasa mRNA and protein. The absence of Macvasa did not influence gonad formation and stem cell proliferation. Our results corroborate the exclusive nature of the flatworm stem cell system but challenge the concept of a solely postembryonic specification of the germ line in Platyhelminthes. We address the transition of somatic stem cells to germ cells and speculate on Macrostomum as a system to unravel the mechanisms of preformation or epigenesis in the evolution of germ line specification from somatic stem cells.  相似文献   

13.
The separation of the germ line from the soma is a classic concept in animal biology, and depending on species is thought to involve fate determination either by maternally localized germ plasm ("preformation" or "maternal inheritance") or by inductive signaling (classically termed "epigenesis" or "zygotic induction"). The latter mechanism is generally considered to operate in non-bilaterian organisms such as cnidarians and sponges, in which germ cell fate is determined at adult stages from multipotent stem cells. We have found in the hydrozoan cnidarian Clytia hemisphaerica that the multipotent "interstitial" cells (i-cells) in larvae and adult medusae, from which germ cells derive, express a set of conserved germ cell markers: Vasa, Nanos1, Piwi and PL10. In situ hybridization analyses unexpectedly revealed maternal mRNAs for all these genes highly concentrated in a germ plasm-like region at the egg animal pole and inherited by the i-cell lineage, strongly suggesting i-cell fate determination by inheritance of animal-localized factors. On the other hand, experimental tests showed that i-cells can form by epigenetic mechanisms in Clytia, since larvae derived from both animal and vegetal blastomeres separated during cleavage stages developed equivalent i-cell populations. Thus Clytia embryos appear to have maternal germ plasm inherited by i-cells but also the potential to form these cells by zygotic induction. Reassessment of available data indicates that maternally localized germ plasm molecular components were plausibly present in the common cnidarian/bilaterian ancestor, but that their role may not have been strictly deterministic.  相似文献   

14.
How germ cell specification occurs remains a fundamental question in embryogenesis. The embryos of several model organisms contain germ cell determinants (germ plasm) that segregate to germ cell precursors. In other animals, including mice, germ cells form in response to regulative mechanisms during development. To investigate germ cell determination in urodeles, where germ plasm has never been conclusively identified, we cloned a DAZ-like sequence from axolotls, Axdazl. Axdazl is homologous to Xdazl, a component of Xenopus germ plasm found in the vegetal pole of oocytes and eggs. Axdazl RNA is not localized in axolotl oocytes, and, furthermore, these oocytes do not contain the mitochondrial cloud that localizes Xdazl and other germ plasm components in Xenopus. Maternal Axdazl RNA is inherited in the animal cap and equatorial region of early embryos. At gastrula, neurula, and tailbud stages, Axdazl RNA is widely distributed. Axdazl first shows cell-specific expression in primordial germ cells (PGCs) approaching the gonad at stage 40, when nuage (germ plasm) appears in PGCs. These results suggest that, in axolotls, germ plasm components are insufficient to specify germ cells.  相似文献   

15.
Mechanisms of germ-cell specification in mouse embryos   总被引:4,自引:0,他引:4  
The mode and timing of germ-cell specification has been studied in diverse organisms, however, the molecular mechanism regulating germ-cell-fate determination remains to be elucidated. In some model organisms, maternal germ-cell determinants play a key role. In mouse embryos, some germ-line-specific gene products exist as maternal molecules and play critical roles in a pluripotential cell population at preimplantation stages. From those cells, primordial germ cells (PGCs) are specified by extracellular signaling mediated by tissue, as well as cell-cell interaction during gastrulation. Thus, establishment of germ-cell lineage in mammalian embryos appears to be regulated by a multistep process, including formation and maintenance of a pluripotential cell population, as well as specification of PGCs. PGCs can be generated from pluripotential embryonic stem (ES) cells in a simple monolayer culture in which tissue interaction does not occur. This raises the possibility that ES cells, as well as, possibly, pluripotential cells in preimplantation embryos, are more closely related to the PGC precursors than pluripotential cells after implantation.  相似文献   

16.
Diversity of blastogenesis and embryogenesis in animals with different reproductive strategy and different variants of the specification of germ lineage cells, defined in the literature as preformation, epigenesis, and somatic embryogenesis, is discussed. In the course of somatic embryogenesis (or, more precisely, blastogenesis), the oozooid that has developed from the egg is naturally cloning and forms numerous genetically and morphologically identical clonal individuals or modular units of a colony. This cloning results in amplification of the parent genotype; the subsequent sexual reproduction provides for genetic recombination, and the emergence of a huge number of larvae with dispersal function provides for reproductive success. In invertebrates that reproduce asexually, no isolation of the germ cell lineage takes place; the population of stem cells capable of realizing the complete developmental program, which includes gametogenesis and blastogenesis, is represented by a diaspora of cells dispersed in the organism and possessing evolutionarily conservative features of morphofunctional organization typical to cells of the germ lineage. The plasticity of early animal embryogenesis is revealed in experiments with embryonic cells cultivated in vitro. Asexual reproduction emerged repeatedly in the course of metazoan evolution; blastogenesis in animals of different taxa is more variable and less conservative than embryogenesis, but the integration of blastogenesis into the process of early embryogenesis undermines the conservatism of embryonic development.  相似文献   

17.
Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.  相似文献   

18.
冷丽智  林戈  卢光琇 《生物磁学》2011,(18):3569-3572
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。  相似文献   

19.
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。  相似文献   

20.
Kozhukhar' VG 《Tsitologiia》2011,53(3):211-220
Last years' many new facts on gene expression at the different stages of PGC development were obtained. The process of germline segregation in different species realizes in different manner--as preformation or epigenesis. In the review the mechanisms of the mammalian and the human initial germ cell lineage specification are dicussed. Analysis of data on the identification of PGC from the moment of initial detection in epiblast up to completion of migration to gonadal anlages was performed. Information on the PGC markers of the different stages of development, the mechanisms of PGC migration towards genital ridges and the chemokines that direct migration is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号